
UC Berkeley
Research Reports

Title
Distributing Synchronous Programs Using Bounded Queues, a coordinated traffic signal
application

Permalink
https://escholarship.org/uc/item/0846252m

Authors
Zennaro, Marco
Sengupta, Raja

Publication Date
2005-05-01

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/0846252m
https://escholarship.org
http://www.cdlib.org/

Institute of Transportation Studies
University of California at Berkeley

May 2005
ISSN 0192 4095

RESEARCH REPORT
UCB-ITS-RR-2005-4

Distributing Synchronous Programs Using Bounded Queues, a
coordinated traffic signal application

Marco Zennaro and Raja Sengupta

Distributing Synchronous Programs Using Bounded Queues, a

coordinated traffic signal application

Marco Zennaro and Raja Sengupta,{zennaro, raja}@path.berkeley.edu

Abstract

This paper is about the modular compilation and distribution of a sub-class of Simulink programs [10] across

networks using bounded FIFO queues. The problem is first addressed mathematically. Then, based on these formal

results, a software library for the modular compilation and distribution of Simulink program is given. The performance

the library is given. The value of synchronous programming for the next generation of traffic control value is discussed.

The adoption of these tools seems to be the natural candidate to address the needs of the traffic engineers. As a case

study we present an implementation in Simulink of a controller for coordinated traffic signal in an asymmetric peak

hour traffic scenario and we evaluate its computational performances in a distributed environment.

I. INTRODUCTION

The synchronous paradigm was introduced in order to simplify the programming of reactive systems, hiding

from the user the complexity of interleaving and its associated non determinism [1],[2],[3],[4]. The compiler takes

care of translating the synchronous system into sequential code while preserving its semantic [4]-[5]. Synchronous

programming languages like ESTEREL [6]-[7], LUSTRE [8], SIGNAL [9], or Simulink [10] are modular and

compositional. This is essential for the programming of large control systems.

Communication networks enable systems to be distributed, enhancing both concurrency and non-determinism, due

to the asynchronous nature of the communication medium. In the synchronous philosophy, the resulting complexity

should be hidden from the user and automatically taken care of by the compiler. This is now an active field of

research. [11]-[12] propose algorithms to distribute particular subsets of ESTEREL programs, starting with a single

synchronous program and splitting it into synchronous subsystems intercommunicating through an asynchronous

medium creating what is called a Globally Asynchronous Locally Synchronous (GALS) system [13].

This approach preserves the synchronous semantics but does not maintain or exploit the modular structure in the

original synchronous program. Consequently, modification to one module of the synchronous program may require

re-compilation and re-distribution of the entire system.

We try to achieve the same objectives while retaining any modular structure in the synchronous program in its

asynchronous, semantic preserving, equivalent. Our aim is a distribution method in which any modification to a

module of the synchronous program will only require recompilation of the altered module.

The work was supported by Office of Naval Research (AINS), grant N00014-03-C-0187 and SPO 016671-004

Authors are with the Center for Collaborative Control of Unmanned Vehicles, University of California, 2105 Bancroft way, Berkeley CA

94704

[13] proves such a mapping to GALS, preserving modularity, exists for a particular class of synchronous systems.

However, no algorithm computing on a finite representation of synchronous systems is given. In [14] we proposed

such an algorithm based on CSP style randezvous [15]. In this paper we present an enhanced approach for the

distribution.

Our approach is most similar to [16] and [17]. In [16] a blocking scheme is used to distribute discrete event

systems. In the discrete event system setting particular attention has to be paid to avoid deadlock and livelock,

while we prove this is not necessary for the class of problem we address. In [17] microcircuit components are

composed together under the assumption that they are stallable, and the communication between components is

modeled using fix sized FIFO queues.

Synchronous programs are here modelled using a finitary version of the Synchronous Transition System [18],

modified to resemble Simulink. The asynchronous formalism is similar to the I/O automata of [19]. Define a

synchronous and asynchronous composition operator. The synchronous composition operator is Simulink-like. The

asynchronous composition operator is similar to the one used in Kahn Process Networks [20], [21], [22], but we

assume the communication queues to have bounded size so that it can be implemented over reliable FIFO channels.

An implementation algorithm to map synchronous programs to asynchronous ones is then given and it is proven

that the implementation map preserves the synchronous semantics in the sense of [13]. The main result is that

the implementation is a monomorphism with respect to the synchronous and asynchronous compositions. The

monomorphism is our argument that a local change can be handled locally and that a subsystem can be re-used in

different systems.

The theoretical results are then transformed into software. The architecture of the BSDP library and its

performances are presented. The results in this paper apply only to single rate Simulink programs without causal

loops (see section II). Our compilation targets execution in a network of sequential machines communicating over

reliable FIFO channels with bounded memory. This execution model fits the GALS architecture. The class of

Simulink programs we consider lie within the endochronous programs [13].

Our compilation process does no global scheduling computation. Thus if a block is changed, only the block itself

needs to be re-compiled. On the other hand, our methods only preserve the synchronous semantic in the sense of

the logical order of computation. It does not try to meet any real-time deadlines.

The paper is organized as follows. Section II introduces synchronous systems and section III asynchronous ones.

Section IV formulates the problem mathematically. Section V presents the map from synchronous to asynchronous

systems, discusses its abstraction of Simulink, and proves the map preserves the synchronous semantic. Section

VI presents the main theorem supporting the distribution of Simulink programs. Section VII presents our software

architecture while VIII presents its performances. Section IX presents a coordinated traffic control system developed

using the tools introduced in this paper.

II. SYNCHRONOUS SYSTEMS

Several synchronous system formalisms exists in the literature. The basic idea behind all of them is of a system

evolving through discrete steps. At every step all the variables are updated and they do not change values until the

next step is taken.

A. STS and FSTS

The Synchronous Transition System formalism, was introduced by Manna and Pnueli in [18] as follows:

Definition 1. A Synchronous Transition System(STS) is a pair (P , B) whereP is the set of I/O ports and state

variables of the system,B is the set of traces admitted by the system;

A trace is an infinite sequence of states and a state is a valuation of all the elements ofP . If P is a set of ports,

σ(P) denotes a valuation of the ports in P andΛ(P) denotes the set of possible valuations of the ports in P.

This lightweight formalism is easy to handle set-theoretically but is not finitary, since the set of traces is not.

Hence it cannot be input to an algorithm. In this paper the Finitary STS (FSTS) formalism is used. The FSTS is

chosen to relate to Simulink. A system is described in term of input and output ports, and internal state variables.

The evolution of the system is captured by a set of functions used to compute the output and update the state.

Definition 2. A Finitary Synchronous Transition System (FSTS) is a tuple(S, I,O, σ0, ψO, ψS ,≺) where:

2.a. S is the finite set of state variables of the system;

2.b. I is the finite set of input ports of the system.I andS are required to be disjoint.

2.c. O is the finite set of output ports of the system.O and S are required to be disjoint.O and I are not

necessarilly disjoint (this is needed for feedback as illustrated in the second example in section II-B).

2.d. σ0(S) is the initial valuation of the state variables.σ0(s) denotes the initial value of the variables ∈ S.

2.e. ΨO is a set of computable functions indexed by the output ports, used to compute the system outputs.ψo

denotes the function indexed by the output porto. Assume the functions to have the standard syntax of a

term in first order logic (see [34]), where the symbols occouring are either function symbols, state variables

symbols or input port symbols.Io denotes the set of input port symbols occurring inψo andSo the set of

state variable symbols occurring inψo. Po
def
= So ∪ Io. For example ifψo

def
= 3 ∗ i3 + s7, wherei3 ∈ I and

s7 ∈ S thenIo = {i3} andSo = {s7}.

2.f. ΨS is a set of computable functions indexed by the state variables, used to compute the next system state.

ψs denotes the function indexed by the state variables. Assume the functions to have the standard syntax of

a term in first order logic (see [34]), where the symbols occouring are either function symbols, state variable

symbols or input port symbols.Is denotes the set of input port symbol occurring inψs andSs the set of

state variable symbol occurring inψs. Ps
def
= Ss ∪ Is.

2.g. ≺ is an acyclic partial order overI ∪ O expressing the causality relation between input and output ports.

Assume for example that the outputoi is the sum of the two imputsi1 andi2. Thenoi depends uponi1 and

i2, written i1 ≺ oi and i2 ≺ oi. If P is a set of ports then∀p ∈ P . p ≺ p′ is written asP ≺ p′.

The concepts≺ andIp are linked:≺ is defined as follows:

(α, β) ∈≺⇔ (∃ψp ∈ ΨO . α ∈ Ip ∧ β = p) (1)

In the following sectionsP = S ∪O ∪ I andΨ = ΨO ∪ΨS and suscripts are used when more than one FSTS

are used (e.g.Ψs1
O refers to the set of output port functions of the FSTSs1).

A Simulink block can be described by its I/O ports, state variables and the function used to update them. Later

we capture Simulink using FSTS to make it work in a distributed computing environment. Some examples are

given in II-B.

B. FSTS examples

Consider the simple Simulink system in figure 1. It is composed of a single gain block. It reads from the input

port i1 and outputs its value multiplied by two on the porto1.

Fig. 1. A simple Simulink program

This system can be described as an FSTS(S, I,O, σ0(S),ΨO,ΨS ,≺):

• S = ∅, I = {i1}, O = {o1},

• σ0(S) = ∅,

• ΨS = ∅, ΨO = {ψo1

def
= 2 ∗ i1}

• ≺ = {(i1, o1)}

Notice that for the example in figure 1I ∩O = ∅. In the example in figure 2I ∩O 6= ∅. It is a block that accepts

two inputsi1 and i2 and has two outputso1 ando2. o1 ando2 are twicei1 and i2 respectively.

As a resulto2 is four timesi1. This system can be described as the FSTS(S, I,O, σ0(S),ΨO,ΨS ,≺):

• S = ∅, I = {i1, o1}, O = {o1, o2},

• σ0(S) = ∅

• ΨS = ∅, ΨO = {ψo1

def
= 2 ∗ i1, ψo2

def
= 2 ∗ o1}

• ≺ = {(i1, o1), (o1, o2)}

Fig. 2. A simple Simulink program with feedback

C. FSTS semantics

The semantic is given in terms of traces. Given a set of variablesV , σ(V) denotes a valuation of them andΛ(V)

the set of possible value assumed by the variables in V.

As for STS systems a trace is defined as follows:

Definition 3. A trace is an infinite sequence of valuations ofS ∪ I ∪ O. The ith vector of valuations in a tracet

is denotedti, whereti ∈ Λ(S ∪ I ∪O).

t|P denotes the projection of the trace t over the set of ports and/or variablesP .

Definition 4. Tuple satisfaction: given a trace t, the tupleti satisfies the system s, denoteds |= ti, if the following

holds:

s |= ti ⇔ (i = 0 ⇒ ∀s ∈ S . t0|s = σ0(s)) ∧

∀p ∈ O . ti|p = ψp(ti|(Ip ∪ Sp)) ∧

∀s ∈ S . ti+1|s = ψs(ti|(Is ∪ Sp))

Where the semantic of function application is assumed to have no side effect.

.

Definition5. Trace satisfaction: An FSTS systems admits a tracet (or equivalently the tracet satisfies the system

s), written s |= t, as follows:

s |= t⇔ ∀i ∈N s |= ti

whereN denotes the set of natural numbers including 0.

If ≺ is acyclic eachti and a valuation of the inputs at timei + 1 dictates an uniqueti+1. On the contrary, if

≺ has a cycle, there may be zero or multiple possibilities forti+1. Some authors have assumed out cycles ([12]),

while others have looked for a fixed-point solution ([29]). In this paper we follow the first approach. Thus every

FSTS isinput deterministic, i.e. given an input there is only one possible behaviour.

D. Compatible FSTS composition

In this section a composition operator for FSTS is defined. Once again, this is choosen to include Simulink. A

complex system is composed of subsystems with interconnected inputs and outputs ports. Not all systems can be

composed.

Definition 6. Two FSTS systems s1 = (Ss1 , Is1 , Os1 , σs1
0 (Ss1),Ψs1

O ,Ψ
s1
S ,≺s1) and s2 =

(Ss2 , Is2 , Os2 , σs2
0 (Ss2),Ψs2

O ,Ψ
s2
S ,≺s2) arecompatible if and only if:

6.a. Os1 ∩Os2 = ∅,

6.b. Ss1 ∩ Ss2 = ∅,

6.c. Ss1 ∩ (Os2 ∪ Is2) = ∅,

6.d. Ss2 ∩ (Os1 ∪ Is1) = ∅,

6.e. Is1 ∩ Is2 = ∅,

6.f. ≺a ∪ ≺b is acyclic.

The first condition ensures the two subsystems do not race to write the same output (this would introduce non-

determinism). The second, third and fourth conditions ensure that state variables are local and not shared between

components. The fifth condition ensures that every input is received by a unique subsystem and that one output

cannot be read by more than one inputs (this is not a limitation as it can be seen in the fourth example in II-B).

The last condition ensures the composed system does not have cyclic causal dependencies between variables.

Definition 7. The composition s1 ×FSTS s2 = (S, I,O, σ0(S),ΨO,ΨS ,≺) of two compatible FSTS is defined as

follows:

7.a. I = (Is1 ∪ Is2),

7.b. PO = (Os1 ∪Os2),

7.c. PS = (Ss1 ∪ Ss2),

7.d. σ0(S) = (σs1
O (Ss1) ∪ σs2

O (Ss2)),

7.e. ΨO = Ψs1
O ∪Ψs2

O ,

7.f. ΨS = Ψs1
S ∪Ψs2

S ,

7.g. ≺= (≺a ∪ ≺b).

In the following sections×FSTS is denoted with× when it will not cause confusion.

Notice thats1 × s2 is an FSTS because the compatibility hypothesis ensures there are no circular dependences

between ports preserving input determinism. As defined,×FSTS is a partial function over the FSTS set, i.e. it is

defined only for compatible FSTS.

Some examples are given in II-E

E. FSTS examples

Consider the Simulink system in figure 3. The system is composed of two blocks similar to the one described

in section II-B. Both multiply the input but they do so by different factors;

Fig. 3. A Simulink program composed of multiple blocks

The composition is:

• I = {p1, p2}, O = {p2, p3}, S = ∅

• σ0(S) = ∅

• ΨS = ∅, ΨO = {ψp2

def
= 2 ∗ p1, ψp3

def
= (3 ∗ p2)}

• ≺ = {(p1, p2), (p2, p3)}

The composed system has the expected semantic. It multiplies the input by 6.

It may apear that the compatibility conditions as defined in 6 are too restrictive, ruling out systems where the

output of a block is feeded to more than one subsystem. This is not the case as illustrated by the example in figure

4.

Fig. 4. A Simulink program composed of multiple blocks

The system has three subsystems. Two of them are the gain blocks described in the previous examples. The third

one is theduplicateblock that is formally described as:

• I = {i1}, O = {oa, ob}, S = ∅

• σ0(S) = ∅

• ΨS = ∅, ΨO = {ψoa

def
= i1, ψob

def
= i1}

• ≺ = {(i1, oa), (i1, ob)}

The composition of the three block is described with the following FSTS:

• I = {i1, oa, ob}, O = {oa, ob, o1, o2}, S = ∅

• σ0(S) = ∅

• ΨS = ∅, ΨO = {ψoa

def
= i1, ψob

def
= i1, ψo1

def
= 3 ∗ oa, ψo2

def
= 3 ∗ ob}

• ≺ = {(i1, oa), (i1, ob), (oa, o1), (ob, o2)}

F. Properties of FSTS composition

Next we state two simple propositions. The propositions merely assert our FSTS formalism has the usual properties

of other STS formalisms in the literature.

Proposition II.1. (FSTS,×FSTS) is a commutative monoid, with the identity element being the empty FSTS.

Proof: Follows from the associativity and commutativity of the union operator and by the fact that the identity

element of the union operator is the empty set.

Proposition II.2. Given two FSTSs1 and s2,

s1 ×FSTS s2 |= t⇔ s1 |= t|P s1 ∧ s2 |= t|P s1

Proof:

We first prove⇒ by contradiction. Assume that:

s1 ×FSTS s2 |= t ∧

(s1 6|= t|P s1 ∨ s2 6|= t|P s2)

It follows by the definition (5) of trace satisfaction, that:

∀j ∈ N. s1 × s2 |= tj ∧ (2)

∃i ∈ N. s1 6|= ti|ps1 ∨ s2 6|= ti|ps2 (3)

Now pick the smallesi for which (3) holds. There are two possible cases. Eitheri = 0 or i > 0.

Casei > 0: By definition (4) of tuple satisfiability and by (2) it follows that∃p ∈ (Os1 ∪Os2 ∪Ss1 ∪Ss2) such

that:

ti|p = ψs1×s2
p (ti|P s1×s2

p) if p ∈ Os1×s2 (4)

ti|p = ψs1×s2
p (ti−1|P s1×s2

p) if p ∈ Ss1×s2

By definition (4) of tuple satisfiability and by (3) it follows that∃p ∈ (Os1 ∪Os2 ∪ Ss1 ∪ Ss2) such that:

ti|p 6= ψs1
p (ti|P s1

p) if p ∈ Os1 (5)

ti|p 6= ψs1
p (ti−1|P s1

p) if p ∈ Ss1

ti|p 6= ψs2
p (ti|P s2

p) if p ∈ Os2

ti|p 6= ψs2
p (ti−1|P s2

p) if p ∈ Ss2

For the minimali pick a minimal port for which conditions (2-3) hold with respect to≺s1×s2 . Denote this

minimal port byp. We assume thatp ∈ P s1×s2
O , the casep ∈ P s1×s2

S has a similar proof.

By definition of FSTS composition it follows that eitherp ∈ Os1 or p ∈ Os2 . Assume thatp ∈ Os1 . The proof

for p ∈ Os2 is the same up to a change of superscipt. Now:

ti|p = ψs1×s2
p (ti|P s1×s2

p) from (4)

= ψs1
p (ti|P s1

p) by def. of FSTS comp. (6)

But this contradict (5).

Casei = 0: By definition (4) of tuple satisfiability and by (2) the following must hold:∃p ∈ (Os1 ∪Os2 ∪Ss1 ∪

Ss2) .

ti|p = σs1×s2
0 if p ∈ Ss1×s2 (7)

ti|p = ψs1×s2
p (ti|P s1×s2

p) if p ∈ Os1×s2

By definition (4) of tuple satisfiability and by (3) the following must hold:∃p ∈ (Os1 ∪Os2 ∪ Ss1 ∪ Ss2) .

ti|p 6= σs1
0 (p) if p ∈ Ss1 (8)

ti|p 6= ψs1
p (ti|P s1

p) if p ∈ Os1

ti|p 6= σs2
0 (p) if p ∈ Ss2

ti|p 6= ψs2
p (ti|P s2

p) if p ∈ Os2

For i = 0, pick a minimal port for which the above conditions hold with respect to≺s1×s2 and denote itp. If

p ∈ Os1×s2 , we can follow the same proof as the previous case. Therefore letp ∈ Ss1×s2 . Assume thatp ∈ P s1
S .

The proof for the casep ∈ Ss2 is the same up to a change of superscript.

By definition of FSTS composition, given the assumptionp ∈ Ss1 , from (7) follows that:

ti|p = σs1
0 (p).

But this contradicts (8).

We now prove the second implication⇐ by contradiction. Assume that:

s1 ×FSTS s2 6|= t ∧

(s1 |= t|P s1 ∧ s2 |= t|P s2)

It follows by the definition (5) of trace satisfaction that:

∀j ∈ N s1 |= tj |ps1 ∧ s2 |= tj |ps2 ∧ (9)

∃i ∈ N s1 × s2 6|= ti (10)

Now pick i to be the smallest number for which (10) holds. There are two possible cases. Eitheri = 0 or i > 0.

Casei > 0: By definition (4) of trace satisfaction and by (9) it follows that:∃p ∈ (Os1 ∪Os2 ∪ Ss1 ∪ Ss2) .

ti|p = ψs1
p (ti|P s1

p) if p ∈ Os1 (11)

ti|p = ψs1
p (ti−1|P s1

p) if p ∈ Ss1

ti|p = ψs2
p (ti|P s2

p) if p ∈ Os2

ti|p = ψs2
p (ti−1|P s2

p) if p ∈ Ss2

(12)

By definition (5) of trace satisfaction and by (10) it follows that:∃p ∈ (Os1 ∪Os2 ∪ Ss1 ∪ Ss2) .

ti|p 6= ψs1×s2
p (ti|P s1×s2

p) if p ∈ Os1×s2 (13)

ti|p 6= ψs1×s2
p (ti−1|P s1×s2

p) if p ∈ Ss1×s2

For the minimali for which conditions (10) holds, pick a minimal port for which conditions (9-10) hold with

respect to≺s1×s2 . Denote this minimal port asp. We assume thatp ∈ Os1×s2 . The casep ∈ Ss1×s2 has a similar

proof.

By definition of FSTS composition it follows that eitherp ∈ Os1 or p ∈ Os2 . Assume thatp ∈ Os1 (the proof

for p ∈ Os2 is the same up to a change of superscipt). Now:

ti|p 6= ψs1×s2
p (ti|P s1×s2

p) from (13)

= ψs1
p (ti|P s1

p) by def. of FSTS comp. (14)

But this contradicts (11).

Casei = 0: By definition (5) of tuple satisfiability and by (10) follows that:∃p ∈ (Os1 ∪Os2 ∪ Ss1 ∪ Ss2) .

ti|p = σs1
0 (p) if p ∈ Ss1 (15)

ti|p = ψs1
p (ti|P s1

p) if p ∈ Os1

ti|p = σs2
0 (p) if p ∈ Ss2

ti|p = ψs2
p (ti|P s2

p) if p ∈ Os2

∃p ∈ (Os1 ∪Os2 ∪ Ss1 ∪ Ss2) .

ti|p 6= σs1×s2
0 (p) if p ∈ Ss1×s2 (16)

ti|p 6= ψs1×s2
p (ti|P s1×s2

p) if p ∈ Os1×s2

For i = 0 pick a minimal port for which the above conditions hold with respect to≺s1×s2 . Denote this port with

p. If p ∈ Os1×s2 , we can follow the same proof as the previous case. Thereforep ∈ Ss1×s2 . Assume thatp ∈ Ss1 .

The proof for the casep ∈ Ss2 is the same up to a change of superscript. By definition of FSTS composition, given

the assumptionp ∈ Ss1 , from (16) follows that:

ti|p 6= σs1
0 (p)

but this contradict (15).

This conclude the proof.

III. ASYNCHRONOUS SYSTEMS

There are many asynchronous system formalisms in the literature. One of them is the asynchronous version

of STS, called the Asynchronous Transition System (ATS) model, introduced by Benvenieste in [3]. In ATS an

asynchronous system is a couple (Pa, Ba) wherePa is the set of I/O ports andBa the set of the possible behaviors.

A behavior is an infinite sequence of valuations and a valuation is a couple (port number, value). Again the simplicity

of the model makes it easy to handle it set-theoretically, but we seek a finitary formalism to be input to an algorithm.

Instead we use automata augmented with queue variables. We call them Reactive Automata (RA). A reactive

automaton is a labeled finite automaton communicating through shared variables. It is a discrete version of the

IO-automata described in [19] augmented with communication ports.V denotes the set of variables,P the set of

ports and for any portp in P, β(p) is the bound (maximum capacity) of the queuep. Formally an RA is a tuple

(L, l0, V, σ0(V), PI , PO, T) where

• L is a finite set of locations of the automaton;

• l0 is the initial location,l0 ∈ L;

• V is a finite set of variables read and written only by the RA;

• σ0(V) is the initial value of the state variables;

• PI is a finite set of communication ports, considered as environmental queues read by this RA;

• PO is a finite set of communication ports, considered as environmental queues, written by this RA;

• T is a finite set of labeled transitions of the form(li, lf , (c, A)) whereli, lf ∈ L, c is a boolean condition over

the values of the elements inV . A is defined by the following grammar:

A→?p(v) wherep ∈ PI andv ∈ V

A→!p(v) wherep ∈ PO andv ∈ V

A → v := f(V1) wherev ∈ V , V1 ⊆ V, f ∈F(V1) is the set of functions with the standard syntax of a term

in first order logic (see [34]), where the symbols occouring are either function symbols or variable symbols

in V1.

In the following sectionsP denotes the setPI ∪ PO.

An example of an RA is given in figure 5 and is fomalized as the following RA:

({W,P, S},W, {v1, v2}, {0, 0}, {input}, {output},

{(W,P, True, ?input(v1), (P, S, True, v2 := v1 + 1), (S,W, True, !output(v2)})

Fig. 5. A simple reactive automaton

A. RA semantic

The semantic of an RA is in terms of runs and traces.

Definition8. A run of a Reactive Automaton is an infinite sequence of (location, variables valuation, transition,

ports valuation) tuples.

The actions are reads denoted?p(v), writes denoted!p(v), computations denotedv := f(V), and the silent action

denotedε. The silent action is introduced to denote the reception of data in a input queue due to an action of the

environment. A transition with an input action removes the element at the head of an input port and writes it to an

internal state variable, while a transition with an output action adds the value of a variable to the tail of an output

port.

Definition 9. A reactive automatontrace is a tuple, where each element of the tuple is an infinite sequence of

valuations for a particular variable of the reactive automaton. Theith valuation of a variablev in a trace t is denoted

by (t|v)i.

The following is a representation of the initial part of a run of the RA in figure 5 for the input port valuation

{1} and the output port valuation∅:

(W, (0, 0), T rue→?Input(v1), (< 1 >, ∅)),

(P, (1, 0), T rue→ v2 := v1+1; , (∅, ∅)),

(S, (1, 2), T rue→!Output(v2), (∅, ∅)), (W, (1, 2),−, (∅, < 2 >)), ...

where W, P and S are thewait for input, Process Input and Send Output location respectivelly and the second

element is a valuation ofv1 andv2, and the third element is a valuation for the two portsInput andOutput.

Thus mathematically a run is a sequence of tuples like the one above. Theith tuple in a run r is denoted byri

and its element are extracted using projection, for exampleri|location denotes the location element of the tuple

ri.

Given a run, theassociated tracecan be computed by examining the update action on every variable of the RA,

i.e. theith element of the sequence associated with the state variablev is given by theith update on that variable.

A variable v can be updated in two possible ways: because of a read action?p(v), or because of a computation

action v := f(V). Given a RA runr =< r0, r1, r2, ... >, (t|v) is computed extracting a sequence< rk0 , rk1 , ...

from r such that for allki rki
|action is an update action forv and for allj 6= ki rj |action is not an update action

for v. An update action forv is an input action on the form?p(v) for any portp or an update action on the form

v := f(V), for any functionf .

For the previous run, the associated trace is< (0, 1, ...), (0, 2, ...) > where the first and the second sequences

are the successive valuations ofv1 andv2 respectively.

Definition 10. Tuple satisfaction: Given a reactive automaton runr, we say that the tupleri satisfies a RA w,

denotedw |= ri iff the following holds:

(i = 0 ⇒ (r0|location = l0 ∧ r0|V = σ0(V) ∧ ∀p ∈ P0 r0|p = ∅)) ∧

(ri|action = ε⇒ ∀v ∈ V ri|v = ri+1|v ∧

∀p ∈ PO . (ri|p = ri+1|p ∨ ri+1|p = tail(ri|p)) ∧

∀p ∈ PI . (ri|p = tail(ri+1|p)) ∨ (ri|p = ri+1|p)) ∨

(∃(s, s′, (c, a)) ∈ T ⇒ ri|location = s ∧ ri+1|location = s′ ∧

c |= ri|(V ∪ P) ∧ ri+1|(V ∪ P) = act(a, ri|(V ∪ P)))

Observe that the values of a port may change value without any input or output by the component, by its

environment, simulating the reception of a message through that port, through anε-transition. At the same time,

by the definition ofact in the next paragraph, input actions on empty input ports and output actions on full output

ports are not defined. Hence input and output actions are blocking.

Assume for now thatPI ∪ PO = {p1, .., pm} and thatV = {v1, .., vn}. Then the functionact is defined as

follows:

act(a, σ(p1), .., σ(pm), σ(v1), .., σ(vn)) =



(σ(p1), .., σ(pm),

σ(v1), .., σ(vj−1), σ(f)(σ(vi1), .., σ(vik
)), σ(vj+1), .., σ(vn)) if a = ”vj := f(vi1 , .., vik

)”

(σ(p1), .., σ(pj−1), push(σ(vi), σ(pj)), σ(pj+1), .., σ(pm),

σ(v1), .., σ(vn)) if a = ” !pj(vi)” ∧ ¬full(σ(pj))

(σ(p1), .., σ(pj−1), tail(σ(pj)), σ(pj+1), .., σ(pm),

σ(v1), .., σ(vi−1), head(σ(pj)), σ(vi+1), .., σ(vn)) if a = ”?pj(vi)” ∧ ¬empty(σ(pj))

whereσ(.) denotes the variable and port valuation. The functionfull, empty, head, tail andpush are the standard

operations over bounded size queues. Assume the semantic of function application to be the same used in the case

of FSTS. In particular, a function evaluation has no side effects.

Definition 11. Run satisfaction: A run r satisfies a reactive automatonw, denotedw |= r iff:

∀i ∈ N w |= ri

Definition 12. Trace satisfaction: A trace t satisfies a RAw, denotedw |= t iff there is a run r such thatw |= r

and t is associated tor.

We now define a composition operator×RA for reactive automata.

Definition 13. Given two reactive automata (L1, l10, V 1, σ1
0(V 1), P 1

I ,P 1
O, T 1) and (L2, l20, V 2, σ2

0(V 2), P 2
I , P 2

O

T 2) they arecompatible if the following condition hold:

V 1 ∩ V 2 = ∅ ∧ P 1
O ∩ P 2

O = ∅ ∧ P 1
I ∩ P 2

I = ∅.

The first conjunct requires the variables of each RA to be local. The last two say that two distinct automata

cannot write the same port or read the same port.

Definition 14. Reactive automaton composition: Given two compatible reactive automataw1 = (L1, l10, V 1,

σ1
0(V 1), P 1

I ,P 1
O, T 1) andw2 = (L2, l20, V 2, σ2

0(V 2), P 2
I , P 2

O T 2) Their compositionw1 ×RA w2 is defined as the

automaton (L, l0, V , σ0(V), P , T) where:

1) L =
l1∈L1,l2∈L2⋃

{{(w1, l1), (w2, l2)}}

2) l0 = {(w1, l
1
0), (w2, l

2
0)}

3) V = V 1 ∪ V 2

4) σ0(V) = σ0(V)1 ∪ σ0(V)2

5) PI = (P 1
I ∪ P 2

I)

6) PO = (P 1
O ∪ P 2

O)

7) T = {(s, d, c, a)|((s|L1, d|L1, c, a
′) ∈ T 1) ∧ (s|L2 = d|L2)) ∨ ((s|L2, d|L2, c, a) ∈ T 2) ∧ (s|L1 = d|L1))}

This is an interleaving of the executions of the two original automata.

Lemma III.1. (RA,×RA) is a commutative monoid, with the identity element being the empty RA.

Proof: Follows from the associativity and commutativity of the union operator and by the fact that the identity

element of the union operator is the empty set.

∏
w∈W w denotes an n-ary composition of RA’s. Lemma (III.1) shows this is well-defined as the usual extension

of the binary operator×RA.

Definition 15. Given a runw of the automaton
∏

w∈W w, the projection of the product to one of the factors

w ∈W is formally defined as follows:

∀i ∈N . (r|w)i|location = l ∧ (w, l) ∈ (ri|location) ∧

. ∀v ∈ V w . (r|w)i|v = (ri|v) ∧

. (ri|transition) ∈ w ⇒ (r|w)i|transition = (ri|transition) ∧

. (ri|transition) /∈ w ⇒ (r|w)i|transition = ε ∧

. ∀p ∈ (Pw
O ∪ Pw

I) . (r|w)i|p = (ri|p)

Every tupleri of the run of the product is projected to the variables and locations ofw and the tuple with

transition not belonging tow|T are replaced with a silent transition.

Lemma III.2. Given two compatible reactive automataw1 and w2 and given a runr of their composition, the

following holds:

(w1 × w2 |= r) ⇒ (w1 |= r|w1 ∧ w2 |= r|w2)

Proof: Follows from the observation that everyri in r belongs tor|w1 or to r|w2. This is so because the

transition in each tuple belongs to one of the two automata or it is anε action. If the action belongs tor|w1, by

definition of RA composition, it does not modify the location, variables or output ports ofw2 and viceversa.

RA can be easily compiled to run on a sequential machine. A product of reactive automata could be compiled

in a few ways. The composition can be carried out generating a third automaton, or the two original automata can

be run in parallel as long as the following hyphothesis (embedded in our definition of satisfaction) holds:

Hyphothesis III.3. The communication queues are FIFO queues, the values are not lost and their order is

maintained.

In the second approach the composition can be implemented within a single machine between processes using

monitors and semaphors (see [30]), as well as with 3-way handshakes protocols over a network (see [31]). This

means we can compose RAs located at different sites across networks. In section (VII) we will explore an approach

that takes full advantage of the distribution of the code (maximising pipeline gain).

IV. PROBLEM STATEMENT

Given the definition of FSTS and RA in the previous sections, we can now formally define our problem. Figure

3 illustrates the research program. First we need to find a way to associate RA and FSTS traces, that is to say we

need a trace mapχ :TRA →TFSTS whereTRA and TSTS are the set of traces of STS and RA respectively. In

[13] the following definition ofχ is given:

Definition 16. t′ = χ(t) ⇔ ∀i ∈ N ∀v ∈ V . (t|v)i = t′i|v

We need to find a way to implement FSTS as RA while preserving the synchronous semantic, that is to say we

need to find an implementation mapφ :FSTS→RA such that the following holds:

∀w ∈ RA ∀s ∈ FSTS . w = φ(s) ⇒ (r |= t⇔ s |= χ(t)) (17)

If this holds thenφ maps a synchronous system into an asynchronous system while preserving the synchronous

semantic. It has been proved in [13] that for the set ofendochronousprograms such aφ exists. In section V we

define aφ for the class of FSTS.

So far we have just obtained what a Simulink compiler does, or what is done in [4]. Given such maps we can

now formulate our problem (like [13]) as follows: we seek a composition operator×RA such that, for any two

FSTSs1 ands2 and RAw1 andw2, the following holds:

w1 = φ(s1) ∧ w2 = φ(s2) ⇒

(w1 ×RA w2 |= t⇔ s1 ×STS s2 |= χ(t))
(18)

If this holds and if the composition operator×RA can be implemented across a network then this constitutes a way

to distribute the synchronous systems1 ×STS s2 across a network while preserving its synchronous semantic. It

has been proved in [13] that when the pair (s1, s2) is isochronousthan such an operator exists. In section VI we

prove that property (18) holds if the two synchronous system arecompatible (as defined in section II). Thus we

claim φ is a monomorphism between (FSTS,×FSTS) and (RA, ×RA).

Fig. 6. A graphical representation of property (18)

V. IMPLEMENTATION OF FSTS SYSTEMS

In this sectionφ, a mapping of FSTSs into RAs is given. It is then proven that theφ satisfies(17).

φ is defined by the following algorithm:

Algorithm Φ

Inputs: an FSTSs=(S, I,O, σ0(S), ψO, ψS ,≺)

Outputs: An RA r =(L, l0, V, σ′0(V), PI , PO, T) that implements the input system

1 PI := {pj |j ∈ I\O}

2 PO := {pj |j ∈ O\I}

3 V = I ∪O ∪ S

4 ∀i ∈ (I ∪O) . σ′0(i)| = 0

5 ∀j ∈ S . σ′0(j) = σ0(j)

6 l0 := lroot

7 (N,E) := CG(≺ |(I ∪O), (I ∪O), root, leaf)

8 For all n ∈ N add ln in L

9 For all (n, n′, j) ∈ E do

10 if j ∈ (I\O) then do

11 add (ln, ln′ , (true, ?pj(j))) to T

12 od

13 if j ∈ (O\I) then do

14 add ln,j in L

15 add (ln, ln,j , (true, j := ψj(V |Pj))) to T

16 add (ln,j , ln′ , (true, !pj(j))) to T

17 od

18 if j ∈ (O ∩ I) then do

19 add (ln, ln′ , (true, j := ψj(V |Pj))) to T

20 od

21 od

23 Let < be any linearization of≺ |S
24 (N,E) := CG(<), (S), leaf, root)

25 For all n ∈ N add ln in L

26 For all (n, n′, j) ∈ E do

27 add (ln, ln′ , (true, j := ψj(V |Pj)) to T

28 od

Algorithm CG (Compute Graph)

Input: (≺, P, root, leaf) where≺ is a partial order over a setP , the setP , and two labelsroot, leaf

Output: A graph (Nodes, Edges)

1 Nodes := {root, leaf}

2 Edges := ∅

3 % max-int is a global variable that holds the highest integer used to label a node

counter := max− int+ 1

4 ∀ linearizationw = (w1, w2, ..., wm) of ≺ in P do

5 pointer = root

6 For all i ∈ [1,m] do

7 if (pointer, n, wi) ∈ Edges do pointer = n

8 else do

9 addncounter to Nodes

10 add (pointer, ncounter, wi) to Edges

11 pointer := ncounter

12 counter + +

13 od

14 od

15 od

16 Replace the sinks inNodes andEdges with leaf

The algorithm is guaranted to terminate for every FSTS. All the for loops terminate in finitely many steps because

the set of variables and ports of an FSTS is finite. If≺ is not acyclic then the algorithm cannot be applied because

≺ would not be linearizable.

Some lemmas are now proved.

Lemma V.1. ComputeGraph(≺, P, root, leaf) produces an acyclic graph with source, namedroot, and sink,

namedleaf . Every path in the graph from source to sink has one and only one edge labelled with an element of

P . Moreover ifp′ ≺ p and {p, p′} ⊆ P then the edge labelledp′ appears before the one labelledp in every path

from root to leaf .

Proof: Every time an edge is added (on line 11), it does not create a loop because it connects an existing node

to a new one. Line 17 does not create any loop since it flattens all the sinks into a single sink. Therefore the graph

is acyclic, it has a sourceroot and a single sinkleaf . By construction every path corresponds to a linearization

of ≺ in V Therefore an elementp′ of P appears as a label only once in a path and it appears before all thep for

which (p′, p) ∈≺.

Lemma V.2. For all w in φ[FSTS] and every infinite runr of w, r visits the locationlleaf and lroot infinitely

often.

Proof: Proof: The automaton generated by algorithmφ are obtained linking two graphs generated by

ComputeGraph, so that the source of one is the sink of the other. The only nodes shared by the two graphs

areroot and leaf . Each graph is acyclic, has finitely many states, one source and one sink by lemma (V.1). Since

every run correspond to an infinite length path in the combined graph and the two graphs are acycliclleaf andlroot

are visited an infinite amount of times.

From lemma (V.2), we see that any run r =< r0, r1, r2, ... > of an RA inφ[FSTS] has an infinite subsequence

< ri0 , ri1 , ri2 , ... > such that∀k ∈N rik
|location = lleaf and ∀k ∈N ri 6= rik

⇒ ri|location 6= lleaf . Thus

we can write r equivalently as r =< u0, u1, u2, ... > whereu0 =< r0, ..., ri0 >, u1 =< ri0+1, ..., ri1 >, u2 =<

ri1+1, ..., ri2 > and so on. We call theseui’s cycles. We can also define the functioncycle(r, n), for a runr andn ∈

N ascycle(r, n) = rin |V , i.e. as the valuation of V at thenth visit to lleaf , where V is the set of variables of the RA.

In the following, the initialization of the state variables is considered the0th write of the variables.

Lemma V.3. Let w = φ(s). In every cycle all the input ports ofw are read once and only once. Similarly all the

output ports and all the variables ofw are written once and only once every cycle. Ifv′ ≺ v in s thenv’ is written

beforev in every cycle ofw.

Proof: Proof: Follows from lemma (V.1) and the definition of algorithmφ.

Lemma V.4. For a given runr of an RAφ(s) ∈ φ(FSTS), let t be the associated trace. Then the following holds

∀i ∈ N ∀v ∈ V . (t|v)i = cycle(r, i)|v. Moreover:

(∀i ∈ N . ∀v ∈ O . (t|v)i = cycle(r, i)|v = ψv(χ(t)i|Iv ∪ Sv)∧

∀v ∈ S . (t|v)i+1 = cycle(r, i)|v = ψv(χ(t)i|Iv ∪ Sv))∧

∀v ∈ S . (t|v)0 = cycle(r, 0)|v = σ0(v)

Proof: By lemma (V.3) in every cycle a variable is written once and only once before hittinglleaf . When

a run hits the locationlleaf for the ith time, all the variables have been written exactlyi times. Write actions

are introduced byφ in lines 15, 19 and 23. Every write tov is ψv applied tot|V . By lemma (V.3) we then get

(t|v)i = ψv((t|Vv
)i). The result then follows by definition (16) ofχ.

The first theorem stated below asserts algorithmφ constructs an RA implementing of an FSTS while preserving

its semantics in the sense ofχ (the proof is in the appendix).

Theorem V.5. Algorithm φ satisfies property (17), i.e.

∀w ∈ RA ∀s ∈ FSTS . w = φ(s) ⇒ (r |= t⇔ s |= χ(t))

Proof: First the left to right (⇒) implication is proved by contradiction. Assume that the implication does not

hold. Then the following must hold:

∃s ∈ FSTS, ∃t ∈ Γ, w = φ(s) ∈ RA. w |= t ∧ s 6|= χ(t)

whereΓ is the set of traces ofw. Let s = (S, I,Oσ0(S),ΨO,ΨS ,≺).

Sinces 6|= χ(t), by definition of FSTS satisfiability, the following must hold:

∃i ∈ N .s 6|= χ(t)i

By definition 4 and 5 of FSTS satisfaction it follows that:∃i ∈ N .∃v ∈ (O ∪ S) .

v ∈ O ⇒ χ(t)i|v 6= ψv(χ(t)i|Iv ∪ Sv) ∧ (19)

v ∈ S ∧ i > 0 ⇒ χ(t)i|v 6= ψv(χ(ti−1)|Iv ∪ Sv)

v ∈ S ∧ i = 0 ⇒ χ(t)i|v 6= σ0(v) (20)

Assumev ∈ Os (the proof for the casev ∈ Ss is similar). Since by hyphotesisw |= t, by lemma (V.4) the

following holds:

∀i ∈ N . ∀v ∈ O . ti|v = ψv(χ(t)i|Iv∪Sv
) (21)

Pick i to be the minimal for which (19) holds. Pick thenv to be one of the minimal (with respect to≺s) variables

for which (19) holds. It then follows from (19) and (21) that:

χ(t)i|v 6= ti|v

But this contradict definition (16) ofχ. Hence the first implication of the theorem holds.

The proof for the right to left (⇐) is now given. It is shown that for any tracet′ of an FSTSs there is a runr

of φ(s) with associated tracet such thatt′ = χ(t).

Consider the runr constructed cycle by cycle as follows. Fix any linearization of≺ |O∪I . This linearization

correspond to an unique path fromlroot to lleaf , where each edge label updates a variable in the order given by

the linearization. Extend the linearization with the total order defined on line (22) ofφ so that the state variables in

S follow all the others in the order. This order fixes now a unique cycle fromlroot back to itself, where by lemma

(V.3) each variable is updated once and only once and in the order given by this extended linearization.

Coonsider the run starting from locationl0 with all the variables initialized toσ0(V). At the begining of every

cycle, through throughε transition, all the output ports are emptied and all the external inputs are supplied. Then

the run goes through the cycle identified by the selected linearization. The value written in each portspv in the ith

cycle is (t′i)|v. The value written in each variablev in the ith cycle is (t′i)|v.

This run is associated by construction to a tracet such thatt′ = χ(t). We need to show that it satisfiesw. By

lemma (V.4) the values of the variables and of the ports are the ones satisfyingw.

It is left to show that thatw would not deadlock at any point of the run. All the reactive automata generated

throughφ have no sink states, and since all their transitions have onlytrue guards, there is always a transition

enabled. This means that the execution ofw can be blocked only on a read from an empty input queue or a write

on a full output queue.

The external input ports are written at the begining of each cycle of the constructed run and, by lemma (V.3),

the queue is then read once and only once so there are no blocking reads on an external input queue. At the end

of the cycle the queue is empty preventing writes on full queues at the begining of the next cycle.

The external output ports are emptied at the begining of each cycle of the constructed run and, by lemma (V.3),

they are written once and only once per cycle. Hence there are no blocking writes on external output queues.

This conclude our proof.

A Simulink program goes through the following phases (see figure 7): it starts in the initialization phase computing

sample times and parameters, determining the block execution order and allocating memory. Then the loop phase

starts, where the following steps are repeated: read the input (input step), compute the output and propagate it

(output step) and update the state (state step). Least in the termination phase the memory is released.

Fig. 7. Implementation of a Simulink System

In Simulink programs without causal loops, the order of computation produced in the initialization step is

computed through a linearization of the causality relation between inputs and outputs.

The algorithm used by Simulink (Real-Time workshop) for the simulation (implementation) of a system is hence

different from the one given in the previous section. For single rate systems with no causal loops the main difference

is that an FSTS is not mapped into a RA able to receive its inputs in all the possible orders, but only in a particular

order. The subroutineCG is no longer necessary and line 7 is replaced with a routine that constructs a single path

graph. Alternativelly we can just pass to theCG routine a linearization of≺ instead of≺. In the next sections

φsim denotes the algorithm with this modifications.

All the claims and proof of the previous section will hold forφsim as well. However in the next sections it is

showed thatφ can be distributed with fewer assumption thanφsim.

VI. DISTRIBUTION OF FSTS SYSTEMS

We have proved in the previous section that there is a mapφ between FSTS and RA satisfying property (17).

We now prove that the composition operator×RA as introduced in section III satisfies property (18).

Since two different RAs may be running on different machines, they do not share the same notion of time. But,

if we are using×RA, then we can claim the following: if a variablev in one RA is valuated before writing on a

port P and on the other side a variablev′ is valuated after reading from P then we can be sure thatv has been

valuated beforev′. For the class of reactive automata implementing an FSTS, i.e.ψ[FSTS] this is formalized by

the following observation:

Proposition VI.1. Consider two compatible RAw1 = φ(s1) andw2 = φ(s2) with variablesv1, v3 of w1 andw2

respectively and a portp2 written byw1 and read byw2. If in each cycle ofw1, v1 is written beforep2 is written

and in each cycle ofw2, p2 is read beforev3 is written byw2, thenv1 is written for theith time afterv3 is written

for the ith time inw1 ×RA w2.

Proof: Since the two RA are compatible only one automaton can write on any port. By hyphothesis only

w1 writes onp2 and by (III.3) no messages are lost. Hence, since every read operation removes an element from

the queue and that the queues are initially empty, forw2 to be reading fromp2 (i)th times,w1 must have written

p2 (i)th times. By hyphothesis forw2 to be writingv3 for the ith time, it must have readp2 i
th times. Thus, by

hyphothesis onw1 v1 has been written at leastith times.

We have claimed in section III that×RA can be implemented across comunicating machines. Hence, we argue

that we can distribute a Simulink-like synchronous system across a network with the following theorem:

Theorem VI.2. The compostion operator×RA satisfies property (18), i.e. for any two compatible FSTSs =

(Ss, Is, Os, Is
O,Ψ

s
O,Ψ

s
S ,≺s) and s′ = (Ss′ , Is′ , Os′ , Is′

O ,Ψ
s′

O ,Ψ
s′

S ,≺s′) the following holds:

∀t ∈ Γ . φ(s)×RA φ(s′) |= t⇔ s×STS s
′ |= χ(t)

Proof: The theorem is proved proving the two implications separately, starting with the left to right (⇒)

implication, now proved by contradiction. Assume that the thesis does not hold. Than the∃s, s′ ∈ FSTS,∃w,w′ ∈

RA,∃t ∈ Γr×r′ .

w = φ(s) ∧ w′ = φ(s′) ∧ (22)

(w ×RA w′) |= t ∧ (23)

(s×STS∗ s
′) 6|= χ(t) (24)

where Γw×w′
denotes set of traces ofw ×RA w′. Assumew = (Lw, lw0 , V

w, V w
0 , P

w
I , P

w
O , T

w) and w′ =

(Lw′
, lw

′

0 , V w′
, V w′

0 , Pw′

I , Pw′

O , Tw′
),

From the definition (5) of trace satisfaction (24) is equivalent to:

∃i ∈ N . (s×FSTS s
′) 6|= χ(t)i

Pick the smallesti for which the above condition holds and denote it withi. From definition (4) of tuple

satisfaction it then follows that:

∃v ∈ (Ss×s′ ∪Os×s′) . χ(t)i|v 6= ψs×s′

v (χ(t)i|(Is×s′

v ∪ Ss×s′

v)) (25)

Amongst the variables ati satisfying (25) pick a minimal one w.r.t.≺s×s′ , and denote itv, Assume thatv ∈ Os×s′ .

The proof for the casev ∈ Ss×s′ is similar. Assume that in particularv ∈ Os. The proofs for the casev ∈ Os′ is

the same up to a superscript.

Now by contradiction hyphothesis (23) and lemma (III.2) the following hold:

w |= t

Hence, by lemma (V.4) and by the assumption the following hold:

∀k ∈ N ∀y ∈ Os . (t|y)k = ψs
y(χ(t)k|(Is

y∪Ss
y)) (26)

In particular this holds fory = v andk = i. So that:

χ(t)i|v = (t|v)i by definition (χ) of χ

= ψs
v(χ(t)i|(Is

v∪Ss
v) from (26) by lemma (V.4)

= ψs×s′

v (χ(t)i|Is×s′
v ∪Ss×s′

v
by def. of FSTS comp.

But this contradict (25) hence the first implication is proved.

The proof of the right to left implication (⇐) is now given. It is shown that for any tracet′ of an FSTSs× s′

there is a runr of φ(s)× φ(s′) with associated tracet such thatt′ = χ(t).

Consider the runr constructed cycle by cycle as follows. LetE = ((Os×s′\Is×s′) ∪ (Is×s′\Os×s′)) be the

set of external input and ouput ports. Fix a linearization of≺ |E . This linearization, projected on the ports ofs

identifies an unique path fromlroot to lleaf in φ(s). Similarly when projected on the ports ofs′, it identifies an

unique path fromlroot to lleaf in φ(s′). In both cases each label of each edge of the paths updates a variable in

the order given by the linearization.

Extend the linearization with the total orders defined on line (22) ofphi. Then the state variables inSs×s′ follow

all the other variables in the order. The orders fix a unique cycle fromlroot back to itself in bothφ(s) andφ(s′),

where by lemma (V.3) each variable is updated once and only once and in the order given by the selected total

order.

The run starts from location{(φ(s), ls0), (φ(s′), ls
′

0)} with all the variables initialized toσ0(V) andσs′

0 (V). At

the begining of every cycle, throughε transitions, all the external output ports are emptied and all the external

inputs are given. Then the run goes through the two automata along the paths identified by the just constructed

linearization. The value written in each portspv in the ith cycle is (t′i)|v. The value written in each variablev in

the ith cycle is (t′i)|v.

This run is associated by construction to a tracet′ such thatt′ = χ(t). We need to show that it satisfies

φ(s)×φ(s′). By lemmas (III.2-V.4) the values of the variables and of the ports are the ones satisfyingφ(s)×φ(s′).

It is left to show that thatφ(s) andφ(s′) would not deadlock at any point of the run. All the reactive automata

generated throughφ have no sink states, and since all their transitions have onlytrue guards, there is always a

transition enabled. This means that the execution ofφ(s) andφ(s′) can be blocked only on a read from an empty

input queue or a write on a full output queue.

The external input ports are written at the begining of each cycle and, by lemma (V.3), the queue is then read

once and only once so there are no blocking reads on an external input queue. At the end of the cycle the queue

is empty preventing writes on full queues at the begining of the next cycle.

The external output ports are emptied at the begining of each cycle of the constructed and, by lemma (V.3), they

are written once and only once per cycle. Hence there are no blocking writes on external output queues.

The only remaining blocking condition possible is on internal input (i.e. ports that belongs to(Is ∩Os′)∪ (Is′ ∩

Os)). Since they are not internal inputs these ports are empty at the begining of every cycle. They are written once

by one automaton and read once and only once by the other. Hence they are empty at the end of each cycle.

By lemma (VI.1) the write action take place before the read action. Thus there is no blocking read or write on

internal inputs.

This conclude our proof.

As noted in section V the implementation algorithm used by Matlab Simulink / RealTime Workshop differs

from φ proposed for FSTS in the sense that it fixes the order in which the input are received and the outputs are

computed and propagated to the other subsystems.

The results proved in section VI forφ do not extend in the general case forφsim. It suffices to consider the

FSTS in figure 8 (taken from [3]).

It is easy to see thats0 cannot be compiled throughφsim without deadlocking if composed withs1 or s2. If it

is compiled to accepti1 beforei2 then it will block if composed withs2. If compiled to accepti2 beforei1 it will

deadlock when composed withs1. In reality a Simulink systems reads all the inputs before computing any of the

outputs. This means thats0 will deadlock with boths1 ands2.

This shows that as long as the Matlab Simulink interpreter / Realtime Workshop compiler is used, synchronous

systems cannot be distributed in the general case. However it can be done in the following particular case:

Fig. 8. Three FSTS systems

Consider though this particular case:

Theorem VI.3. Given an FSTSs′ =
∏

s∈S s, if ≺s′ projected to the ports of each subsystems is a total

order (i.e. the external outputs depends on all the external inputs), then for any two compatible FSTSs =

(Ss, Is, Os, Is
O,Ψ

s
O,Ψ

s
S ,≺s) and s′ = (Ss′ , Is′ , Os′ , Is′

O ,Ψ
s′

O ,Ψ
s′

S ,≺s′) the following holds:

∀t ∈ Γ . φsim(s)×RA φsim(s′) |= t⇔ s×STS s
′ |= χ(t)

Proof: Since≺s′ projected over the subsystems is a total order the output ofCG is a single path graph with

root lroot and sinklleaf . As a resultφ andφsim produce the same output. The theorem follows.

VII. BDSP ARCHITECTURE

In this section the software architecture for the distribution of Simulink programs (see figure 9) is described. We

call this architecture Berkeley Distributed Simulink Program (BDSP) library.

An initial version of the BDSP library has been implemented using a simple rendezvous scheme. The first version

was developed as a proof of concept, a second version, utilising bounded queues as described in this section is

currently under development.

The current implementation relies on the Simulink interpreter. Because of it the systems are distributed as follows:

first the original Simulink model is decomposed into atomic blocks. Then all the broken connections are replaced

with external− linkboxes (i.e. S-function boxes we provide). These boxes hide the complexity of the distribution

to the user.

Fig. 9. BDSP architecture

Input and Output external-link boxes structure: the structure of an Input external-link box and of an Output

external-link box are the same but for the ports. While the input box has a single input and no outputs the output

box should have one output and no inputs. The boxes have three parameters: the IP/port pair for the sender, the

IP/port pair for the receiver and a name that is going to be used to resolve for the first two parameters. The box

uses two UDP sockets to communicate with the queue manager (UDP is lightweight and since the communication

is local there is no need for retransmission). One socket is used to receive messages from the queue manager and

the second is used to send messages to it.

Queue Manager structure: the structure of the queue manager is shown in the right side of figure 9. It consists

of many queues, one for every input or output port of the block. It has a couple of UDP sockets to comunicate

with the S-function boxes on the machine and a list of UDP sockets to communicate with the the other queue

managers. Every queue is associated with two flags (thedatarequested andqueuefull) and a counter. A reliable

transmission protocol is implemented using a standard retransmission strategy.

External-link box to queue manager interface: The life cycle of an external-link box is the same of any Simulink

box (described in section V). In the initialization phase the box sends a packet to the queue manager to reserve a

queue and pass the IP/port address to the other end of the pipe. If it is an input block it requests its input from

the queue manager in the Input Read phase. If the queue is empty it blocks until something is available. The flag

datarequested is switched on if the queue is empty. If it is not empty the data is removed from the queue and

sent to the box. If it is an output block, in the Ouput Phase the output is sent to the Queue manager. If the queue

is not full an ack is sent back to the output box. The box is blocked until the ack is received. If the queue is full

and the box is trying to send, the flagFull is switched on. When the queue is empty andthe flagFull is on an

ack is sent to the Output box.

Queue manager to queue manager interface: the communication protocol between queue managers needs to be

reliable and to preserve message order. A possible candidate is TCP, or a UDP with a acknowledgment-timeout

protocol implemented on top. When an output queue is not empty the queue manager will try to send the message

as soon as possible. It removes the message from the queue only when the ack is received. When it receives a

message it will put it on the right queue. If the queue is full it will drop the packet (the message will not be lost,

just retransmitted later).

VIII. PERFORMANCE ANALYSIS

Code distribution may lead to a system speed-up through concurrency, but it has also a cost overhead associated

with the rendezvous communication protocol. In this section this overhead is estimated for the first implementation

of the BDSP library as described in section VII.

We decompose the system in figure 10 into three subsystems running on two separate Pentium 4 850 Mhz, 512

Mb ram machines. The source and the sink gain are located on the same machine, while the middle gain is run

on a second one. A timestamp is recorded by the external-link boxes at the beginning and at the end of each time

step. Since the source and sink gain are on the same machine, i.e. they are running according to the same clock,

the time stamps can be compared to get a conservative estimate of the overhead due to the rendezvous protocol.

Fig. 10. The model used to estimate the overhead

The measured overhead is conservative because it includes the middle gain computation time and the two Simulink

processes on the first processor are competing on the first computer. The computers are connected through a shared

802.11b wireless ethernet.

Fig. 11. A conservative estimate of the distribution overhead

The results are plotted in figure 11. The overhead average is smaller that 0.2 seconds and the standard deviation

is close to 30 ms. This result is promising considering that we are currently using the Simulink interpreter and not

the Real-time workshop compiler.

IX. APPLICATION TO TRAFFIC SIGNAL CONTROL

We are working to introduce synchronous programming techniques into traffic signal control. As they are growing

rapidly in complexity we see an excellent opportunity for synchronous programming tools as a way to greatly

simplify software development for these large-scale systems.

In order to maximize the flow and minimize the average waiting time, the cycle length, defined as the time

needed to go through all the phases, and the interval splitting defined as the ratio of the green time for the two

directions, need to be properly set.

The early traffic signal controllers were non-programmable devices. However, with time these devices has reached

a high level of sophistication. An example of such a device is the 2070 controller, used widely in California, which

support pre-timed, semi-actuated and fully actuated operation rules and support a wide set of sensors. These devices

support many pre-defined rules that can be adjusted on the field or remotely (in the case of the 2070 the remote

setting is fixed by the National Transportation Communications for ITS protocol, set of standards).

At the same time signal control systems are growing spatially. The first dynamically adjustable lights were driven

by traffic measurement sensors located next to them. They were isolated. Next it became possible to coordinate all

the lights along an arterial to have the lights turn green in succession. Modern systems like [23] seek to coordinate

entire downtown urban grids. The entire grid is operated on a common cycle time adjusted on the timescale of

tens of minutes as demand changes. Controllers like 2070 are only partially programmable and the programming

interfaces are low-level. Furthermore, embedded computing and the wireless revolution are being brought together

by the US governments Vehicle Infrastructure Initiative (VII) [24]. It is envisaged that every roadside cabinet will

have a general purpose computer with wired or wireless backhaul. A large-signal control system could be developed

in high-level tools like Simulink and compiled to suit the hardware architecture at hand. The entire system may

compute in a traffic management center with low-level commands going out to the filed or be distributed to compute

entirely in field cabinets.

As a first step we have used SIMULINK to model the system in figure 12: a major arterial road is intersected by

4 minor low traffic streets. Consider a peak hour asymmetric scenario, where almost all the traffic flow is in one

direction on the major street. The flow is maximized by coordinating the traffic lights to create green waves thus a

car that just got the right-of-way at the first intersection will get a green at all the intersections (see [25] and [26]).

This is done synchronizing the controllers, fixing the same cycle length, and offsetting the begining of each cycle

by a statically determinedd ∗ v, whered is the distance between the two intersections andv is the target traffic

speed.

Fig. 12. Asymmetric peak hour traffic on a major road intersected by four minor streets

If the intersection has inductive loops the vehicle speed can be directly estimated. This value can be passed

through a simple filter to make the system resistant to insignificant minor speed fluctuations, while adjusting to

significant and permanent changes (due for example to congestion, road construction or minor accident).

This actuated scheme is implemented by the Simulink model in figure 13. The average speed in response to the

traffic light has been computed using traffic flow theory as described in [28]. The sensor input is passed through

a simple filter to make the system resistant to insignificant minor speed fluctuations, while adjusting to significant

and permanent changes.

Fig. 13. Simulink Model for the distributed traffic controller

We have run a simulation of the system where an accident is happening between the first and the second

intersection during the100th cycles and it is cleared out during the180th, and a minor one happened between the

third and the fourth one during the150th cycle and it is cleared out during the200th.

The offsets computed by the last three intersection (the offset for the first one is always 0) computed using the

model in figure 13 are plotted in figure 14.

Fig. 14. The offset as computed by the model described in figure 13

This model can be compiled and run centrally at the traffic management center, making the traffic signal operating,

quoting [27], ”exactly they way the designer think it should be controlled”. Moreover, as shown in sections VI, the

model can be compiled into distributed code, with the same behaviour, that can be run by the controllers without

any need of external coordination.

The test to evaluate the performances of the system has been carried over the same hardware used in the previous

section. In this case the performances have been measured as the total computation time needed to carry a step

(i.e. from the end of the previous cycle to the end of the computation of all the offsets). The computation time is

on average 0.3 s (the standard deviation is 6 ms). We expect this result to improve when moving from Simulink

interpretation to direct execution of the code as generated by Real-Time workshop. Even interpreting the code

though, the system largely met the time constraints of the application as described in [27].

X. CONCLUSION

The problem of distributing large scale synchronous systems across a network has been addressed. We defined a

synchronous and asynchronous composition operator. The synchronous composition operator is Simulink-like. The

asynchronous composition operator is similar to the one used in Kahn process networks. We presented an algorithm

to implement a synchronous program into an asynchronous one and we proved the implementation map preserves the

synchronous semantics in the sense of [13]. The main result was that the implementation is a monomorphism with

respect to the synchronous and asynchronous compositions. The monomorphism is our argument that a local change

can be handled locally and that a subsystem can be re-used in different systems. We have presented a software

architecture consistent with our mathematics and studied its performanmces. We have motivated the development

of synchronous programming tools for traffic signal control.

REFERENCES

[1] E. A. Lee,Concurrent Models of Computation for Embedded Software, Technical Memorandum UCB/ERL M05/2, University of California,

Berkeley, 2005

[2] E. A. Lee and Stephen Neuendorffer,Concurrent Models of Computation for Embedded Software, Technical Memorandum UCB/ERL

M04/26, University of California, Berkeley, 2004.

[3] G. Berry, A. Benvenieste,The synchronous approach to reactive and real- time systems, Proceedings of the IEEE, 79(9):1270-1282,

September 1991

[4] C. Andre’, F. Boulanger, A. Girault,Software implemenentation of synchronous programs, IEEE International Conference on Application

of concurrency to System Design, June 2001

[5] C. Andre’, M.A. Peraldi,Effective implementation of ESTEREL programs, 5th Euromicro workshop on real-time systems, June 1993.

[6] G. Berry, The Foundations of Esterel, Proof, Language and Interaction: Essays in Honour of Robin Milner, G. Plotkin, C. Stirling and M.

Tofte, editors, MIT Press, 1998.

[7] G. Berry, The Constructive Semantics of Pure Esterel, July 2, 1999

[8] N. Halbwachs, P. Caspi, P. Raymond and D. Pilaud,The synchronous dataflow programming language Lustre, Proceedings of the IEEE,

vol. 79, nr. 9. September 1991.

[9] B. HoussaisThe synchronous programming language SIGNAL, a tutorial, IRISA, April 2002

[10] Learning Simulink 5, MathWorks edition, 2002

[11] A. Girault, Automatic distribution of synchronous programs, ERIM News, January 2003

[12] A. Girault, C. Menier,Automatic production of Globally Asynchronous Locally Synchronous Systems, EMSOFT 2002

[13] A. Benvenieste, B. Caillaud, P. Le Guernic,Compositionality in dataflow synchronous languages: specification and distributed code

generation, Information and Computation, vol.163, no.1, 25 Nov. 2000, pp.125-71. Publisher: Academic Press, USA.

[14] M. Zennaro, R. SenguptaDistributing Synchronous Systems with Modular Structure, IEEE 2004 44th Conference on Decision and Control,

December 2004

[15] C.A.R. Hoare,Communicating sequential processes, Prentice Hall, 2003

[16] Jayadev Misra,Distributed discrete-event simulation, ACM Computing Surveys (CSUR), Volume 18 Issue 1 March 1986

[17] L. P. Carloni, K. L. McMillan, A. L. Sangiovanni-Vincentelli,Theory of Latency-Insensitive Design, IEEE Transactions on Computer-Aided

Design of Integrated Circuits and Systems., 20(9):18, September 2001.

[18] Manna, Pnueli,The temporal logic of reactive and concurrent systems, Springer-Verlag 1992

[19] N. Lynch, R. Segala, F. W. VaandragerHybrid I/O automata, Hybrid System III, LNCS 1066, Springer-Verlag, 1996, p.496-510

[20] G. Kahn,The Semantics of a Simple Language for Parallel Programming, Proceedings of the IFIP Congress74. North Holland Publishing

Company.

[21] G. Khan and D.B.MacQueen,Coroutines and networks of parallel processes, Information Processing, North-Holand Publishing Co. 1977

[22] E. A. Lee, T. M. Parks,Dataflow process networks, Proceedings of the IEEE, 1987

[23] http://www.scoot-utc.com

[24] http://www.its.dot.gov/initiatives/initiative9.htm

[25] J. H. Kell, Coordination of fixed-time traffic signal, J. H. K. and Associates Internal report, 1973

[26] M. Boydstun,Coordinated Traffic Signal Systems, National Institute for Advanced Transportation Technology, Traffic Signal Summer

Workshop, 2004

[27] D. Gitelson,Traffic Signal Computers, California Division of Highways Internal report, 1972

[28] C. F. Daganzo,Fundamentals of transportation and traffic operation, Pergamon Edition, 1997

[29] S. Edwards,The specification and execution of Heterogeneous Synchronous Reactive Systems, PhD thesis, University of California at

Berkeley, 1997

[30] J. L. Hennessy, D.A. Patterson, D. Goldberg,Computer Architecture: A quantitative approach3rd edition, Morgan Kaefmann, 2002

[31] A. S. Tanenbaum, M. van Steen,Distributed Systems, Principles and Paradigms, Prentice Hall 2002

[32] Simulink Help Manual: Writing S-functions, MathWorks edition, 2002

[33] G. C. Sih, E. A. Lee,A compile-time scheduling heuristic for interconnection-constrained heterogeneous processor architectures,IEEE

Transactions on Parallel and Distributed Systems, vol.4, no.2, Feb. 1993, pp.175-87. USA.

[34] H.B. Enderton,A Mathematical Introduction to Logic, Academic Press; 2 edition (December, 2000)

[35] Advantages and disadvantages of traffic signals, Institute of transportation and Traffic Engineering, University of California at Berkeley,

Internal report UCB-ITS-RR-73-XX, 1973

[36] Manual on Uniform Traffic Control Devices for street and highways, Federal Highway Administration. Department of Transportation,

Washington, D.C., 1970

[37] Traffic Manual, Chapter IX, Traffic Control Signals, California Division of Highways, 1971

[38] J. C. Ray,Effective Traffic Signal Control, Unpublished report, Sacramento County, California

[39] M. Boydstun,Actuated Traffic Signal Systems, National Institute for Advanced Transportation Technology, Traffic Signal Summer Workshop,

2004

[40] Sepac Actuated Signal Control Software with NTCIP User manual, Eagle SIEMENS, 2001

[41] M. Zennaro, J. MisenerA State Map Architecture for Safe Intelligent Intersections, ITS America 2003 13th annual meeting, May 2003

[42] PATH websitehttp://www.path.berkeley.edu

[43] P. Caspi, M. Ponzet,Synchronous Kahn networksACM. Sigplan Notices (Acm Special Interest Group on Programming Languages), vol.31,

no.6, June 1996, pp.226-38. USA.

[44] J.G.F. Francis, The QR Transformation I,Comput. J., vol. 4, 1961, pp 265-271.

[45] A. Garcia, C. Lucena, F. Zambonelli, A. Omicini, J. Castro,Software Engineering for large-scale multi-agent systems: research issues and

practical applications, Sringer Verlag, 2003

