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hBFT: Speculative Byzantine Fault Tolerance
With Minimum Cost

Sisi Duan, Sean Peisert, Senior Member, IEEE, and Karl N. Levitt

Abstract—We present hBFT, a hybrid, Byzantine fault-tolerant, replicated state machine protocol with optimal resilience. Under
normal circumstances, hBFT uses speculation, i.e., replicas directly adopt the order from the primary and send replies to the
clients. As in prior work such as Zyzzyva, when replicas are out of order, clients can detect the inconsistency and help replicas
converge on the total ordering. However, we take a different approach than previous work that has four distinct benefits: it requires
many fewer cryptographic operations, it moves critical jobs to the clients with no additional costs, faulty clients can be detected
and identified, and performance in the presence of client participation will not degrade as long as the primary is correct. The
correctness is guaranteed by a three-phase checkpoint subprotocol similar to PBFT, which is tailored to our needs. The protocol
is triggered by the primary when a certain number of requests are executed or by clients when they detect an inconsistency.

Index Terms—distributed systems, client/server, fault tolerance, state machine replication

F

1 INTRODUCTION

A S distributed systems develop and grow in size,
Byzantine failures generated by malicious at-

tacks, and software and hardware errors must be
tolerated. Byzantine agreement protocols are attrac-
tive because they enhance reliability of replicated
services in the presence of arbitrary failures. However,
Byzantine protocols come at a cost of high overhead
of messages and cryptographic operations. Therefore,
protocols that can reduce overhead can be attractive
building blocks.

A number of existing protocols also reduce over-
head on Byzantine agreement by moving some crit-
ical jobs to clients [13, 17, 19, 21, 33, 34]. But these
protocols come with trade-offs that we seek to avoid.
Specifically, while they all provide better fault-free
cases and reduce the message complexity, they sac-
rifice the performance of normal cases and may
even decrease the performance of fault-free cases.
For instance, the Zyzzyva [21] protocol is able to
use roughly half of the amount of messages and
cryptographic operations that PBFT [7] requires. How-
ever, Zyzzyva’s performance can be even worse than
PBFT if at least one backup fails. Additionally, these
protocols simplify the design by involving clients in
the agreement. However, they all require clients to be
correct in order to achieve correctness.

Therefore, our motivation for developing a new
protocol is to improve performance over PBFT with-
out being encumbered by some of these trade-offs.
Specifically, we have three key goals: first, we wish
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to be able to show how critical jobs can be moved to
the clients without additional costs. Second, we wish
to tolerate Byzantine faulty clients. Third, we define
the notion of normal case, which means the primary
is correct and the number of faulty backups does not
exceed the threshold. We wish to provide better per-
formance for both fault-free cases and normal cases.

This paper presents hBFT, a leader-based protocol
that uses speculation to reduce the cost of Byzantine
agreement, while also maintaining optimal resilience,
utilizing n ≥ 3f+1 replicas to tolerate f failures. hBFT
satisfies all of our stated goals. To accomplish this,
hBFT employs several techniques. It uses speculation:
backups speculatively execute requests ordered by the
primary as well as replies to the clients. As a result,
correct replicas may be temporarily inconsistent. hBFT
employs a three-phase PBFT-like checkpoint subpro-
tocol for both garbage collection and contention res-
olution. The checkpoint subprotocol can be triggered
by the replicas when they execute a certain number
of operations, or by clients when they detect the
divergence of replies. In this way replicas are able
to detect any inconsistency through internal message
exchanges. Even though the three-phase protocol is
expensive, it is not triggered frequently. Eventually
hBFT can ensure the total ordering of requests for all
correct replicas with very low cost.

1.1 Motivation
Our goal for hBFT is to offer better performance by
moving some critical jobs to the clients while minimiz-
ing side effects that can actually reduce performance
in many cases in previous work [17, 21, 33, 34].

First, hBFT moves some critical jobs to the clients
without additional cost. Moving critical jobs to the
clients is effective in simplifying the design and re-
ducing message complexity, partly because replicas do
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not need to run expensive protocols to establish the
order for every request. Nevertheless, it does not nec-
essarily make protocols more practical. Indeed, it may
sacrifice performance in normal and even fault-free
cases. For instance., the output commit in Zyzzyva
slows both. hBFT achieves a simplified design and
better performance for both fault-free and normal
cases.

Second, hBFT can tolerate an unlimited num-
ber of faulty clients. Previous protocols all rely
on the correctness of clients. However, Byzantine
clients can dramatically decrease performance. For
instance, in the protocols that switch between sub-
protocols [17, 33, 34] (called abstracts in [17]), a faulty
client can stay silent when it detects the inconsis-
tency. Even if the next client is correct and makes
the protocol switch to another subprotocol, replicas
are still inconsistent because of this “faulty request.”
Similarly, in Zyzzyva, faulty clients can stay silent
when they are supposed to send a commit certificate
to make all correct replicas converge. Faulty primaries
in this case can not be detected, eventually leading to
inconsistencies of replica states. Faulty clients can also
intentionally send commit certificates to all replicas
even if they receives 3f+1 matching messages, which
decreases the overall performance.

Third, hBFT has the same operations for both fault-
free and normal cases. This shows that in leader-based
protocols, when the primary is correct, all the requests
are totally ordered by all correct replicas. Previous
protocols all achieve impressive performance in fault-
free cases while they employ different operations
when failure occurs, resulting in lower performance.
Although Zyzzyva5 [21] makes the faulty cases faster,
it requires 5f+1 replicas to tolerate f failures. In hBFT,
we achieve better performance in both normal fault-
free and normal cases using 3f + 1 replicas.

2 RELATED WORK

Fig. 1 compares several features for normal cases be-
tween BFT protocols, a selection of which are plotted
in Fig. 9. We provide the values for fault-free cases in
the caption if they are different from normal cases. The
table is constructed based on the models to tolerate f
failures. As mentioned in previous work [21, 23, 27],
Byzantine fault tolerant state machine replication pro-
tocols are known to have lower bounds. A protocol
obtains optimal resilience if it uses 3f + 1 replicas
to tolerate f failures. In addition, throughput and
latency are measured through the number of cryp-
tographic operations of the primary and one-way
latencies. Although 2 is considered the lower bound
of the cryptographic operations, it is not clear that
this lower bound is achievable. However, with batch-
ing, the lower bound can be approached under high
concurrency. On the other hand, 2 one-way latencies,
achieved by Q/U [1] for instance, is considered the

lower bound under low concurrency while 3 is the
lower bound under high concurrency. Compared to
other known, prior work, hBFT uses 3f + 1 replicas,
the throughput approaches 2 under high concurrency,
and achieves 3 one-way latencies. In summary, hBFT
achieves optimal resilience and the lower bound for
almost every feature under high concurrency.

Most current practical Byzantine fault tolerant pro-
tocols are developed based on PBFT [7], which is a
three phase leader-based protocol. Subsequent work
focus either on increasing the number of faults sys-
tems can tolerate or on improving performance. There
are trade-offs between the two. For instance, Fab [27]
is a two-phase protocol that achieves better perfor-
mance by requiring at least 5f + 1 replicas in total to
tolerate f failures. The checkpoint protocol of hBFT
uses a tailored PBFT scheme, since it can guarantee
correctness, but is too expensive to be used for fault-
free and normal cases when the primary is correct.

Several protocols [17, 19, 21, 33, 34] move some
critical jobs to the clients to improve performance.
Zyzzyva and its variant [19] move output commit
to the clients to reduce message complexity in fault-
free cases. Other protocols [17, 33, 34] move the job
of switching of subprotocols to the clients. When one
subprotocol aborts, the protocol will switch to another.
hBFT also switches between normal case operation
and the checkpoint subprotocol. However, hBFT does
not order any single request using the checkpoint
subprotocol. Instead, it is used only for contention
resolving and garbage collection. Clients can facilitate
the progress in hBFT but clients do not need to
provide any “proof” to replicas.

Byzantine quorum systems [1, 26] tolerate Byzan-
tine faults under low concurrency. HQ [13] is a hybrid
quorum and Byzantine agreement protocol that also
uses a PBFT-like subprotocol to resolve contention.
Compared to HQ, hBFT does not have an additional
garbage collection scheme and it works well under
high concurrency.

3 SYSTEM MODEL

We consider a distributed system that tolerates a max-
imum of f faulty replicas and an unlimited number
of faulty clients using 3f +1 replicas. We consider the
Byzantine fault tolerant replication problem, where
faulty replicas and clients behave arbitrarily. In ad-
dition, we assume independent node failures, which
can be obtained through techniques such as N -version
programming [28].

Safety, which means requests are totally ordered
by correct replicas, must hold in any asynchronous
system using state machine replication, where mes-
sages can be delayed, dropped or delivered out of
order. Liveness, which means correct clients eventu-
ally receive replies to their requests, is ensured as-
suming partial synchrony [15]: synchrony holds only
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PBFT [7] Q/U [1] HQ [13] FaB [27] Zyzzyva [21] hBFT
Cost Total replicas 3f + 1 5f + 1 3f + 1 5f + 1 3f + 1 3f + 1

Throughput Primary 2 + 8f
b 2 + 8f‖ 4 + 4f‖ 1 + 5f

b 4 + 5f + 3f
b

†
2 + 3f

b

(MAC ops/request) Backup 2 + 8f+1
b 2 + 8f‖ 4 + 4f‖ 1 + 2f+2

b 4 + 5f + 1
b

∗
2 + 3f

b

Client 2 + 4f 2 + 8f 4 + 4f 1 + 5f 4 + 10f‡ 2 + 6f

One-way Latencies Critical path 4 2 4 3 5§ 3

Works well on concurrency? Yes No No Yes Yes Yes
Handle faulty clients? Yes No No No No Yes

Fig. 1. Comparison of BFT protocols in normal cases tolerating f faults and using batch size b. †Fault-free
cases: 2 + 3f

b . ∗Fault-free cases: 2 + 1
b . ‡Fault-free cases: 2 + 6f . §Fault-free cases: 3. ‖Q/U and HQ are leader-

free quorum systems that do not differentiate primary and backups.

after some unknown global stabilization time, but the
bounds on communication and processing delays are
themselves unknown.

Operations are executed in an atomic broadcast
model, where correct replicas agree on the set of
requests and the order of them. In the description that
follows, when we refer to fault-free cases, we mean
there are no replica failures, and when we refer to
normal cases, we mean the primary is correct and the
number of faulty backups is between 1 and f .

We use digital signatures, message authentication
codes (MACs), and message digests to prevent spoof-
ing and to detect corrupted messages. For a message
m, 〈m〉i denotes the message with digital signature
signed by replica pi, D(m) denotes the message digest,
and 〈m〉 denotes the message with MAC µi,j(m). The
MAC µi,j(m) is generated using secret key shared by
replica pi and pj .

View Changes
-Elect a new primary

Checkpoint (3 phases)
-Garbage collection

-Contention resolution

Agreement (2 phases)
-Speculative execution

-Same for fault-free and normal cases

Replica executes
a number 

of requests

Replica 
times out

Primary sends 
<New-View>

Done with
Checkpoint

Client sends 
<Panic>

Fig. 2. Layered Structure of hBFT.

4 THE hBFT PROTOCOL

The hBFT protocol is a hybrid, replicated state ma-
chine protocol. It includes four major components:
(1) agreement, (2) checkpoint, (3) view change, and
(4) client suspicion. As illustrated in Fig. 2, we employ
a simple agreement protocol for fault-free and normal
cases, and use a three-phase checkpoint subprotocol

for contention resolution and garbage collection. The
checkpoint subprotocol can be triggered by replicas
when they execute a certain number of requests or by
clients if they detect divergence of replies. The view
change subprotocol ensures liveness of the system
and can coordinate the change of the primary. View
changes can occur during normal operations or in the
checkpoint subprotocol. In both cases, the new pri-
mary initializes a checkpoint subprotocol immediately
and resumes the agreement protocol until a check-
point becomes stable. The client suspicion subprotocol
prevents faulty clients from attacking the system.

client

primary

replica

replica

replica

1

2

3

(a) Fault-free Case

client

primary

replica

replica

replica

1

2

3

2f+1 2f+1

(b) Normal Case

Fig. 3. Fault-free and normal cases of Zyzzyva.

Why another speculative BFT protocol?
hBFT uses speculation but overcomes some that

problems Zyzzyva experiences. Zyzzyva [21] also uses
speculation and moves output commit to the clients
to enhance the performance. If we replace digital sig-
natures with MACs and batch concurrent requests in
Zyzzyva, the performance decreases in normal cases
and even fault-free cases. Fig. 3 illustrates the behav-
ior of Zyzzyva [21]. Replicas speculatively execute the
requests and respond to the client. The client collects
3f + 1 matching responses to complete the request. If
the client receives between 2f + 1 and 3f matching
responses, it sends a commit certificate to all replicas,
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client

primary

replica

replica

replica

1

2

3

Fig. 4. The agreement protocol

which contains the response with 2f + 1 signatures.
This helps replicas converge on the total ordering.
However, a commit certificate must be verified by
every other replica, which causes computing overhead
for both clients and replicas. The use of MACs instead
of digital signatures makes Zyzzyva perform even
worse than PBFT under certain configurations.1 For a
reply message r by replica pi, 〈r′, µi,c(r

′)〉must be sent
to the client, where r′ = 〈r, µi,1(r), µi,2(r) · · ·µi,n(r)〉
and µx,y(r) denotes the MAC generated using the
secret key shared by px and py . Therefore, every
replica must include 3f + 1 MACs for every reply
message (compared with 1 if digital signatures are
used) and performance is dramatically degraded. As-
suming b is the batch size, the primary must perform
4 + 5f + 3f

b MACs in normal cases, which is even
worse than the 2+ 8f

b MACs for PBFT for some b and
f . Thus in hBFT, we seek to avoid this problem.

4.1 Agreement Protocol

The agreement protocol orders requests for execution
by replicas. The algorithms of the agreement protocol
for the primary, backups, and clients are defined in
Algorithm 1 to Algorithm 3. As illustrated in Fig. 4,
a client c invokes the operation by sending a m =
〈Request, o, t, c〉c to all replicas where o is the op-
eration, t is the local timestamp. Upon receiving a
request, as shown in Algorithm 1, the primary pi
assigns a sequence number seq and then sends out
a 〈Prepare, v, seq,D(m),m, c〉 to all replicas, where v
is the view number and D(m) is the message digest.

A 〈Prepare〉 message will be accepted by a backup
pj provided that:

It verifies the MAC;
The message digest is correct;
It is in view v;
seq = seql +1, where seql is the sequence number
of its last accepted request;
It has not accepted a 〈Prepare〉 message with the
same sequence number in the same view but
contains a different request.

1. Using MACs instead of digital signatures usually makes proto-
cols much faster. In Aardvark [11], on a 2.0GHz Pentium-M, openssl
0.9.8g can compute over 500,000 MACs per second for 64 byte
messages, but it can only verify 6455 1024-bit RSA signatures per
second or produce 309 1024-bit RSA signatures per second.

If a backup pj accepts the 〈Prepare〉 message, it
speculatively executes the operation and sends a reply
message 〈Reply, v, t, seq, δseq, c〉 to c and also a com-
mit message 〈Commit, v, seq, δseq,m,D(m), c〉 to all
replicas, where δseq contains the speculative execution
history.

In order to verify the correctness of the specula-
tively executed request, a replica collects 2f+1 match-
ing 〈Commit〉 messages from other replicas to com-
plete a request. As shown in Algorithm 2, a replica
collects matching 〈Commit〉 messages. If a replica
receives f + 1 matching 〈Commit〉 messages from
different replicas but has not accepted any 〈Prepare〉
message, it also speculatively executes the operation,
sends a 〈Commit〉 message to all replicas, and sends
a reply to the corresponding client. When the replica
collects 2f matching messages, it puts the correspond-
ing request in its speculative execution history and
completes the request. However, it is possible that a
replica receives f + 1 matching 〈Commit〉 messages
from other replicas that are conflicting with its ac-
cepted 〈Prepare〉 message. Under such circumstance,
the replica can simply send a 〈View-Change〉 message
to all replicas. If a replica votes for view change, it
stops receiving any messages except the 〈New-View〉
and the checkpoint messages. See Section 4.3 for the
detail of view change subprotocol.

The exchange of 〈Commit〉 messages is to ensure
that if at least f + 1 correct replicas speculatively
execute a request, all the correct replicas learn the
result. If any other correct replicas receive inconsistent
messages, the primary must be faulty and the replicas
stop receiving messages until view change occurs.

A client sets a timeout for each request. As shown in
Algorithm 3, a client collects matching 〈Reply〉 mes-
sages to its request. If it gathers 2f+1 matching specu-
lative replies from different replicas before the timeout
expires, it completes the request. If a client receives
fewer than f + 1 matching replies before the timeout
expires, it retransmits the requests. Otherwise, when
client receives between f+1 to 2f+1 matching replies
before timeout expires, it facilitates the progress by
sending a 〈PANIC, D(m), t, c〉c message to all replicas.
If a replica receives a 〈PANIC〉 message, it forwards
the message to all replicas. If a replica does not receive
any 〈PANIC〉 message from the client but receives a
〈PANIC〉 message from other replicas, it forwards the
〈PANIC〉 message to all replicas. A 〈PANIC〉 message
is valid if a replica has speculatively executed m. If a
replica accepts a 〈PANIC〉 message, it stops receiving
any messages except the view change and checkpoint
messages.

There are two goals for replicas when forwarding
〈PANIC〉 messages. One is to prevent the checkpoint
protocol from occurring too frequently, which hap-
pens when all the correct replicas receive the 〈PANIC〉
message before the checkpoint protocol is triggered.
Another is to prevent the clients from attacking the
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system by sending 〈PANIC〉 messages to a portion of
the replicas. If a faulty client sends a 〈PANIC〉 mes-
sage to a correct backup, the replica will stop receiv-
ing any messages while other replicas still continue
the agreement protocol. This forwarding mechanism
ensures that if at least one correct replica receives the
〈PANIC〉message, all the replicas receive the 〈PANIC〉
message and enter the checkpoint protocol.

Algorithm 1 Primary
1: Initialization:
2: A {All replicas}
3: seq ← 0 {Sequence number}
4: W {Set of 〈PANIC〉 messages}

5: on event 〈Request, o, t, c〉c
6: seq ← seq + 1
7: send 〈Prepare, v, seq,D(m),m, c〉 to A
8: send 〈Reply, v, t, seq, δseq, c〉 to c

9: on event 〈PANIC, D(m), t, c〉c from c
10: send 〈PANIC, D(m), t, c〉c to A

11: on event 〈PANIC, D(m), t, c〉c from A
12: if match(Wc) then
13: Wc.add {Add matching 〈PANIC〉 message}
14: if Wc.size = 2f + 1 then
15: Initialize checkpoint protocol

Algorithm 2 Backup
1: Initialization:
2: A {All replicas}
3: seqi ← 0 {Sequence number}
4: U {Set of 〈Commit〉 messages}
5: panic← F {If true, enter checkpoint protocol}

6: on event 〈Request, o, t, c〉c
7: send 〈Request, o, t, c〉c to the primary

8: on event 〈Prepare, v, seq,D(m),m, c〉
9: if seq = seqi + 1 then

10: seqi ← seq
11: send 〈Commit, v, seq, δseq,m,D(m), c〉 to A
12: send 〈Reply, v, t, seq, δseq, c〉 to c

13: on event 〈Commit, v, seq, δseq,m,D(m), c〉
14: if match(Useq) then
15: Useq.add {Add matching 〈Commit〉 message}
16: if Useq.size = f + 1 and seq = seqi + 1 then
17: seqi ← seq {Accept the message}
18: send 〈Commit, v, seq, δseq,m,D(m), c〉 to A
19: send 〈Reply, v, t, seq, δseq, c〉 to c
20: if Useq.size = 2f and seq = seqi then
21: complete(Useq) {Complete the request}

22: on event 〈PANIC, D(m), t, c〉c
23: if panic = F then
24: send 〈PANIC, D(m), t, c〉c to A
25: panic← T {Enter checkpoint protocol}

Algorithm 3 Client
1: Initialization:
2: A {All replicas}
3: V {Set of 〈Reply〉 messages}
4: send 〈Request, o, t, c〉c to A
5: start(∆) {Start a timer}

6: on event 〈Reply, v, t, seq, δseq, c〉
7: if match(Vseq) then
8: Vseq.add {Add matching 〈Reply〉 message}
9: if Vseq.size = 2f + 1 then

10: cancel(∆) {Complete the request}

11: on event timeout(∆)
12: if Vseq.size < f + 1 then
13: retransmit 〈Request, o, t, c〉c to A
14: else
15: send 〈PANIC, D(m), t, c〉c to A

The primary initializes the checkpoint subprotocol
if it receives the 〈PANIC〉 message from the client or
2f + 1 〈PANIC〉 messages from other replicas. The
correctness of the protocol is therefore guaranteed by
the three-phase checkpoint subprotocol.

The panic mechanism facilitates progress when the
primary is faulty. Specifically, in a partial synchrony
model where the value of a client’s timeout is properly
set up, if a correct client does not receive sufficient
matching replies before timer expires, the primary
either sends inconsistent 〈Prepare〉 messages to the
replicas or fails to send consistent messages to the
replicas. In this case, instead of using the traditional
approach where replicas detect the faulty primary
themselves by waiting for longer period of time, the
client can directly trigger the checkpoint protocol in
order to verify the correctness of the primary. See
Section 4.2 for details of the checkpoint subprotocol.

hBFT guarantees correctness while using only two
phases. If the client has received 2f + 1 matching
replies, at least f+1 correct replicas receive consistent
order from the primary. Therefore, all correct replicas
receive at least f + 1 matching 〈Commit〉 messages. If
those replicas do not receive the 〈Prepare〉 message,
they will execute the request. Otherwise, if they detect
the inconsistency, they stop receiving any messages
until the current primary is replaced or the checkpoint
subprotocol is triggered. In the latter case, the incon-
sistency will be reflected and fixed in the checkpoint
subprotocol.

4.2 Checkpoint
We use a three-phase PBFT-like checkpoint protocol.
The reasons are three-fold. First, the agreement pro-
tocol uses speculative execution and replicas may be
temporarily out of order. The three-phase checkpoint
protocols resolve the inconsistencies. Second, if a cor-
rect client triggers the checkpoint protocol through the
panic mechanism, the checkpoint protocol resolves



6

the inconsistencies immediately. Third, the checkpoint
protocol detects the behavior of the faulty clients if
they intentionally trigger the checkpoint protocol.

The checkpoint protocol works as follows. Only
the primary can initialize the checkpoint subprotocol,
which is generated under either of the two conditions:

the primary executes a certain number of requests
the primary receives 2f + 1 forwarded 〈PANIC〉
messages from other replicas.

In the latter condition, as mentioned in Section 4.1,
when a replica receives a valid 〈PANIC〉 message, it
forwards to all replicas. The goal is to ensure that
all replicas receive the 〈PANIC〉 message and also
to prevent faulty clients from sending a 〈PANIC〉
message only to the backups, thereby making sure
replicas will not erroneously suspect the primary due
to the faulty clients.

The three-phase checkpoint subprotocol works as
follows: the current primary pi sends a 〈Checkpoint-
I, seq,D(M)〉 to all replicas, where seq is the sequence
number of last executed operation, D(M) is the mes-
sage digest of speculative execution history M . Upon
receiving a well-formatted 〈Checkpoint-I〉 message,
a replica sends a 〈Checkpoint-II, seq,D(M)〉 to all
replicas. If the digest and execution history do not
match its local log, the replica sends a 〈View-Change〉
message directly to all replicas and stops receiving
any messages other than the 〈New-View〉 message.

A number of 2f + 1 matching 〈Checkpoint-II〉 mes-
sages from different replicas form a certificate, de-
noted by CER1(M, v). Any replica pj that has the
certificate sends a 〈Checkpoint-III, seq,D(M)〉j to all
replicas. Similarly, 2f + 1 〈Checkpoint-III〉 messages
form a certificate, denoted by CER2(M, v). After
collecting CER2(M,v), the checkpoint becomes sta-
ble. All the previous checkpoint messages, 〈Prepare〉,
〈Commit〉, 〈Request, o, t, c〉c, and 〈Reply〉 messages
with smaller sequence number than the checkpoint
are discarded.

If a view change occurs in the checkpoint subpro-
tocol, as described in Section 4.3, the new primary
initializes a checkpoint immediately after the 〈New-
View〉message. The same three-phase checkpoint sub-
protocol continues until one checkpoint is completed
and the system stabilizes.

4.3 View Changes

The view change subprotocol elects a new primary.
By default, the primary has id p = v mod n, where
n is the total number of replicas and v is the current
view number. View changes may take place in the
checkpoint protocol or the agreement protocol. In
both cases, the new primary reorders requests using a
〈New-View〉message and then initializes a checkpoint
immediately. The checkpoint subprotocol continues
until one checkpoint is committed.

A 〈View-Change, v + 1,P,Q,R〉i message will be
sent by a replica if any of the following conditions
are true, where P contains the execution history M
from CER1(M,v) the replica collected in previous
view v, Q denotes the execution history from the
accepted 〈Checkpoint-I〉 message, and R denotes the
speculatively executed requests with sequence num-
bers greater than its last accepted checkpoint:

It starts a timer for the first request in the queue.
The request is not executed before the timer
expires;
It starts a timer after collecting f + 1 〈PANIC〉
messages. It has not received any checkpoint
messages before the timer expires;
It starts a timer after it executes certain number
of requests. It has not received any checkpoint
messages before the timer expires;
It receives f + 1 valid 〈View-Change〉 messages
from other replicas.

Timers with different values are set for each case and
are reset periodically.

When the new primary pj receives 2f 〈View-
Change〉 messages, it constructs a 〈New-View〉 mes-
sage to order all the speculatively executed requests.
The system then moves to a new view. The principle
is that any request committed by the clients must be
committed by all correct replicas. The new primary
picks up an execution history M from P and a set of
requests from the R of checkpoint messages. To select
a speculative execution history M , there are two rules.
A If some correct replica has committed on one check-

point that contains execution history M , M must
be selected, provided that:
A1. At least 2f + 1 replicas have CER1(M, v).
A2. At least f + 1 replicas have accepted
〈Checkpoint-I〉 in view v′ > v.

B If at least 2f + 1 replicas have empty P compo-
nents, then the new primary selects its last stable
checkpoint.

Similarly, for each sequence number greater than
the execution history M and smaller than the largest
sequence number in R of checkpoint messages, the
primary assigns a request according to R. A request
m is chosen if at least f + 1 replicas include it in
R of their checkpoint messages. Otherwise, NULL
is chosen. We claim that it is impossible for f + 1
replicas to include one request m, and another f + 1
replicas include m′ with the same sequence number.
Namely, if f + 1 replicas include a request m, at least
one correct replica receives 2f+1 〈Commit〉messages.
Similarly, at least one correct replica receives 2f + 1
commit messages with request m′. The two quorums
intersect in at least one correct replica. The correct
replica must have sent both 〈Commit〉 message with
m and 〈Commit〉 message with m′, a contradiction.

The execution history M and the set of requests
form M ′, which is composed of requests with se-
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quence numbers between the last stable checkpoint
and the sequence number that has been used by
at least one correct replica. The new primary then
sends a 〈New-View, v + 1,V,X ,M ′〉j message to all
replicas, where V contains f + 1 valid 〈View-Change〉
messages, X contains the selected checkpoint. The
replicas then run the checkpoint subprotocol using
M ′. The checkpoint subprotocol continues until one
checkpoint is committed.

4.4 Client Suspicion

Faulty clients may render the system unusable, es-
pecially for protocols that move some critical jobs
to the clients. In hBFT, unlimited numbers of faulty
clients can be detected. We focus on the “legal” but
problematic messages a faulty client can craft to slow
down the performance or cause incorrectness. To be
specific, a faulty client can do the following:

It sends inconsistent requests to different replicas.
The primary may not be able to order “every”
request before the timeout expires. In this case, a
correct primary may be removed.
It intentionally sends 〈PANIC〉 messages while
there is no contention. Unnecessary checkpoint
subprotocol will be triggered, which slows down
the performance. However, if the client frequently
triggers “valid” checkpoint operations, the over-
all throughput decreases too.
It does not send 〈PANIC〉 messages if it receives
divergent replies, leaving replicas temporarily in-
consistent.

The client suspicion subprotocol in hBFT focuses on
the first two. If the third one occurs, the checkpoint
subprotocol can be triggered by the next correct client
if it detects the divergence of replies or by the primary
when replicas execute certain number of requests.

To solve the first problem, we ask clients to mul-
ticast the request to the replicas and every replica
forwards the request to the primary. The primary
orders a request if it receives the request or if it
receives f + 1 matching requests forwarded by back-
ups. If a replica pi receives a 〈Prepare〉 message with
a request that is not in its queue, it still executes
the operation. Nevertheless, such faulty behavior of
clients will be identified as suspicious, and if the
number of suspicious incidents from the same client
exceeds certain threshold, pi will send a 〈Suspect, c〉i
message to all replicas.

Another reason clients send their requests to all
replicas is that there are many drawbacks when clients
send requests only to the primary.2 For instance, a

2. In some Byzantine agreement protocols, clients send requests
only to their known primary. If a backup receives the request, it
forwards the request to the primary, expecting the request to be
executed. The client sets a timeout for each request it has. If it does
not receive sufficient matching responses before timeout expires, it
retransmits the request to all replicas.

faulty primary can delay any request, regardless of
whether the primary receives the request from the
client or other replicas. This would cause all clients to
multicast their requests to all replicas. In other words,
a faulty primary makes all clients experience long
latency without being noticed. A faulty primary can
also perform a performance attack such as timeout
manipulation, as discussed in other work [2, 11, 29].
Furthermore, it is also difficult to make clients keep
track of the primary. If the client sends its request
to a faulty backup, the faulty backup can also ignore
this request, although it is supposed to forward the
request to the primary. In many existing protocols,
all of these problems typically mean that the primary
task for establishing correctness is the process of
detecting faulty replicas.

For the second problem where a faulty client in-
tentionally sends a 〈PANIC〉 message to the replicas
to trigger the checkpoint subprotocol, the protocol
naturally detects the faulty behavior. Intuitively, if the
request is committed in both agreement protocol and
checkpoint protocol without view change, the client
can be suspected. Nevertheless, a correct client might
be suspected as well. For instance, the following two
cases are indistinguishable.

(1) The replicas are correct and reach an agreement
in the agreement protocol. When they receive the
〈PANIC〉 message from a faulty client, the request
is committed in the checkpoint protocol without
view change and the client is suspected.

(2) The primary is faulty and the client is correct.
The primary sends the request to f + 1 correct
replicas and another fake request to the remain-
ing f correct replicas. The f correct replicas will
not execute th request. When the replicas receive
〈PANIC〉 message and starts checkpoint protocol,
the f faulty replicas collude and make the request
committed in the checkpoint protocol. Although
the f correct replicas learn the result and remain
consistent, the correct client will be suspected.

To distinguish the above two cases, we modify the
agreement protocol by simply replacing the MACs of
〈Prepare〉 messages with digital signatures, which is
called Almost-MAC-agreement. When a replica sends a
〈Commit〉 message, it appends the 〈Prepare〉 message.
If a client does not receive valid 〈Prepare〉 message
from the primary but receives from other replicas, it
still executes the requests, sends 〈Commit〉 messages
to other replicas, and sends a 〈Reply〉 to the client.
Otherwise, if a replica receives two valid and conflict-
ing 〈Prepare〉 messages, it directly sends inconsistent
messages to all replicas and votes for view change. As
proven in Claim 2, the protocol guaranteed that cor-
rect clients will not be removed. This optimization can
also solves the problem as discussed in Section 5.1.

The modification of agreement protocol results in
2 + 1(sig)

b cryptographic operations for the primary.
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To reduce the overall cryptographic operations, hBFT
switches between the agreement protocol and Almost-
MAC-agreement when executing a certain number of
requests.

The client will only be suspected when replicas
are running Almost-MAC-agreement. In addition, the
client must be suspected by 2f + 1 replicas to be
removed. If the number of such incidents exceeds
certain threshold, replicas will suspect the client and
send a 〈Suspect〉 message to all replicas. Similarly to
the view change subprotocol, if a replica receives f+1
〈Suspect〉 messages, it generates a 〈Suspect〉 message
and sends to the replicas. If a replica receives 2f + 1
〈Suspect〉messages, indicating that at least one correct
replica suspects the client, the client can be prevented
from accessing the system in the future.
Worst Case Scenario We would like to analyze the
worst case where a correct client can be suspected,
mainly due to the network failure. It happens if any
of the following is true:
(1) The request from client fails to reach f + 1 correct

backups before the backups receive the 〈Prepare〉
message. In this case, since the f + 1 correct back-
ups do not receive the request in the 〈Prepare〉
message, they will suspect the client.

(2) 〈Reply〉 messages from correct replicas fail to
reach the client before the timeout expires. Since
the client does not receive 2f + 1 matching
replies before the timeout expires, the client sends
〈PANIC〉 messages while there is no contention.

The latter condition may occur due to an inappro-
priate value of the timeout regarding the network
condition or due to the attack by the primary. For
instance, a faulty primary can intentionally delay
〈Prepare〉 messages for some correct replicas, caus-
ing correct clients to send a 〈PANIC〉 message even
though replicas are “consistent.” However, if the value
of the timeout is appropriately set up using Almost-
MAC-agreement, as proven in Claim 2, correct clients
will not be removed. To set up an appropriate value,
the clients adjust the values of the timeout during
retransmission. Namely, when the client retransmits
the request, it doubles the timeout and starts again.
In this case, the value of the timeout will eventually
be large enough for the client to receive 〈Reply〉
messages.

4.5 Correctness
In this section, we sketch proofs for the safety and
liveness properties of hBFT under optimal resilience.
For simplicity, we assume there are 3f + 1 replicas.

4.5.1 Safety
Theorem 1 (Safety): If requests m and m′ are com-

mitted at two correct replicas pi and pj , m is com-
mitted before m′ at pi if and only if m is committed
before m′ at pj .

Proof: The proof proceeds as follows. We first
prove the correctness of checkpoint subprotocol,
which follows the correctness of PBFT, as shown in
Claim 1. We then show the proof of the theorem based
on the claim.

Claim 1 (Safety of Checkpoint): The checkpoint sub-
protocol guarantees the safety property.

Proof: We now prove that if checkpoints M and
M ′ are committed at two correct replicas pi and pj
in checkpoint subprotocol, regardless of being in the
same view or across views, M = M ′.

(Within a view) If pi and pj commit both in view v,
then pi has collected CER2(M,v), which indicates that
at least f+1 correct replicas have sent 〈Checkpoint-III〉
for M . Similarly, pj has CER2(M ′, v), which indicates
that at least f+1 correct replicas send 〈Checkpoint-III〉
for M ′. Then excluding f faulty replicas, if M and M ′

are different, at least one correct replica has sent two
conflicting messages for M and M ′, which contradicts
with our assumption. Therefore, M = M ′.

(Across views) If M is committed at pi in view v
and M ′ is committed at pj in view v′ > v, M = M ′.
If M ′ is committed in view v′, then either condi-
tion A or B must be true in the construction of
the 〈New-View〉 message in view v′ (see Section 4.3).
However, if M is committed at pj in view v, pj
has CER2(M, v), which indicates that at least f + 1
correct replicas have CER1(M, v) and M in the P
component. Therefore, condition B cannot be true.
For condition A, M ′ is committed at pj in view v′

if both A1 and A2 are true. A2 can be true if a
faulty replica sends a 〈View-Change〉 message that
includes 〈M ′, D(M ′), v1〉, where v < v1 ≤ v′. How-
ever, condition A1 requires that at least f + 1 correct
replicas have CER1(M ′, v′). Since at least f+1 correct
replicas have CER1(M,v), they will not accept M ′ in
any later views. At least one correct replica sends
conflicting messages, a contradiction. Therefore, we
have M = M ′.

To prove Theorem 1, we first show that if two
requests m and m′ are committed at correct replicas
pi and pj , m equals m′. Then we show that if m1 is
committed before m2 at pi, m1 is committed before
m2 at pj . The former part is shown across views and
within the same view.
(Within a view) There are three cases: the two requests
are committed in agreement subprotocol, two requests
are committed in checkpoint subprotocol, one of them
is committed in the agreement subprotocol and the
other one is committed in the checkpoint subpro-
tocol. In the first case, if m is committed at pi, pi
receives 2f + 1 〈Commit〉 messages if the request
is committed in agreement protocol. On the other
hand, if m′ is committed at pj , pj receives 2f + 1
〈Commit〉 messages. The two quorums intersect in at
least one correct replica. At least one correct replica
sends inconsistent messages, a contradiction. There-
fore, m equals m′. The second case is proved in
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Claim 1. In the third case, if m is committed at pi,
pi receives 2f + 1 〈Commit〉 messages if the request
is committed in the agreement protocol. On the other
hand, if m′ is committed at pj in checkpoint protocol,
at least 2f + 1 replicas have certificate with m′ in
their execution history. The two quorums of 2f + 1
replicas intersect in at least one correct replica, who
sends a 〈Commit〉 message with m in the agreement
protocol and includes m′ in its execution history in the
checkpoint protocol, a contradiction. To summarize,
we have m equals m′ if they are committed in the
same view.
(Across views) If m is committed at replica pj , 2f + 1
replicas send 〈Commit〉messages. At least f+1 correct
replicas accept m, which will be included in their
〈View-Change〉 messages. On every view change, the
new primary initializes a checkpoint subprotocol to
make the same order of requests committed at all
the correct replicas in the 〈New-View〉 message. The
correctness follows from Claim 1.

Then we show that if m1 is committed before m2

at pi, m1 is committed before m2 at pj . If a request is
committed at a correct replica, 2f + 1 replicas send
〈Commit〉 messages. Since two quorums of 2f + 1
replicas intersect in at least one correct replica pi,
m1 is committed with sequence number smaller than
m2. According to the former proof, if m1 and m2 are
committed at pj , they are committed with the same
sequence numbers.

By combining all the above, safety is proven.

4.6 Liveness

Theorem 2 (Liveness): Correct clients eventually re-
ceive replies to their requests.

Proof: It is trivial to show that if the primary is
correct, clients receive replies to their requests. In the
following, we first show that correct clients will not
be removed. We then prove that faulty replicas and
faulty clients cannot impede progress by removing a
correct primary.

Claim 2 (Correct Client Condition): If the values of
the timeouts are appropriately set up, correct clients
will not be removed if they trigger a checkpoint.

Proof: If a correct client receives between f + 1 to
2f +1 matching replies for a request m, it triggers the
checkpoint subprotocol. To remove a correct client, m
must be executed by f + 1 replicas in Almost-MAC-
agreement protocol and committed in the checkpoint
subprotocol without view changes. Among the f + 1
replicas that accept 〈Prepare〉 message in the agree-
ment protocol, at least one is correct. If it receives a
〈Prepare〉 message, it appends to 〈Commit〉 message
and sends to all replicas. If at least one correct replica
receives a valid and conflicting 〈Prepare〉 message
from the primary, it will send inconsistent messages
and eventually all the correct replicas vote for view
change, a contradiction that view change does not

occur. Therefore, no correct replica receives a different
〈Prepare〉 message. In addition, if a correct replica
does not receive a valid 〈Prepare〉 message from the
primary and receives a valid 〈Prepare〉 message ap-
pended to the 〈Commit〉 message, it will accept the
〈Prepare〉 message and sends 〈Reply〉 message to the
client. In this case, the client receives 2f + 1 matching
replies, a contradiction with the assumption that the
client is correct. Therefore, correct clients will not be
removed by the client suspicion protocol.

Claim 3 (Faulty Replica Condition): Faulty replicas
cannot impede progress by causing view changes.

Proof: To begin, we show that faulty replicas can-
not cause a view change by sending 〈View-Change〉
messages. At least f + 1 〈View-Change〉 messages are
sufficient to cause a view change. Thus, even if all
faulty replicas vote for view change, they cannot cause
a view change. A faulty primary can cause a view
change. However, the primary cannot be faulty for
more than f consecutive views.

In addition, no 〈View-Change〉 message makes a
correct primary incapable of generating a 〈New-View〉
message. A correct primary is able to pick up a stable
checkpoint. Since at least f + 1 correct replicas have
CER2 for a checkpoint, the new primary is able to
pick it up. In addition, the new primary is able to
pick up a sequence of requests based on condition
A or B. Either some correct replica(s) commits on
a checkpoint or no correct replica does. Condition
A1 can be verified because non-faulty replicas will
not commit on two different checkpoints. Condition
A2 is satisfied if at least one correct replica accepts
a 〈Checkpoint-I〉 message for the same checkpoint
and it votes for the authenticity of the checkpoint.
Therefore, the checkpoint can be selected since it is
authentic. Similarly, a set of executed requests can
be selected based on R in a view change. Namely,
if the client completes a request, the request must be
accepted by at least 2f + 1 replicas. Among them, at
least f+1 replicas are correct. If other replicas receive
inconsistent 〈Prepare〉 messages and f + 1 〈Commit〉
messages, they will abort. Therefore, it is not possible
that a set of f + 1 replicas include one request and
another set of f+1 replicas include another request. In
conclusion, the new primary is able to select a 〈New-
View〉 message.

Claim 4 (Faulty Client Condition 2): A faulty client
cannot impede progress by causing view changes.

Proof: If a faulty client intentionally triggers the
checkpoint subprotocol while replicas are consistent,
requests committed in agreement subprotocol will be
committed in checkpoint subprotocol. View changes
will not occur. Since such faulty behavior of clients
will be detected, the client will be removed.

To summarize, according to Claim 2, correct replicas
will not be removed so their requests can be handled.
Faulty backups or faulty clients can not cause view
changes as proved in Claim 3 and Claim 4 separately.
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Since the primary cannot be faulty for more than f
continuous views, correct clients eventually receive
replies to their requests.

5 DISCUSSION

5.1 Timeouts
Existing protocols rely on different timeouts to guar-
antee liveness. As discussed in Section 4.4, the values
of timeouts are key to avoid some uncivil attacks.
Since we assume the partial synchrony model, it is
reasonable to set up timeouts according to the round-
trip time such as the technique used in Prime [2].
However, in several corner cases, either inappropriate
values of timeouts or network congestion can make a
correct replica suspect or remove a correct primary.

hBFT employs a client suspicion subprotocol that
is used to detect faulty clients. A faulty primary can
play tricks on timeouts to remove correct clients. For
instance, the primary can send a 〈Prepare〉 message
to f correct replicas and delay the 〈Prepare〉 message
to f + 1 correct replicas until the very end of timeout
of the client. The f + 1 correct replicas receive the
〈Prepare〉 message and execute the request but they
do not reply to the clients “on time.” Since the client
does not receive enough number of replies before the
timeout expires, it sends a 〈PANIC〉 message. How-
ever, all replicas are “consistent” since the primary
still sends out consistent 〈Prepare〉 messages. Correct
clients will be suspected.

We solve this problem by using Almost-MAC-
agreement protocol as discussed in Section 4.4. The
optimization allows all replicas to execute the request
on time if at least one correct replica receives a valid
〈Prepare〉 message, which prevents a faulty primary
from framing the clients.

5.2 Speculation
Speculation reduces the cost and simplifies the de-
sign of Byzantine agreement protocols, which works
well especially for systems with highly concurrent
requests. Speculation has been used by fault-free
systems and by systems that tolerate crash failures.
Therefore, hBFT also works well in adaptively toler-
ating crash failures to Byzantine failures. hBFT uses
speculation because replicas are always consistent for
both fault-free and normal cases where the primary
is correct. Every request takes three communication
steps to complete, and is the theoretical lower bound
for agreement-based protocols.

Speculation does not work well for systems that
have high computationally intensive tasks or sys-
tems that have a high attack rate. The former prob-
lem can be handled by separating execution from
agreement [32]. The latter problem decreases the per-
formance either with or without recovery. For in-
stance, faulty clients can simply trigger the three-
phase checkpoint subprotocol on every request, which
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Fig. 5. Throughput for the 0/0 benchmark as the
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gives hBFT similar performance to PBFT before the
faulty clients are evacuated. The advantage of hBFT
indicates that the three-phase checkpoint subprotocol
is rarely triggered. Therefore, hBFT improves the per-
formance in fault-free and normal cases but achieves
comparable performance to PBFT in the worst case.

6 EVALUATION

We evaluate the system on Emulab [31] utilizing up
to 45 pc3000 machines connected through a 100Mbps
switched LAN. Each machines is equipped with a
2GHz, 64-bit Xeon processor with 2GB of RAM. 64-
bit Ubuntu 10 is installed on every machine, running
Linux kernel 2.6.32. We use RSA-FDH [4] for our
digital signature scheme, and HMAC-MD5 [5, 6] for
the MAC algorithm.

We compare our work with Castro et al.’s imple-
mentation of PBFT [7] as well as Kotla et al.’s imple-
mentation of Zyzzyva [21]. All the experiments are
carried out in normal cases, where a backup is faulty.
Four micro-benchmarks are used in the evaluation,
also developed by Castro et-al. An x/y benchmark
refers to an xkB request from clients and an ykB reply
from the replicas.

6.1 Throughput
Fig. 5 compares throughput achieved for the 0/0
benchmark in normal cases between PBFT, Zyzzyva
and hBFT where B is the size of the batch. Fig. 6
presents the performance for the four benchmarks
where B = 1 for all benchmarks. All the experiments
are tested in the configuration of f = 1.

As the number of clients increases, Zyzzyva per-
forms even worse than PBFT. As indicated in Sec-
tion 1.1, without batching (B = 1, f = 1), bottleneck
server of Zyzzyva (4 + 5f + 3f

b ) performs 1.2 times
more MAC operations than PBFT (2 + 8f

b ) and 2.4

times more MAC operations than hBFT (2+ 3f
b ). With

batching (B = 10, f = 1), Zyzzyva performs 3.3 times
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more MAC operations than PBFT and 4.0 times more
MAC operations than hBFT.

The simulation validates the theoretical results. As
shown in Fig. 5, without batching, hBFT achieves
more than 40% higher throughput than PBFT and 20%
higher throughput than Zyzzyva. With batching, the
peak throughput of hBFT is 2 times better than that
of Zyzzyva, and 40% higher than that of PBFT. The
difference is due to the cryptographic overhead of
each protocol.

Additionally, hBFT outperforms both Zyzzyva and
PBFT under high concurrency. As the number of
clients grows, all three protocols achieve better perfor-
mance with batching than without. When the number
of clients exceeds 40, throughput of Zyzzyva degrades
obviously. All other cases remain stable when the
number of clients exceeds 30. When the number of
clients is fewer than 30, hBFT with batching has an
outstanding growth. Other than that, throughput of
PBFT with batching also grows faster compared with
all the left cases. The reply message cannot be batched
and replicas need to reply to every client, which
explains the result why Zyzzyva achieves the lowest
throughput in normal cases.

Fig. 6 presents the throughput of protocols without
batching with 10 clients. For all the benchmarks, hBFT
achieves higher throughput as well. All three proto-
cols achieve the best throughput for 0/0 benchmark
and the worst for 4/4 benchmark. Zyzzyva and hBFT
perform worse for 0/4 and 4/4 benchmarks than 4/0
benchmark. PBFT achieves almost the same through-
put for 0/4 and 4/0 benchmarks. This implies that the
size of reply messages has more effect for speculation-
based protocols.The outstanding performance of read-
only requests is due to the read-only optimization,
where replicas send reply directly to the clients with-
out running agreement protocol.

To summarize this section, hBFT outperforms both
Zyzzyva and PBFT in normal cases. Since PBFT
achieves almost the same throughput for 0/4 and 4/0
benchmarks and it achieves higher throughput with
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batching, it works well for systems that have more
computationally consuming tasks. Comparably, hBFT
and Zyzzyva work well for systems that have highly
concurrent but lightweight requests.

6.2 Latency

The latency depends on both cryptographic overhead
and one-way latencies. Cryptographic overhead con-
trols the latency of processing one message and the
number of one-way latencies controls the number of
phases that the agreement protocol goes through. In
terms of critical paths, PBFT has four if replicas send
reply to the clients after prepare phase. hBFT has
only three, which is the theoretical lower bound of
agreement protocols under high concurrency. Even
though the checkpoint subprotocol takes three phases,
it will not decrease the overall performance signifi-
cantly since the checkpoint subprotocol is triggered
rarely. Zyzzyva takes three in fault-free cases and five
in normal cases.

Additionally, the performance of all protocols is also
related to the frequency of checkpoint subprotocol as
well. It has a direct impact on hBFT due to the reason
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that checkpoint subprotocol of hBFT is more expen-
sive than the other two. By default, we assume that
a checkpoint subprotocol starts every 128 requests.
hBFT outperforms the other two under this setting.
If we make checkpoint subprotocol more rarely, it
can be expected that hBFT will achieve even better
performance and vice versa.

We assess the latency without contention when
there is only 1 client. The performance for all four
benchmarks are similar, as shown in Fig. 7. All three
protocols have the lowest latency for the 0/0 bench-
mark and the highest for the 4/4 benchmark. PBFT
achieves almost the same latency for both 4/0 and 0/4
benchmarks. hBFT and Zyzzyva achieve lower latency
for the 4/0 benchmark than the 0/4 benchmark.

As shown in Fig. 8, we also evaluate latency as the
number of clients grows. We observe that without
batching, hBFT achieves an average of 30% lower la-
tency than PBFT and 40% lower latency than Zyzzyva.
With batching, hBFT achieves an average of 15%
lower latency than PBFT and 35% lower latency than
Zyzzyva. When the number of clients increases, the
latency of all the protocols increase gradually, which
shows that all three protocols work well under high
concurrency. The latency of Zyzzyva grows faster than
the other two.

6.3 Fault Scalability

We also examine performance when the number of
replicas increases. As shown in Fig. 1, the throughput
is related to f . We view the primary as the bottleneck
server not only because of the number of MAC opera-
tions in the agreement, but also because of other effort
such as processing requests. For PBFT and hBFT, the
backups do not perform many fewer cryptographic
operations than the primary. In comparison, backups
in Zyzzyva perform many fewer cryptographic oper-
ations than the primary, which can be viewed as an
advantage over the other two. However, this does not
have a direct positive effect on the throughput and la-
tency since the primary performs more cryptographic
operations. As f increases, the performance for all
three protocols will decrease due to the cryptographic
overhead, especially without batching.

Fig. 9 compares the number of cryptographic oper-
ations that the primary and clients perform in normal
cases as the number of faults increases. In addition
to PBFT, Zyzzyva and hBFT, we also include Q/U
and HQ, which are two (hybrid) Byzantine quorum
protocols. For the performance of a primary with
or without batching, as illustrated in Fig. 9(a) and
Fig. 9(b), it can be observed that batching greatly
reduces the number of cryptographic operations as
the number of total replicas increases. For instance,
although the number of cryptographic operations of
PBFT is high without batching and increases quite
fast, the cryptographic overhead is almost the smallest
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Fig. 9. Fault scalability using analytical model.

without batching and remains stable as the num-
ber of faults increases. Comparably, the number of
cryptographic operations of Zyzzyva does not de-
crease too much without batching. Since both HQ
and Q/U are quorum-based protocols, they cannot
use batching and work better under low concurrency.
hBFT achieves the smallest numbers with or without
batching.

As illustrated in Fig. 10, as the number of replicas
increases, the latency of PBFT increases quickly with-
out batching. With batching, PBFT achieves a more
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Fig. 10. Fault scalability: latency.

stable curve. Zyzzyva has higher latency than the
other two protocols for each case. On the other hand,
the latency of hBFT stabilizes and does not grow to a
large degree with or without batching. The key factors
in the performance are not only the critical paths and
the number of cryptographic operations, but also the
message complexity. Although Zyzzyva has higher
cryptographic overhead, it requires the same number
of messages as hBFT, explaining why both scale better
than PBFT.

Not surprisingly, as shown in Fig. 11, the through-
put shows a similar trend with latency. As the sys-
tem scales, when f is greater than 2, throughput
of Zyzzyva obviously decreases, especially without
batching. Zyzzyva scales better than PBFT but the
performance degrades obviously when f is greater
than 4. hBFT scales better than both Zyzzyva and
PBFT with or without batching. The difference be-
tween the numbers of cryptographic operations is still
the key to the overall performance. When the number
of faults is 5 and assuming b equals 10, PBFT requires
42 MACs without batching and only 6 with batching,
Zyzzyva requires 44 MACs without batching and 30.5
with batching, and hBFT requires 17 MACs without
batching and 3.5 with batching. For systems with high
concurrency, PBFT and hBFT are preferred and scale
well as the number of faults increases.

6.4 A BFT Network File System
This section describes our evaluation of a BFT-NFS
service implemented using PBFT [7], Zyzzyva [21],
and hBFT, respectively. Similarly, in the NFS service,
we evaluate the performance of normal cases where
a backup server fails.

The NFS service exports a file system, which can
then be mounted on a client machine. The replication
library and the NFS daemon are called to reach agree-
ment in the order that replicas receive client requests.
Once processing is done, replies are sent to the clients.
The NFS daemon is implemented using a fixed-size
memory-mapped file.
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We use the Bonnie++ benchmark [12] to compare
our three implementations with NFS-std, an unrepli-
cated NFS V3 implementation, using an I/O inten-
sive workload. The Bonnie++ benchmark includes se-
quential input (including per-character and block file
reading), sequential output (including per-character
and block file writing), and the following directory
operations (DirOps): (1) create files in numeric order;
(2) stat() files in the same order; (3) delete them in the
same order; (4) create files in an order that appears
random to the file system; (5) stat() random files;
(6) delete the files in random order.

We evaluate the performance when a failure occurs
at time zero, as detailed in Fig. 12. In addition, up
to 20 clients run Bonnie++ benchmark concurrently.
The results show that hBFT completes every type of
operations with lower latency than all of other proto-
cols. The main difference lies on the write operations.
This is due to the fact that all the three protocols
use read-only optimization, where replicas send reply
messages to the clients directly without running the
agreement protocol. Compared with NFS-std, hBFT
only causes 6% overhead while PBFT and Zyzzyva
cause 10% and 18% overhead, respectively.

0 20 40 60 80 100 120 140 time(s)

NFS-std

hBFT
Zyzzyva

PBFT

139.53
148.42

165.58
154.5

Write(char) Write(block) Read(char) Read(block) DirOps

Fig. 12. NFS evaluation with the Bonnie++ benchmark.

7 CONCLUSION

In this paper, we presented hBFT, a hybrid, Byzan-
tine fault-tolerant, replicated state machine protocol
with optimal resilience. By re-exploiting speculation,
as well a requiring the participation of clients, the
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theoretical lower bound for throughput and latency
have been achieved for both fault-free and normal cases
in hBFT. hBFT is a fast protocol that moves some jobs
to the clients but can still tolerate faulty clients. We
have also proven the safety and liveness properties of
hBFT and demonstrated how hBFT improves on the
performance of existing protocols without several of
the trade-offs.
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