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PRELIMINARY: NOT FOR QUOTATION

”[An] important and difficult question...[is] not answered by the approach taken
here: the integration of money in the theory of value...”

—— Gerard Debreu, Theory of Value (1959)

Abstract

General equilibrium is investigated with N commodities traded at
N(N − 1)/2 commodity-pairwise trading posts. Trade is a resource-
using activity undertaken by firms recovering transaction costs through

the spread between bid (wholesale) and ask (retail) prices (quoted as com-
modity rates of exchange). Budget constraints are enforced at each trad-
ing post separately so that there is demand for a carrier of value be-
tween trading posts, commodity money. Existence of general equilibrium

is established under conventional convexity and continuity conditions and
technical assumptions assuring boundedness of price ratios. Trade in me-
dia of exchange (commodity money) is the difference between household

gross and net trades.

JEL Classification: C62, E40
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1 Introduction

It is well-known that the Arrow-Debreu model of Walrasian general equilibrium can-
not account for money. Professor Hahn (1982) writes

”The most serious challenge that the existence of money poses to the theorist
is this: the best developed model of the economy cannot find room for it. The
best developed model is, of course, the Arrow-Debreu version of a Walrasian gen-
eral equilibrium. A first, and...difficult...task is to find an alternative construction

without...sacrificing the clarity and logical coherence ... of Arrow-Debreu.”
This paper pursues development of foundations for a theory of money based on

elaborating the detail structure of an Arrow-Debreu model. The elementary first step
is to create a general equilibrium where there is a well defined demand for a medium of

exchange — a carrier of value between transactions. This is arranged by replacing the
single budget constraint of the Arrow-Debreu model with the requirement that the
typical household or firm pays for its purchases at each of many separate transactions.
Transactions take place at commodity-pairwise trading posts. Then a well-defined

demand for media of exchange (not necessarily unique) arises endogenously as an
outcome of the market equilibrium. Media of exchange (commodity monies) are
characterized as the carrier of value between transactions (not fulfilling final demands

or input requirements themselves), the difference between gross and net trades.

1.1 Structure of the Model

Trade takes place at commodity pairwise trading posts (Cournot (1838), Shapley and
Shubik (1977), Walras (1874)) with budget constraints (you pay for what you get in

commodity terms) enforced at each post. Prices — bid (wholesale) and ask (retail)
— are quoted as commodity rates of exchange. Trade across trading posts is arranged
by firms, typically buying at bid prices and selling at ask prices, incurring transaction
costs (resources used up in the transaction process) and recouping them through the

bid/ask spread. Market equilibrium occurs when bid and ask prices at each trading
post have adjusted so that all trading posts clear.

1.2 Structure of the Proof

The structure of the proof of existence of general equilibrium follows the approach of
Arrow and Debreu (1954), Debreu (1959), and Starr (1997). The usual assumptions
of continuity, convexity (traditional but by no means innocuous in this context), and
no free lunch/irreversibility are used. There is one additional (objectionable) family

of assumptions, strong substitutability between goods and the existence of a linear
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backup transactions technology for all goods so that the equilibrium price ratios

are necessarily bounded, allowing characterization of the price space as a compact
convex set (a cube interior to the positive quadrant in RN(N−1)). The attainable set
of trading post transactions is compact. The model considers transaction plans of
firms and households artificially bounded in a compact set including the attainable

set as a proper subset. Price adjustment to a fixed point with market clearing leads
to equilibrium of the artificially bounded economy. But the artificial bounds are
not a binding constraint in equilibrium. The equilibrium of the artificially bounded

economy is as well an equilibrium of the original economy.

1.3 Conclusion: The medium(a) of exchange

The general equilibrium specifies each household and firm’s trading plan. At the
conclusion of trade, each has achieved a net trade. Gross trades include trading

activity that goes to paying for acquisitions and accepting payment for sales rather
than directly implementing desired net trades. It’s easy to calculate gross trades and
net trades at equilibrium. For households, the difference — gross trades minus net
trades — represents trading activity in carriers of value between trades, media of

exchange. Since firms perform a market-making function, identification of media of
exchange used by firms is not so straightforward. In some examples (see Starr (2003A,
2003B))the medium of exchange may be a single specialized commodity (the common

medium of exchange). The approach of this model is intended to provide a Walrasian
general equilibrium alternative to the overlapping generations, Wallace (1980), and
search theory, Kiyotaki and Wright (1989), models of the foundations of monetary
theory. The present model is sufficiently general to include both a single common

medium of exchange and many goods simultaneously acting as media of exchange.
There is nothing in the present model designed to encourage concentration of trade
on a single common medium of exchange.

2 Trading Posts

There are N tradeable goods denoted 1, 2, ..., N. They are traded for one another

pairwise at trading posts. {i, j} (or equivalently {j,i}) denotes the trading post where
goods i and j are traded for one another. There are N(N − 1)/2 distinct trading
posts.
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3 Prices

Goods are traded directly for one another without distinguishing any single good as
’money’. Prices are then quoted as rates of exchange between goods. We distinguish

between bid (selling or wholesale) prices and ask (buying or retail) prices. Thus the
ask price of a hamburger might be 5.0 chocolate bars and the bid price 3.0 chocolate
bars. Note that the ask price of a chocolate bar then is the inverse of bid price of a
hamburger. That is, the ask price of a chocolate bar is 0.333 hamburger and the bid

price of a chocolate bar is 0.2 hamburger.
More formally, denote the bid price of i at trading post {i,j} as q

{i,j}
i expressed in

units of j. Then the ask price of j at {i,j} expressed in units of i is [q
{i,j}
i ]−1 . Thus

with N commodities, there are N(N − 1) distinct prices, the bid price of each of N
goods versus (N-1) counterparts. The array of prices is then an N(N−1) -dimensional

vector , q in R
N(N−1)
+ .

Once q is specified, showing all bid prices q
{i,j}
i for all 1 ≤ i, j ≤ N, i 6= j, that

implies as well all the resulting ask prices. In principle, any nonnegative value of
q
{i,j}
i is possible, though a value of nil implies an undefined value of [q

{i,j}
i ]−1. We’ll

find below that bounding the price space above and away from the boundary makes
it more manageable.

4 Budget Constraints and Trading Opportunities

The budget constraint is simply that at each pairwise trading post, at prevailing

prices, in each transaction, payment is given for goods received. That is, at trading
post {i, j}, a bid price for i is quoted q

{i,j}
i in terms of j and a bid price of j is quoted,

q
{i,j}
j in terms of i. Suppose a typical firm or household is considering a trading plan

(y, x) ∈ R2N(N−1). That plan specifies the following transactions at trading post {i,j}:
y
{i,j}
i (at ask prices — retail) in i, y

{i,j}
j (at ask prices — retail) in j, x

{i,j}
i (at bid

prices — wholesale) in i, x
{i,j}
j (at bid prices — wholesale) in j. Positive values of

these transactions are purchases. Negative values are sales. At each trading post (of
two goods) there are four quantities to specify in a trading plan. Then value delivered
must equal value received. That is

0 = y
{i,j}
j + q

{i,j}
i x

{i,j}
i , or equivalently, 0 = [q

{i,j}
j ]−1y

{i,j}
i + x

{i,j}
j (B)

(B) says — evaluating all trades in terms of good j (without loss of generality)
— that trades in i and j at retail and wholesale at the {i,j} trading post must sum
to a zero value of j. Each retail purchase is paid for by a wholesale delivery.
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Given a price vector q ∈ R
N(N−1)
+ the array of trades fulfilling (B) is the set of

trades fulfilling the N(N −1)/2 local budget constraints at the trading posts. Denote
this set

M(q) ≡ {(y, x) ∈ R2N(N−1)|(y, x) fulfills (B) at q for all i, j = 1, ..., N, i 6= j}

5 Firms

The heavy lifting in this model is done by firms. They perform the market-making
function, incurring transaction costs. The population of firms is a finite set denoted
F , with typical element f ∈ F . Thus, firm f ’s technology set may specify that f ’s

purchase of labor (retail) in exchange for i on the {i, labor} market and purchase of i
and j wholesale on the {i,j} market allows f to sell i and j (retail) on the {i, j} market.
That’s how f can become a market maker. If there is a sufficient difference between
bid and ask prices so that f can cover the cost of its i, j inputs with a surplus left

over, that surplus becomes f ’s profits, to be rebated to f ’s shareholders.

5.1 Technology Set

Firm f ’s technology set is Y f . We assume

P.0 Y f ⊂ R2N(N−1)

The typical element of Y f is (yf , xf ), a pair of N(N −1)-dimensional vectors. The
N(N − 1)-dimensional vector yf represents f’s transactions at ask (retail) prices; the
N(N − 1)-dimensional vector xf represents f’s transactions at bid (wholesale) prices.

The 2-dimensional vector yf{i,j} represents f’s transactions at ask (retail) prices at
trading post {i,j}; the 2-dimensional vector xf{i,j} represents f’s transactions at bid

(wholesale) prices at trading post {i,j}. The typical co-ordinates y
f{i,j}
i , x

f{i,j}
i are

f’s action with respect to good i at the {i,j} trading post. Since f may act as a
wholesaler/retailer/market maker, entries anywhere in (yf{i,j}, xf{i,j}) may be positive

or negative — subject of course to constraints of technology Y f and prices M(q). This
distinguishes the firm from the typical household. The typical household can only
sell at bid prices and buy at ask prices.

The entry y
f{i,j}
i , represents f’s actions at ask prices with regard to good i at

trading post {i,j}. y
f{i,j}
i > 0 represents a purchase of i at the {i,j} trading post (at

the ask price). y
f{i,j}
i < 0 represents a sale of i at the ask price.

The entry x
f{i,j}
i , represents f’s actions at bid prices with regard to good i at

trading post {i,j}. x
f{i,j}
i > 0 represents a purchase of i at the trading post (at the

bid price). x
f{i,j}
i < 0 represents a sale of i at the bid price.
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A firm that is an active market-maker at {i,j} will typically buy at the bid price

and sell at the ask price. A firm that is not a market-maker may have to pay retail
— like the rest of us — selling at the bid price and buying at the ask price.

In addition to indicating the transaction possibilities, Y f includes the usual pro-
duction possibilities. The usual assumptions on production technology apply. For

each f ∈ F , assume
P.I Y f is convex.
P.II 0 ∈ Y f , where 0 indicates the zero vector in R2N(N−1).

P.III Y f is closed.
The aggregate technology set is the sum of individual firm technology sets. Y ≡∑

f∈F Y f . It fulfills the familiar no free lunch and irreversibility conditions.

P.IV [(a)] if (y, x) ∈ Y and (y, x) 6= 0, then y
{i,j}
i + x

{i,j}
i > 0 for some i, j.

[(b)] if (y, x) ∈ Y and (y, x) 6= 0, then −(y, x) 6∈ Y .
Denote the initial resource endowment of the economy as r ∈ RN

+ . Then we define
the attainable production plans of the economy as

Ŷ ≡ {(y, x) ∈ Y |ri ≥
∑

j(y
{i,j}
i + x

{i,j}
i )}

Lemma 5.1: Assume P.0 - P.IV. Then Ŷ is closed, convex, and bounded.

Attainable production plans for firm f can then be described as

Ŷ f ≡ {(yf , xf) ∈ Y f | there is (yk, xk) ∈ Y k for each k ∈ F, k 6= f , so that
[
∑

k∈F,k 6=f (yk, xk) + (yf , xf)] ∈ Ŷ }

5.2 Firm Maximand and Transactions Function

The firm formulates a production plan and a trading plan. The firm’s opportunity set

for net yields after transactions fulfilling budget is Ef(q) ≡ [M(q) − Y f ] ∩ R
2N(N−1)
+

. That is, consider the firm’s production, purchase, and sale possibilities, net after
paying for them, and what’s left is the net yield. Using the sign conventions we’ve
adopted — purchases are positive co-ordinates, sales are negative co-ordinates — the

net yield is then the negative co-ordinates (supplies) in a trading plan that are not
absorbed by payments due. The supplies are subtracted out, so the surpluses enter
Ef (q) as positive co-ordinates.

A typical element of these surplus supplies is denoted (y′, x′) ∈ Ef (q) . Note

that in the notation (y′, x′), y′ and x′ are dummies, not actual marketed supplies and
demands.

Now consider (y′, x′) ∈ Ef(q) . In each good i, the net surplus available in good i

is wf
i ≡ ∑N

j=1(y
′{i,j}
i +x

′{i,j}
i ) and firm f’s surplus is the vector wf of these co-ordinates.
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In the absence of a single family of well-defined prices, it is difficult to characterize

optimizing behavior for the firm. Fautes de mieux we’ll give the firm a scalar max-
imand with argument q, y′, x′. Firm f is assumed to have a real-valued, continuous
maximand vf(q; y′, x′). We take vf to be strictly concave in wf , defined above.

The firm’s (unconstrained) market behavior then is described by

Sf (q) ≡ {(y, x)|(y, x) − (yo, xo) = (y′, x′), where (y′, x′) maximizes vf(q; y′, x′)
subject to (y′, x′) ∈ Ef (q) and (yo, xo) ∈ Y f and (y, x) ∈ M(q)}

The logic of this definition is that (y′, x′) ≥ 0 is the surplus left over after the firm
f has performed according to its technology and subject to prevailing prices.

It is possible that Sf (q) is not well defined, since the opportunity set may be
unbounded. In the light of Lemma 5.1, there is a constant c > 0 sufficiently large
so that for all f ∈ F , Ŷ f is strictly contained in a closed ball, denoted Bc of radius
c centered at the origin of R2N(N−1). Following the technique of Arrow and Debreu

(1954), constrained market behavior for the firm will consist of limiting its production
choices to Y f ∩ Bc. This leads to the constrained surplus

Ẽf (q) ≡ [M(q) − [Y f ∩ Bc]] ∩ R
2N(N−1)
+

Lemma 5.2: Assume P.0 - P.IV. Then Ẽf (q) is nonempty, upper and lower hemi-

continuous.
Proof: Upper hemicontinuity and convexity follow from closedness and convex-

ity of the underlying sets. 0 ∈ Ẽf (q) always, so nonemptiness is fulfilled. Lower

hemicontinuity requires some work.
Let qν → qo, (yo, xo) ∈ Ẽf(qo). We seek (yν, xν) ∈ Ẽf (qν) so that (yν, xν) →

(yo, xo). If (yo, xo) = 0, lower hemicontinuity is trivially satisfied. Suppose instead
(yo, xo) ≥ 0 (the inequality applies co-ordinatewise). Then in an ε-neighborhood of

(yo, xo), for ν sufficiently large, there is (yν, xν) ∈ Ẽ(qν). (yν, xν) is the required
sequence.

The firm’s constrained market behavior then is defined as
S̃f (q) ≡ {(y, x)|(y, x) − (yo, xo) = (y′, x′), where (y′, x′) maximizes vf(q; y′, x′)

subject to (y′, x′) ∈ Ẽf (q) and (yo, xo) ∈ Y f ∩ Bc and (y, x) ∈ M(q)}
Lemma 5.3: Assume P.0 - P.IV. Then S̃f (q) is well defined, non-empty, upper

hemi-continuous, and convex-valued for all q ∈ R
N(N−1)
+ .

Proof: Theorem of the Maximum.

5.3 Profits

When (constrained) firm f supplies S̃f (q) to the market, it retains as surplus π̃f(q) ≡
arg max vf(q; y′, x′) ∈ Ẽf (q). Under strict concavity of vf , π̃f(q) is point-valued and
well-defined. When (unconstrained) firm f supplies Sf(q) to the market, it retains

as surplus πf (q) ≡ arg max vf(q; y′, x′) ∈ Ef(q).
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Note that S̃f (q) + π̃f(q) is the set of gross production activity planned (subject

to length constraint) by firm f at prices q. When it is well defined Sf (q) + πf(q) is
the corresponding gross activity plan without length constraint.

Lemma 5.4: Assume P.0 - P.IV. Then π̃f(q) is point-valued and continuous for all

q ∈ R
2N(N−1)
+ .

Proof: Continuity and strict concavity of vf , Theorem of the Maximum.

5.4 Inclusion of constrained supply in unconstrained supply

Lemma 5.5: Let q ∈ R
N(N−1)
+ such that [S̃f(q) + π̃f(q)] ⊆ Ŷ f . Then πf(q) and Sf (q)

are well defined and nonempty. Further πf (q) = π̃f (q) and Sf (q) = S̃f(q) .

Proof: Recall that Bc strictly includes Ŷ f . Then the result follows from convexity
of Y f and Ŷ f and concavity of vf(q; y′, x′) .

6 Bounding the Price Space

Though it is logically possible for any q ∈ R
N(N−1)
+ to be the array of bid prices, this

leads to conceptual and mathematical difficulties. A price space as large as R
N(N−1)
+

is unbounded, not compact, and hence lacks the fixed point property. In order to
avoid these difficulties (which are far from the focus of this study) we will introduce

sufficient conditions so that the space of equilibrium prices is necessarily bounded.
Then, without loss of generality, we an confine the price space to a bounded set.

This calls for a special assumption.

P.V (Backstop Technologies) Let i, j be integers, i 6= j,N ≥ i, j ≥ 1.

(a) Let Υijk ⊂ R2N(N−1),Υijk ≡ {(y, x)|y{n,m}
n = 0, for n,m 6= i;x{n,m}

n = 0, for n,m 6=
j; y

{i,j}
i < 0, x

{i,j}
j > 0; k|x{i,j}

j | = |y{i,j}
i |}. For all i, j = 1, 2, ..., N, i 6= j, there is

k > 0 and f ∈ F so that Υijk ⊂ Y f and vf(q; y′, x′) = y
′{i,j}
i + x

′{i,j}
i .

(b) Let Ψijk ⊂ R2N(N−1),Ψijk ≡ {(y, x)|y{n,m}
n = 0, for n,m 6= i;x{n,m}

n = 0, for n,m 6=
j; y

{i,j}
i > 0, x

{i,j}
j < 0, k|y{i,j}

i | = |x{i,j}
j |}. For all i, j = 1, 2, ..., N, i 6= j, there is

k > 0 and f ∈ F so that Ψijk ⊂ Y f and vf(q; y′, x′) = y
′{i,j}
j + x

′{i,j}
j .

P.V is simpler than it looks. It asserts the inclusion among firm technologies of
cones (rays from the origin) transforming good j (wholesale) into i (retail) and vice
versa, with firm maximands so that the technology will be used when it is profitable.
P.V says that there is a backstop technology for transforming every good purchased

wholesale into every good sold retail. Similarly there is a backstop technology for
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transforming any good acquired retail into any good delivered wholesale. The back-

stop technology may be terribly inefficient — using a conversion ratio of k, where k
may be very large (or very small) and positive. Nevertheless, under P.V, it follows

from simple arbitrage that equilibrium prices q
{i,j}
j are bounded above and below by

k and (1/k). Then take the maximum, K, of the values k and 1/k in P.V(a) and
P.V(b). The price space can then be confined to the rectangular prism

Q⊂ RN(N−1), Q ≡ {q ∈ RN(N−1)|K ≥ q
{i,j}
i ≥ (1/K)}

Q is a compact convex subset of R
N(N−1)
+ . This is the price space where we can

confine the search for an equilibrium price vector, under assumption P.V.
An assumption on the household side, C.II, corresponding to P.V, is introduced

below, to assure that Q is the largest price space we need.

7 Households

There is a finite set of households, H with typical element h.

7.1 Endowment and Consumption Set

h ∈ H has a possible consumption set, taken for simplicity to be the nonnegative
quadrant of RN , RN

+ . h ∈ H is endowed with rh >> 0 assumed to be strictly

positive to avoid boundary problems. h ∈ H has a share αhf ≥ 0 of firm f , so that∑
h∈H αhf = 1.

7.2 Trades and Payment Constraint

h ∈ H chooses (yh, xh) ∈ R2N(N−1) subject to the following restrictions. A household
always balances its budget, sells wholesale and buys retail:

(i) 0 ≥ x
h{i,j}
i for all i, j.

(ii) y
h{i,j}
i ≥ 0 for all i, j.

(iii) (yh, xh) ∈ M(q)

7.3 Maximand and Demand

Household h’s share of profits from firm f , αhfπf(q), is part of h’s endowment and
enters directly into consumption. When the profits of all firms πf(q) are well defined

h’s consumption of good i is
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(iv) ch
i ≡ rh

i + [
∑

f∈F αhf πf(q)]i +
∑N

j=1 x
h{i,j}
i +

∑N
j=1 y

h{i,j}
i

However, prices q may be such that πf(q) is not well defined for some f . Then we
may wish to discuss the constrained version of (iv),

(iv′) ch
i ≡ rh

i + [
∑

f∈F αhf π̃f (q)]i +
∑N

j=1 x
h{i,j}
i +

∑N
j=1 y

h{i,j}
i

In addition, h’s consumption must be nonnegative.
(v) ch ≥ 0. The inequality applies co-ordinatewise.
C.I For all h ∈ H, h’s maximand is the continuous, concave, real-valued,

strictly monotone, utility function uh(ch).
C.II For all h ∈ H, whenever ch

i and ch
j are > 0, MRSij is well defined (either

as a point value or a range in R+) and K > MRSij > (1/K) .
Assumption C.II says that indifference curves do not become very steep or very

flat. Hence extremely high price ratios result in zero household net purchase trans-
actions for the high-price good. Since the bounding parameter, K, is the same one
that characterizes bounds on the technology side, the same bounded price space, Q,
will fully encompass relevant prices.

h’s demand/supply function is defined as Dh:Q→ R2N(N−1).
Dh(q) ≡ {(yh, xh) ∈ R2N(N−1)|(yh, xh) maximizes uh(ch), subject to (i), (ii), (iii),

(iv) and (v) } . However, Dh(q) may not be well defined for q such that πf(q) is not
well defined for some f . To treat this issue, we define D̃h:Q→ R2N(N−1).

D̃h(q) ≡ {(yh, xh) ∈ R2N(N−1)|(yh, xh) maximizes uh(ch), subject to (i), (ii), (iii),
(iv′) and (v) } .

Lemma 7.1: Assume P.0 - P.IV, C.I, C.II. Then D̃h(q) is nonempty, upper hemi-

continuous and convex-valued, for all q ∈ Q. The range of D̃h(q) is compact. For q
such that π̃f(q) = πf(q) for all f ∈ F , D̃h(q) = Dh(q) .

8 Excess Demand

Let q ∈ Q. Constrained excess demand at q is defined as
Z̃(q) ≡ ∑

f∈F{(y, x)|(y, x) ∈ S̃f (q)}+
∑

h∈H{(y, x)|(y, x) ∈ D̃h(q)} .

Lemma 8.1: Assume P.0 - P.IV, C.I and C.II. Z̃ : Q → R2N(N−1). The range of Z̃
is bounded. Z̃ is upper hemi-continuous and convex-valued for all q ∈ Q.

Let Ξ denote a closed convex subset of R2N(N−1) including the range of Z̃.
Lemma 8.2 (Walras’ Law): Let q ∈ Q. Let (y, x) ∈ Z̃(q). The for each i, j =

1, ..., N, i 6= j, we have

0 = y
{i,j}
j + q

{i,j}
i x

{i,j}
i , or equivalently, 0 = [q

{i,j}
j ]−1y

{i,j}
i + x

{i,j}
j

.
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Proof of Lemma 8.2: Z̃(q) is the sum of elements (yf , xf ) of Sf (q) and (yh, xh)

of Dh(q) each of which is subject to (B): 0 = y
{i,j}
j + q

{i,j}
i x

{i,j}
i , or equivalently, 0 =

[q
{i,j}
j ]−1y

{i,j}
i + x

{i,j}
j . QED

9 Equilibrium

Define ρ : Ξ × Q → Q
ρ(z, q) ≡ {qo ∈ Q |z = (y, x) ∈ R2N(N−1. q

o{i,j}
i = med[K, q

{i,j}
i + x

{i,j}
i , 1/K]}

where ”med” denotes median .
Lemma 9.1: ρ is upper hemi-continuous and convex-valued for all (z, q) ∈ Ξ×Q.
Define Γ : Q × Ξ → Q × Ξ . Γ(q, z) ≡ ρ(z, q)× Z̃(q) .
Lemma 9.2: Assume P.0 - P.IV, C.I and C.II. Then Γ is upper hemi-continuous

and convex-valued on Q × Ξ . Γ has a fixed point (q∗, z∗) and 0 = z∗ .
Proof: Upper hemicontinuity and convexity are established in lemmas 8.1 and

9.1. Existence of the fixed point (q∗, z∗) then follows from the Kakutani fixed point
theorem. To demonstrate that z∗ = 0 , let z∗ = (y∗, x∗). We claim x∗ = 0. Use a

proof by contradiction. Suppose not. Then (case 1) x
∗{i,j}
i > 0 for some i, j. Then

q
∗{i,j}
i = K. By P.V and C.II it follows that x

∗{i,j}
i < 0, a contradiction. Alternatively,

(case 2)x
∗{i,j}
i < 0 for some i, j. Then q

∗{i,j}
i = 1/K. By P.V and C.II it follows that

x
∗{i,j}
i > 0, a contradiction. Thus, x∗ = 0. By lemma 8.2 it follows that y∗ = 0. QED

Definition: q∗ ∈ Q is said to be an equilibrium if
0 ∈ ∑

f∈F Sf (q∗) +
∑

h∈H Dh(q∗).
Theorem 9.1: Assume P.0 - P.V, C.I and C.II. Then there is an equilibrium

q∗ ∈ Q.
Proof: Lemmas 5.5, 7.1, 9.2.

10 Media of Exchange

Firms perform a market-making function, both buying and selling the same good in

x and y co-ordinates. Hence distinguishing between firms’ medium of exchange trans-
actions and directly productive transactions is problematic. However the situation is
simpler for households. Let (yh, xh) ∈ Dh(q) be household h’s 2N(N −1)-dimensional
transaction vector. The x co-ordinates are typically sales (negative sign) at bid prices;

the y co-ordinates are typically purchases (positive sign) at ask prices. Then we can
characterize h’s gross transactions in good i as∑

j y
h{i,j}
i − ∑

j x
h{i,j}
i ≡ γh

i .
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Further, the absolute value of h’s net transactions in good i, is

|∑j y
h{i,j}
i +

∑
j x

h{i,j}
i | ≡ νh

i .
The N -dimensional vector γh with typical element γh

i is h’s gross trade. The
N -dimensional vector νh with typical element νh

i is h’s net trade vector (in absolute
value). µh ≡ γh − νh is h’s flow of goods as media of exchange. The total flow of

media of exchange among households is then
∑

h∈H µh

Thus the trading post equilibrium establishes a well-defined household demand
for media of exchange as an outcome of the market equilibrium. Media of exchange

(commodity monies) are characterized as goods flows acting as the carrier of value
between transactions (not fulfilling final demands or input requirements themselves),
the difference between gross and net trades.
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