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ABSTRACT OF THE DISSERTATION 

 

Model Reduction via Proper Orthogonal Decomposition  

of Transient Confined and Unconfined Groundwater-Flow 

By 

 

Scott Elliott Boyce 

Doctor of Philosophy in Civil Engineering 

University of California, Los Angeles, 2015 

Professor William W. Yeh, Chair 

 

Understanding groundwater resources is enhanced through the application of mathematical 

models that simulate the dynamics of an aquifer system. Conducting advanced analyses such as 

inverse problems for parameter estimation or optimization of pumping schedules under different 

scenarios requires a large number of simulations. Such analyses are intractable for complex, 

highly-discretized models with large computational requirements. Reducing the computational 

burden associated with these simulation models provides the opportunity to perform more 

advanced analyses on a wider spectrum of groundwater management problems. Projection based 

model reduction via Proper Orthogonal Decomposition (POD) has been shown to reduce the 

state space dimension by several orders of magnitude and thus reduces the computational burden. 

Two new POD techniques have been developed that improve the computation of high 

dimensional groundwater modeled systems. The first method provides a framework for 
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developing parameter independent reduced models for solving inverse problems of confined 

groundwater models. This methodology is validated using synthetic test cases to solve a 

traditional inverse problem and Bayesian inverse problem. The second method presents a novel 

technique that allows for model reduction of unconfined groundwater flow, a nonlinear system of 

equations, using the Newton formulation of MODFLOW. This method extends POD to nonlinear 

equations and reduces the computational burden of solving the inverse of the Jacobian required 

by the Newton formulation. Multiple test cases are presented to illustrate how a POD model is 

constructed and applied to different groundwater models. These two techniques result in several 

orders of magnitude of reduction in the state dimension and reduce to the total CPU time. For the 

case of the Bayesian inverse problem, the synthetic example’s parameter posterior distributions 

that are described with the Metropolis-Hastings Markov chain Monte Carlo method results in a 

time savings of 48 days when using the reduced model.  
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Chapter 1 

Introduction 

Water, the elixir of life, is an essential part of humanity's existence. Throughout time 

civilizations flourished when there were nearby stable and clean water supplies. Until recently 

water was viewed to be an unlimited resource from both the surface and subsurface. As 

populations have grown, demand for clean water has increased significantly [1,2]. These 

increases necessitate a better understanding of groundwater resources which is done through the 

application of mathematical models that simulate the dynamics of an aquifer system. Complex, 

highly-discretized groundwater simulation models often have a large computational requirement 

that prevents advanced analysis, such as parameter estimation and optimization of pump 

schedules. Reducing the computational burden associated with these simulation models provides 

the opportunity to perform more advanced analyses on a wider spectrum of groundwater 

problems. This dissertation presents two new model reduction techniques that significantly lower 

the computational burden by reducing the state dimensionality of a groundwater simulation 

model. 

This chapter introduces key concepts related to this dissertation and its new contributions 

to the scientific field. This chapter is subdivided into seven sections. Section 1.1 covers basic of 

concepts of groundwater. Section 1.2 extends these concepts into how saturated groundwater 

flow is modeled. Section 1.3 covers the basics of parameter estimation with a focus on hydraulic 

conductivity. Section 1.4 discusses Bayesian inverse problems. Section 1.5 provides the 

Bayesian mathematical development of the Metropolis-Hastings Markov Chain Monte Carlo 

method for solving the posterior distribution of hydraulic conductivity and a simulation model’s 
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error. Section 1.6 provides an overview of the groundwater simulation software used in this 

dissertation. Section 1.7 introduces the concept of Model Reduction and its basic 

implementation. 

This dissertation itself is broken into five total chapters. The first being the chapter you 

are reading now, the Introduction. Chapter 2 is a reprint of an Advances in Water Resources 

journal paper, Boyce and Yeh [3], that describes a novel algorithm on how to construct a 

parameter independent reduced model. The parameter independent reduced models are then 

evaluated with both the deterministic and Bayesian inverse problems. Chapter 3 is a reprint of 

another Advances in Water Resources journal paper, Boyce et.al. [4], that derives a new method 

for applying model reduction to the nonlinear problem of unconfined groundwater flow. The 

author of this dissertation was the main contributor and author of both reprinted articles. Chapter 

4 concludes the dissertation with final remarks on the two reprinted journal papers. Finally, the 

dissertation closes on Chapter 5 with suggestions for future research and ideas. 

1.1  Groundwater 

Beneath the Earth's surface the interstitial spaces within rocks and soils have the capability of 

storing water. If this space contains water and is capable of transport, it is called an aquifer or 

groundwater system. Aquifers serve as a stable source of potable water for agricultural, 

industrial, and domestic use. Aquifer flow occurs from either hydraulic pressure differences from 

within or gravitational pull to the sea. An undisturbed aquifer system reaches a hydraulic 

pressure equilibrium called steady state, when no (or a constant) external forcing is applied to it. 

The most common human external forcing is the result of an extraction pumping well [5].  

Understanding groundwater resources is enhanced through the application of mathematical 

models that simulate the dynamics of an aquifer system. Groundwater flow is modeled in one, 
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two or three dimensions. In 1856, Henry Darcy investigated the flow of water in vertical 

homogeneous sand filters in connection with the fountains of the city of Dijon. Darcy stated that 

the specific discharge, q, is equal to the hydraulic conductivity, K, times gradient of the hydraulic 

head, h. This relationship, q K h= − ∇ , is referred to as Darcy’s Law [5,6]. The parameter 

hydraulic conductivity describes the nature of the porous medium that makes up the groundwater 

system. Hydraulic conductivity is a function of the mean grain diameter, a shape constant of the 

soils called specific permeability, dynamic viscosity, and specific gravity [8]. 

1.2  Groundwater Modeling 

Combining Darcy's Law with the continuity equation derives the confined, saturated 

groundwater flow. The following is the governing equation for confined groundwater flow: 

 ( )  s
hK h Q S
t

∂
∇ ⋅ ∇ ± =

∂
 (1.1) 

where ∇⋅  is the divergence operator,∇ is the gradient operator, K is the hydraulic conductivity 

tensor [L/T], h is the hydraulic head [L], Q  is a volumetric flux per unit volume in or out of the 

system [T-1], SS is the specific storage [L-1], t  is the time [T]. If there is no confining layer 

above the groundwater flow the flow is referred to as unconfined, water table, or phreatic 

groundwater flow. This upper free surface boundary changes the confined groundwater equation 

to following nonlinear, saturated unconfined groundwater flow equation: 

 ( ) y
hKh h Q S
t

∂
∇ ⋅ ∇ ± =

∂
 (1.2) 

where Q  is a volumetric flux per unit area in or out of the system [L/T] and yS is the specific 

yield [-].  
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Conducting advanced analyses for groundwater systems with Equation 1.1 and 1.2 

requires a large number of simulations. Examples include optimization of pumping schedules 

under different scenarios or evaluating climate projection influence over water resources. Such 

analyses are intractable for complex, highly-discretized in time and space models with large 

computational requirements.  

The confined (Eqn. 1.1) and unconfined groundwater (Eqn. 1.2) flow equations are 

typically discretized then solved through Finite Differences or Finite Elements. Embedded in this 

discretization are all the parameters, forcing, and boundary conditions that describe the 

groundwater system. To simplify the groundwater system, parameters are lumped into zonation 

patterns from which regions of the discretization have common parameter values. Choices in the 

parameter zonation design depend on scientific interpretation of the geologic characteristics of 

the aquifer [7]. For hydraulic conductivity the zonation can be as large as a single zone 

encompassing the entire model discretization or as refined as a zone for each individual finite 

difference block or finite element [5].  

An issue with the representation hydraulic conductivity within a groundwater simulation 

model is that it cannot be directly measured. Soil samples can directly measure hydraulic 

conductivity, but the results rarely are applicable to a discretized groundwater model due to the 

spatial lumping of the parameter. In addition, hydraulic conductive stochastically varies within 

the subsurface. This stochastic variation can be described by the log-normal probability 

distribution [9] or gamma/log-gamma distribution [10]. Due to the limitation of not being able to 

directly measure hydraulic conductivity, it is inferred by solving inverse problems such as a 

pump test or optimization techniques called parameter estimation. If hydraulic conductivity is 

treated as stochastic, then it is solved with a Bayesian inverse problem.  
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1.3 Overview of Parameter Estimation and Deterministic Inverse 
Problems 

Parameter estimation calibrates a groundwater simulation model's hydraulic conductivity to a set 

of field observations through an inverse problem. Yeh [11] does a comprehensive review of the 

various strategies used in solving an inverse problem. Common strategies involve an 

optimization approach that finds the best fit to observation data by choice of hydraulic 

conductivity. This approach henceforth will be referred as the deterministic inverse problem. 

A common objective for the deterministic groundwater inverse problem is identifying a 

vector of hydraulic conductivity values that minimizes the Sum of Squared Errors (SSE) between 

a set of observed hydraulic head data and the solution to Equation 2 [11]. This problem is 

mathematically formulated as: 

 ( )2

, op( ),1 1
arg min t lN N

j iK
i j i jD h

=
∈

=
−∑ ∑


 (1.3) 

where the decision variable, K , is the set of zoned hydraulic conductivity values used to solve 

Equation 2;   is the search space of K , which is usually a continuous interval from a            

minK  to maxK ; i  and j  are the observation location and time indices, respectively; lN  and tN  

are the total number of observation locations and times, respectively; ,i jD  and ( )op ,i jh  are the 

observed and model simulated hydraulic head; and ( )op i  maps the location index to the model 

nodal index.  

The inverse problem is usually solved with a gradient-based search method. Gradient-

based search methods rely on derivatives to determine a search direction and reach optimization 

when the derivative is zero. A problem with gradient-based search methods is that the inverse 

problem is non-unique because observation errors, model structure errors and the difficulty in 
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calculating derivatives for search directions. Another issue is that there may exist multiple 

optimal solutions, called local solutions, and one global. These issues make a gradient search 

method highly dependent on the initial guess [5]. 

Genetic Algorithms (GAs) are a set of heuristic methods that follow along the concepts of 

survival of the fittest to solve optimization problems that are capable of overcoming some of the 

gradient-based search method’s shortcomings. Genetic Algorithms apply a random sample of 

decision variables, called chromosomes, to evaluate the objective, called the fitness function, to 

determine which decision variables influence the resampling, the next generation, of the decision 

variables. The resampling can undergo a series of emulated symbolic biological features such as 

chromosome cross over or mutation of values. The advantages of GAs are that they are 

insensitive to the initial guess of the decision variable and do not require the computation of 

derivatives [12,13]. They are also capably of exploring the entire solution space to identify the 

global optimum solution.  

One problem with applying GAs to an inverse problem is the number of groundwater 

simulation model calls required to have a sufficiently large chromosome population, and the 

number of successive generations needed to have the population converge to a solution. This 

requires repeatedly running the discretized simulation model until the GA finds the global 

optimal solution. Improvement on a single model simulation time of the model can drastically 

improve upon the total time for GA to find the optimal solution. 

Despite this problem GA is well suited for overcoming the pitfalls of gradient-based 

searched methods, and it has been applied to many optimization problems involving 

groundwater. An example of applying GA to solving the inverse problem of a pump test for a 
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confined aquifer is discussed in Samuel and Jha [14]. GA was also used by Tsai [7] to determine 

an optimal zonation structure of an aquifer that is subdivided by a Voronoi tesselation. 

1.4  Bayesian Inverse Problems 

A disadvantage of the deterministic inverse problem is its inability to quantify the uncertainty of 

the optimal parameters or derive a posterior distribution of them. By approaching the inverse 

problem from a statistical point of view, the resulting solution is a posterior probability 

distribution of the parameters conditioned on the model structure and observations [15]. A 

Bayesian inverse problem is a stochastic method that incorporates prior information to construct 

a posterior probability distribution of the parameter. Yeh [11], Beck [16] and Freeze et al. [15] 

cover comprehensive reviews that include uncertainty quantification in simulation models.  

Markov Chain Monte Carlo (MCMC) are a set of methods for solving a Bayesian inverse 

problem. The MCMC simulation uses a proposal distribution to generate a sample of parameter 

values from which Markov chain is constructed. As samples are drawn from the proposal, the 

Markov chain converges to a stationary distribution, which is the hydraulic conductivity's 

posterior probability distribution [17,18]. One algorithm for constructing the MCMC chain is the 

Metropolis-Hastings (M-H) algorithm [19,20]. In the case of groundwater this would be the 

hydraulic conductivity's posterior probability distribution. This distribution can be used to 

quantify the uncertainty and assess its effects on model predictions [21].   

The Bayesian inverse problem through MCMC requires many repeated model 

simulations to characterize an unknown parameter’s posterior probability distribution. It is 

computationally infeasible to solve a Bayesian inverse problem of a discretized groundwater 

flow model with a high dimension state space. Model reduction has been shown to reduce the 
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dimension of a groundwater model by several orders of magnitude, which makes it well suited 

for Bayesian inverse problems.  

1.5 Markov Chain Monte Carlo Development for Hydraulic 
Conductivity  

Bayesian methods link prior knowledge of a model’s parameters to observed information and the 

models output (Eqn. 1.4). This linkage produces a posterior distribution of the model parameters 

given the observed data. When there is not an analytical solution available, the posterior 

distribution can be derived from a Markov Chain Monte Carlo (MCMC) simulation that explores 

Bayes' Theorem without the proportionality constant as presented in Equation 1.5 [18]. 

 ( ) ( ) ( ) ( ) ( )
( ) ( )( ) dA

P B A A P B A A
P A B

P B P B A A
= =

P P

P∫
  (1.4) 

 ( ) ( ) ( )P A B P B A A∝ P   (1.5) 

For a groundwater model, observed data is the hydraulic head at observation or pumping 

well location. This observed data, ( , )D x t , is assumed to be related to the model results,

( , ; )M x t K , plus a model error term, ( , )x tε . The model error term is assumed to be normally 

distributed (Eqn. 1.7) with zero mean and an unknown random variance 2σ  . Since 2σ   is 

unknown, its posterior distribution has to be part of the MCMC simulation and will be referred to 

as the likelihood variance. This is done by using the normal distribution's variance conjugate 

prior, the inverse-gamma distribution (Eqn. 1.8), to derive a posterior distribution [22,23], 
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 ( ) ( ), ( , ; ) ,D x t M x t K x tε= +   (1.6) 

 ( ) ( ) ( )2, ( , ; ) , ~ N 0,D x t M x t K x tε σ− =    (1.7) 

 ( ) ( )
1

2
2 2

1 1~ IG , expε

α

ε ε

σ α β β
σ σ

−
    

P ∝ −    
    

  (1.8) 

The posterior distribution of the hydraulic conductivity can be obtained through 

application of Bayes’ Theorem (Eqn. 1.9). Since the value of P(D) is a proportionality factor and 

is difficult to analytically derive, it is removed from the equation. The remaining portion of 

Equation 1.9 is composed of a likelihood function and a prior distribution. Equation 1.10, is the 

likelihood of the collected data given the model parameters are chosen correctly. The prior 

distribution for the hydraulic conductivity (Eqn. 1.11) is assumed to be log-normally distributed 

[9]. The hydraulic conductivity’s mean and variance are chosen based on the prior knowledge of 

the hydraulic conductivity. 

 ( ) ( ) ( ) ( ) ( )
2

2 2,
, ,

( )
P D K K

P K D P D K K
P D

ε
ε ε

σ
σ σ

P
∝ P=   (1.9) 

 ( ) ( ) ( )( )/2 22 2
2 1

, ,12 (e , ; )
2

xp
N N

i
P D K D x t M x t Kε ε

ε

σ pσ
σ

−

=
= −

 
− 
 

∑   (1.10) 

 ( ) ( )2

22
exp

2

ln1
2

K
K

K
p

pp

µ
σpσ

 
P − 

  

−
=   (1.11) 

The Metropolis-Hastings method is applied to Equation 1.9 to solve for the posterior 

distribution of the hydraulic conductivity. The MCMC chain is generated by creating a series of 

proposed values based on an initial guess. A proposed value, *K , is generated from a proposal 

density that is conditional on the current value in the Markov chain. The proposal (Eqn. 1.12) is a 
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lognormal distribution with a mode equal to the current value in the chain, K, and variance, 2
pσ , 

set to a user specified value. To delineate the proposal density function from the other 

distributions the symbol Pr( ) is used. The variance of the proposal density function affects the 

rate of convergence of the final Markov chain and is chosen by doing several short simulations to 

see how the Markov chain responds. When a candidate is generated from Equation 1.12, its 

acceptance probability, α̂ , is calculated by taking the ratio presented in Equation 1.13.  

( ) ( ) ( )2* 2
* *

2* 2

ln( ) ln(
Pr P exp1

22

) p

pp

K K
K K K K

K

σ
σpσ

 
 → −



− −
=


=


  (1.12) 

( )
( )

( )
( )

( )
( )

* 2 * *N

2 *
1 1

Pr
ˆ min    ,  1 

Pr

,

,

N
i i i

i ii i i

P D K K K K
KP D K K K

ε

ε

σ
α

σ = =

  P =   P    
∏ ∏   (1.13) 

Applying the given likelihood (Eqn. 1.10) and prior for the hydraulic conductivity     

(Eqn. 1.11) to the natural log of the acceptance probability yields the Equation 1.14. If the prior's  

 

( )( )

( )( )

( ) ( )

2

2

2*
2

22 *
2

1

1

1

1 , ( , ; )
2

1 , ( , ; )
2

ln ln
2

ˆln

1 N

i i
i

N

i

N

i

D x t M x t K

D x t M x t K

K Kp
p

ε

ε

p

α
σ

σ

µ µ
σ

=

=

=
=

−

 + −  

−

−

− −

∑

∑

∑

  (1.14) 

variance is not known, then it is set to an arbitrarily large value to lower its influence on the 

posterior. The natural log is taken to simplify the equations for faster computation on a 

computer. This natural log of the acceptance probability is then compared to the natural log of a 

random uniform (zero to one) draw and if it is larger, the value of the hydraulic conductivity is  
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accepted as a new value in the chain [18]. The formal algorithm for the Metropolis-Hastings 

MCMC is as follows: 

( )1 N,   : ,t t tK K K…=   

( )  
0 *0 0 1

1 N    Given : , : , and : ; iterate algori, t hm  , for 1,  2,  t tK K K K K K K t−= =… = = …   

0. Establish 0K , set 1t =   

1. Generate a Candidate from a proposal distribution ( )1~ Pr |t t tK K K −   

2. Generate from the Uniform distribution [ ]~ U 0,1α   

3. Using the target density solve: 

 
( )
( )

( )
( )

( )
( )

2 N N

1 2
1

1

1
1

1

Pr
ˆ min    ,  1 

P

,

r,

t tt
ii

t
i

t
i

t t t
i i ii

K KP D K K
KP D K K K

ε

ε

σ
α

σ−
= =

−

− −

  P =   
P    

∏ ∏  

4. If ˆα α<  then keep tK  else set 1t tK K −= . 

5. Set 1t t= +  and go to Step 1. 

The posterior distribution of 2σ  , Equation 1.15, is a combination of a likelihood function 

and its prior distribution. Since its prior is conjugate, the posterior is an inverse gamma 

represented in Equation 1.16. Typical values of α, β for the prior in Equation 1.11 are equal to 

one or less. For this model a value of one was used for both α and β. These values have little 

impact on the posterior because the sum of squared errors tends to be very large                            

( ( )( )2

1
, ( , ; )N

i
D x t M x t K

=
−∑ ≫β) and the observed data sets are significantly larger than one     

(N ≫ α).  
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 ( ) ( ) ( )2 2 2, ,P K D P D Kε ε εσ σ σ∝ P    (1.15) 

 

( )
( )

( )( )

( )( )

( )( )

2 1
2

/2 2 2 22

212

2

1

1

1

2 2

1 1 1exp exp

1 1ex

, ( , ; )
,

2

, ( , ;
p

~ I

)
2

, (
2 2

G ,
, ; )

N

i

N

i

N

i

N

N

D x t M x t K
P K D

D x t M x t K

D x t M t KN x

ε
ε ε

α

α

εε

ε ε

σ β
σ σ σσ

β
σ σ

α β

−

+ −

=

=

=

       ∝ − −    
       

      ∝ − +        

 
 

−

−

−
+ +

 
 

∑

∑

∑

 (1.16) 

Solving for the two posterior distributions described in Equation 1.9 and 1.15 involves a 

twostep process. The first step is to use the Metropolis-Hastings algorithm to get a hydraulic 

conductivity sample from Equation 1.9 for a given likelihood variance, 2
εσ . This sample will 

either be the previous value in the Markov chain or a new accepted value. This new sample for 

the hydraulic conductivity, K, is then used in the second step to sample for the likelihood 

variance from Equation 1.16. With the new value for the likelihood variance, the method 

proceeds with sampling the next hydraulic conductivity sample. This process continues until the 

two Markov chains reach stationarity.  

1.6 Groundwater Simulation Software  

Two different groundwater flow simulation softwares are used in this dissertation. Their source 

code was modified to apply model reduction to the groundwater flow equations                     

(Eqn. 1.1 and 1.2). This was necessary to validate and provide a real word test case for the new 

methods described in Chapters 2 and 3. All modifications were thoroughly tested to ensure the 

highest accuracy of the code in representing the developed mathematical concepts. 
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The first model, which is used in Chapter 2, is Saturated 2-Dimensional Flow (SAT2D) 

[24]. SAT2D is a finite element-based software that simulates two-dimensional, saturated 

groundwater flow. It applies finite elements to only Equation 1.1 and then solves the resulting 

system of linear equations with a preconditioned conjugate gradient (PCG) solver. The software 

uses a generic file input system that specifies the finite element discretization scheme and 

properties of the aquifer system. This allows the same software to be reused for multiple 

modeling exercises. The model reduction is applied by intercepting the system matrices 

produced by SAT2D before they are solved by PCG and instead uses LAPACK’s                      

LU decomposition solver [25]. 

The second model, which is used in Chapter 3, is the most recent release of the 

MODFLOW family. This version of MODFLOW is called the One-Water Hydrologic Flow 

Model, MODFLOW-OWHM [26,27]. MODFLOW-OWHM uses a three-dimensional finite 

difference scheme to solve both the unconfined and confined groundwater flow equations    

(Eqn. 1.1 and 1.2). Its design allows for addition features to be easily added that are called 

packages and processes. Due to this design there are numerous options and features that make it 

flexible for modeling different water resource scenarios and evaluating sustainable groundwater 

usage. Boyce and Hanson [27] state that MODFLOW-OWHM represents a complete integrated 

hydrologic model that fully links the movement and use of groundwater, surface water, and 

imported water for consumption by agriculture and natural vegetation on the landscape, and for 

potable water. This version of MODFLOW is unique compared to previous releases because it 

retains and keeps track of all the water during simulation of the hydrosphere, MODFLOW-

OWHM thus accounts for “all of the water everywhere and all of the time”.  
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1.7 Model Reduction via Proper Orthogonal Decomposition and 
the Galerkin Projection  

Projection-based model reduction proceeds by projecting a discretized groundwater-flow model, 

nh∈ , onto a reduced model subspace of r rh ∈ , where r n . This process is done through 

the substitution of  rh  to replace h  and premultiplying the groundwater system matrices by the 

transpose of the Galerkin projection operator, which is composed of orthonormal basis vectors. 

Proper Orthogonal Decomposition (POD) is a mathematical operation that transforms a basis to 

an orthonormal basis and ranks each vector in terms of quality of information. In the literature 

the quality of information is referred to as percent variance or percent energy [31,4]. 

Model reduction proceeds by assuming that the hydraulic head, h , can be mapped 

linearly onto the reduced space, rh , by some orthonormal matrix, n rP ×∈ , which contains 

information about the discretized groundwater-flow model's solutions in time [28,3 ,4]: 

 rPh h=   (1.17) 

The vectors in the P  matrix are sometimes referred to as the POD basis, spatial basis functions, 

empirical orthogonal functions, or principal vectors [4,29,30,31]. 

The matrix P  is derived from taking multiple sets, k, of model solutions at different 

times, kth . These solutions are called “snapshots” [4] and are collected from the groundwater-

flow model under a constant/reference forcing (e.g. pumping well set at a specific rate). These 

snapshots provide the necessary information about how the groundwater model responds to 

external forces enabling the reduce model to replicate the response in a lower dimensional space 

at any forcing value (e.g. pumping well at different rates in time).  
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A set of snapshots must be taken for each, time invariant, linearly independent forcing 

term in the groundwater-flow model. Time invariant forcings do not change during the course of 

the simulation, such as a constant boundary condition, and are included along with all the time 

variant snaphots. For example, if a model is surrounded by my a constant head, Dirichlet, 

boundary condition that never changes the head value and has two extraction wells that have 

their rates change throughout a simulation and there is no linear relation between them, then two 

sets of snapshots must be taken. The first set would include the constant head bound and use one 

of the wells set at a constant rate (the other being set to a rate of zero). The value of the rate does 

not matter, but does affect the optimal choice of snapshot times. The second set of snapshots 

would then include the same constant head boundary and the second well set to a constant rate. If 

there are any constant in time linear relationships between forcings (e.g. 

 Well A 2 Well B  t= × ∀ ), then a single set of snapshots can be taken at that relationship. If the 

linear dependence is not known or there is any potential for linear independence, then separate 

snapshots should be taken for each forcing as any linear dependence will later be removed 

mathematically from the snapshot set. All the sets of snapshots are then combined to form the 

final snapshot set: 

 
32 k1j

1 2 NSET n m

 

 

S j 1,  2,  ,  ,  , ,  

,  ,

 , NSET

S S S S,  

ttt th h h h
×

 = … ∀ = … 
 = … ∈  

  (1.18) 

where jS  is a set of snapshots collected for the thj  linearly independent forcing and is composed 

of k snapshots, NSET  is the total number of linearly independent forcings, and S  is the final 

snapshot set containing m  snapshots. Note that the length of each vector in S is the same as the 

model discretization and that row 1 of S  should correspond with node 1 of the model                

(i.e. first row of h). 
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For each snapshot set, jS , the number of snapshots, k, and their specific solution time, kt , 

are problem-dependent. Both the number of snapshots and specific solution times do not have to 

be the same for each snapshot set, jS . This is a limitation of model reduction in that the quality 

of the reduce model is highly dependent on the snapshot selection. This both includes the number 

of snapshots, the simulated times that they are taken at, and, for nonlinear models, the value of 

the forcing itself. Snapshot selection is an area of research beyond the scope of this dissertation, 

which is focused on the model reduction itself. The method discussed in Boyce and Yeh [3] does 

include a systematic approach to selecting the optimal number of snapshots and their 

corresponding times. This is an area of research that needs further investigation. 

From empirical tests in literature [28,3,4,31] snapshot set, jS , sizes should range between 

10 to 50 snapshots that are exponentially distributed in time, kt , from slightly beyond the initial 

condition to quasi-steady state for one constant forcing value. If the model is highly nonlinear, 

then more snapshots maybe necessary with a higher density at simulation times and responses 

where the reduce model performs unsatisfactorily. Boyce et.al. [4] discovered that nonlinear 

responses were better replicated by the reduced model by taking an additional 10 to 50 

exponentially distributed in time snapshots that capture the aquifer recovery from pumping 

(compared to only taking snapshots with pumping). For this case it is important to pick a 

pumping rate that dewaters the aquifer to its deepest observed drawdown point, collecting 

snapshots at that rate, and then collect the additional snapshots of the aquifer recovery from 

pumping. If this fails to improve the reduced model, then additional snapshot sets should be 

taken at different pumping rates at the same location.  
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The snapshots from Equation 1.18 form a basis that, when made orthonormal, derives the 

Galerkin projection operator [3,4,28]. This operator is the same matrix as the linear map, P , 

defined in Equation 1.17. The orthonormalization of the snapshots, S , is performed by Proper 

Orthogonal Decomposition (POD), which, for the discrete case, is the Singular Value 

Decomposition (SVD) [4,32,33]: 

 ( )ran S

1
T k TS U     PΣV Uii i iu vσ

=
⇒= = =∑   (1.19) 

where ( )rank S  is the minimum between the number of linearly independent columns or rows in 

S , iσ  are the singular values that are ordered from largest to smallest, Σ  is a diagonal matrix 

with singular values along the diagonal, [ ]1 2U , ,  u u= … are the left singular vectors that 

comprise the POD basis set equal to P , and [ ]1 2V ,  ,  v v= …  are the right singular vectors that 

represent the proper orthogonal modes.  

There are two other methods for deriving the Galerkin projection operator by 

transforming the snapshot sets, S , to an orthonormal basis. The first is a direct 

orthonormalization of the snapshots through the Gram-Schmidt method or QR decomposition. 

These methods produce an orthonormal basis, but do not provide any information about the 

quality of each basis vector (viz. no singular values). The second exploits the fact that 

Eigenvalue decomposition (EVD) is identical to SVD for symmetric matrices. The snapshot set 

is then made symmetric and less computationally demanding by solving for the EVD of TS S . A 

transformation is then applied to get the orthonormal basis that represents the range space of S . 

These two methods of building the projection matrix have been used extensively in literature 

[34,35, 28, 31]. The following is how EVD is applied and then transformed to obtain the 

Galerkin projection operator. 
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/

T T
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S S V
P

V
SV −=

S

S

=   (1.20) 

A note of caution is that Equation 1.20 is considered numerically unstable when solved 

on a computer due to accumulation of round off errors from the matrix multiplication, TS S . 

There are extensive examples and literatures as to why this should not be done [36,37,38,33]. 

Gram-Schmidt is considered numerically unstable as well. There is a Modified Gram-Schmidt 

that improves the numerical stability, but only when solving a linear least squares problem and 

not for constructing a basis and it fails if there is any linear dependence amongst the snapshots 

[39,40,41]. 

Without knowledge of the optimal choice for snapshots, the singular values can serve as 

weights to distinguish the left singular vectors, subsequently referred to as POD basis vectors, 

that contribute the most amount of information to the projection operator P . This is 

accomplished by solving for r  in the following relationship: 

 
( )

r

1
rank S

1

min  r

Subject to: 100% PEi

i

i

i

σ

σ
=

=

× ≥∑
∑

  (1.21) 

where PE  is a user-specified minimum required percent energy contribution of the sum of the r  

largest singular values. Typical values for PE  range from 99% to 99.99%, where smaller values 

lead to fewer basis vectors at a cost of less accurate reduced model results. If Equation 1.20 is 

used to construct the Galerkin projection operator, then Equation 1.21 is modified to use 

Eigenvalues instead of the singular values. The user specified number, PE , is then referred as 

the percent variance due to the similarity of TS S  to a covariance matrix [35].  
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Once r  has been established, the final truncated POD basis is [ ]21P , , , ru u u= … , which 

defines the dimension of the reduced model, rh  (Eqn. 1.17). This process of removing 

insignificant basis vectors is called singular-value truncation; if S  is symmetric, then it is also 

called principal component analysis.  

Model reduction begins by constructing the orthonormal matrix, P  (full snapshots or 

truncated) with POD. Once P  is established the reduced dimension state variable,  rh , is 

substituted into the groundwater system matrices with Equation 1.17 to remove the full 

dimension variable h . After this the Galerkin projection is applied by premultiplying the 

groundwater system matrices by TP making them dimensionally consistent. The vector  rh  is 

then solved for in the place of h . This reduces the number of equations from n equations to r, 

drastically simplifying the calculation. To obtain h  from  rh  the same linear map defined in 

Equation 1.17 is used. This then solves for nh∈  with r equations instead of n.  
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a b s t r a c t

A newmethodology is proposed for the development of parameter-independent reduced models for tran-
sient groundwater flow models. The model reduction technique is based on Galerkin projection of a
highly discretized model onto a subspace spanned by a small number of optimally chosen basis functions.
We propose two greedy algorithms that iteratively select optimal parameter sets and snapshot times
between the parameter space and the time domain in order to generate snapshots. The snapshots are
used to build the Galerkin projection matrix, which covers the entire parameter space in the full model.
We then apply the reduced subspace model to solve two inverse problems: a deterministic inverse prob-
lem and a Bayesian inverse problem with a Markov Chain Monte Carlo (MCMC) method. The proposed
methodology is validated with a conceptual one-dimensional groundwater flow model. We then apply
the methodology to a basin-scale, conceptual aquifer in the Oristano plain of Sardinia, Italy. Using the
methodology, the full model governed by 29,197 ordinary differential equations is reduced by two to
three orders of magnitude, resulting in a drastic reduction in computational requirements.
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1. Introduction

Traditional inverse problems involve solving a weighted history
matching optimization problem that yields a set of optimally
selected parameters. The Bayesian inverse problem reformulates
the solution by treating the parameters as random variables that
are described by a posterior probability distribution. Markov Chain
Monte Carlo (MCMC) methods are a powerful set of algorithms
capable of exploring the probability space of the random variables
used in the formulation of the Bayesian inverse problem. The
MCMC simulation constructs a posterior distribution from samples
generated by a proposal distribution. The samples are accepted or
rejected to a Markov chain through the posterior density function
and proposal density function evaluated at both the current step
(previously accepted sample) and the proposed step (new sample).
If the Markov chain is constructed correctly it should converge to a
stationary distribution that represents the posterior distribution
[1,2]. Shi et al. [3] evaluated for vadose zone modeling the
confidence interval predictive performance of MCMC and com-
pared with nonlinear regression. Their results indicated that

MCMC produced better results and for small parameter
dimensions was more computationally efficient. One method to
lower the dimensionality of the parameter space is to parameterize
it further with the Karhunen–Loueve expansion (KLE). Das et al. [4]
applied MCMC with a KLE parameterization of saturated hydraulic
conductivity fields for soil moisture problems.

One of the most commonly used MCMC methods for determin-
ing the acceptance of parameter samples is the Metropolis–Has-
tings (M–H) algorithm [5,6]. In the case of groundwater, and the
focus of this paper’s Bayesian inverse problem, the parameter of
interest is the posterior probability distribution of hydraulic
conductivity given historical water level data. This distribution
can be used to quantify the uncertainty and assess its effects on
model predictions [7]. A problem with solving the Bayesian inverse
problem through M–H MCMC is that it requires a large number of
sequential model simulations to characterize an unknown
parameter’s posterior probability distribution. There are parallel
versions of MCMC, but they still require many sequential model
simulations to construct the chains. As a result, Bayesian inversion
for parameter estimation of a highly discretized groundwater
simulation model can be computationally infeasible. Another
alternative is to use a two-stage MCMC framework that relies on
a surrogate model, composed of a coarser grid or simplified flow
process, to first evaluate the acceptance of a proposed value before
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its acceptance is evaluated by the full model [8]. This can further be
enhanced by using adaptive sparse-grids [9].

Model reduction based on the Galerkin projection is a technique
that projects a high dimensional model characterized by ordinary
differential equations (ODEs) onto a low dimensional subspace,
spanned by a small number of optimally chosen basis functions
(principal components) [10]. The application of model reduction
to a confined, groundwater model has been shown to reduce the
dimensionality by several orders of magnitude. A variety of papers
have been written on model reduction techniques. Vermeulen et al.
[11] applied proper orthogonal decomposition (POD) for model
reduction to groundwater equations by collecting an ensemble of
hydraulic head solutions, called snapshots, at specific times from
the simulation and at a constant, reference pumping rate. Snap-
shots have to be taken for each reference extraction/injection well.
Vermeulen et al. [11] then applied principal component analysis
(PCA) to this ensemble to form a projection matrix that reduces
the groundwater model. McPhee and Yeh [12] followed this meth-
odology and demonstrated that a POD reduced model maintains its
sensitivity of head with respect to pumping, enabling it to embed
in a management optimization problem. Baú [13] increased the
utility of POD by deriving a reduced model for each Monte Carlo
realization of hydraulic conductivity to solve a stochastic, multi-
objective, confined groundwater management problem.

In principle, the model reduction technique applies to linear
systems, such as confined aquifers, because it uses the principle
of superposition. Application to nonlinear systems is possible, but
the reduced model error would be greater and may require
significantly more basis functions to characterize the model [14].
Robinson et al. [15] and Li and Hu [16] applied POD model reduc-
tion to several synthetic one- and two-dimensional mass transport
models without chemical reactions. Buchan et al. [17] solved for
the population growth of free moving neutrons, an eigenvalue
problem, in a nuclear reactor system. The eigenvalue problem
was reformulated to create pseudo-time dependence that
describes the snapshots used in their projection basis.

In general, the reduced model depends on the data used to con-
struct the projection matrix. The data consists of snapshots gener-
ated from the original full model for a given set of model parameter
values. Thus, the reduced model may be sensitive to changes in
parameters. This causes problems when the reduced model is used
for solving the inverse problem of parameter estimation.

Developing parameter-independent reduced models is a new
area of active research. Vermeulen [18] applied a reduced model
to an inverse problem by taking snapshot sets over a specific range
of parameter combinations. The drawback of this procedure is that
with a large number of parameters the combinations can get very
large. Additionally, if the parameters move away from the specified
range, the accuracy of the reduced model drops and a new set of
snapshots is required. Lieberman et al. [19] proposed a greedy
algorithm for the construction of a projection-based reduced
model that reduces the parameter and state spaces for a steady
state statistical inverse problem. A greedy algorithm solves a
multi-stage optimization problem by combining the optimal solu-
tion obtained from each stage. At each stage, the algorithm selects
the local optimum and moves on to the next stage. A solution to
the original multi-stage optimization problem is built up stage
by stage. In general, this greedy strategy does not guarantee global
optimum, but in many instances yields a good approximation to
the optimal solution. The advantages of the algorithm are its easy
implementation and fast execution. The objective function pro-
posed by Lieberman et al. [19] for the selection of the optimal
parameter set maximized the error at steady state between the ori-
ginal full model and the reduced model. The parameter set that
resulted from the optimization and its corresponding steady state
solution were added to their respective projection matrices. The

procedure was repeated until the specified error criterion was
satisfied. Pasetto et al. [20] proposed an algorithm to reduce the
computational burden associated with combinatorial search. The
algorithm applied a greedy algorithm that searched over sets of
parameter combinations and a snapshot selection strategy pro-
posed by Siade et al. [21]. The greedy objective was evaluated
using a scaled residual derived from the reduced model. This
reduces the number of full model evaluations required for the
determination of the principal components to be included in the
reduced model.

In this study, we develop a new methodology for building the
projection matrix for transient groundwater flow. Our proposed
methodology is intended to work for linear, regional groundwater
models where the zonation structure already has been deter-
mined; that is, the aquifer has been divided into a finite number
of zones and each zone is characterized by a constant parameter
(or parameters). The challenge of determining the optimum zona-
tion structure of a random field by parameterization lies outside
the scope of this paper.

This paper is organized into six sections. Section 1 is an
introduction. Section 2 presents the governing equation for the
confined aquifer and defines the notations. Section 3 discusses
the deterministic inverse problem and the Bayesian inverse prob-
lem. Section 4 reviews the concept of projection-based model
reduction and develops a parameter independent model reduction
methodology. Section 5 applies the model reduction methodology
to one- and two-dimensional test cases. Section 6 concludes the
findings and discusses the results.

The proposed methodology constructs a projection matrix that
covers the entire parameter space in the original full model and
does not require taking new snapshots while solving the inverse
problem. The projection matrix is assembled from snapshots gen-
erated iteratively by two greedy algorithms that select optimal
parameter sets and snapshot times between the parameter space
and the time domain. The proposed methodology is validated using
a conceptual one-dimensional model that compares the result of a
deterministic inverse problem with the empirical statistics from a
Bayesian inverse problem. We then apply the methodology to a
basin-scale, conceptual aquifer in the Oristano plain of Sardinia,
Italy. Using the methodology, the full model is reduced by two to
three orders of magnitude, resulting in a drastic reduction in
computational requirements.

2. Confined groundwater modeling

The governing equation for confined, anisotropic, saturated
groundwater flow can be expressed by the following parabolic
partial differential equation [22,23]:

@

@x
Kx

@h
@x

� �
þ @

@y
Ky

@h
@y

� �
þ @

@z
Kz

@h
@z

� �
� Q ¼ SS

@h
@t

ð1Þ

where h is the hydraulic head (L); Kx; Ky; Kz are the hydraulic
conductivities (L/T) in the x, y, and z directions; SS is the specific
storage (L�1); Q is a volumetric flux per unit volume in or out of
the system (T�1); and t is the time (T). Eq. (1) is subject to the
following initial and boundary conditions:

hðx; y; z; tÞ ¼ hIðx; y; zÞ; ðx; y; zÞ 2 CF ; t ¼ 0
hðx; y; z; tÞ ¼ hDðx; y; z; tÞ; ðx; y; zÞ 2 CD

K
@hðx; y; z; tÞ

@n
¼ qNðx; y; z; tÞ; ðx; y; zÞ 2 CN

CD [ CN ¼ CB

where hI is the initial condition, hD is a specified Dirichlet boundary
condition, qN is a specified Neumann boundary condition, @

@n is the
normal derivative, CF is the flow region, and CB is the boundary
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of the aquifer composed of Dirichlet (CD) and Neumann (CN)
conditions.

Applying finite-difference or finite-element approximations to
the spatial derivatives of Eq. (1) yields a system of ordinary differ-
ential equations (ODEs) of the form

Ahþ f ¼ B
dh
dt

ð2Þ

where h 2 Rn is a vector of hydraulic heads at each nodal location,
A 2 Rn�n is the stiffness matrix that contains spatial information
about hydraulic conductivity, B 2 Rn�n is the mass matrix, and f is
a vector containing all boundary conditions and external forcing
(e.g., pumping). Typical construction of A and B yields large, sparse,
symmetric and positive definite matrices. Eq. (2) subsequently will
be referred to as the full model.

3. The inverse problem

3.1. Deterministic inverse problem

A common objective for the groundwater inverse problem is
identifying a vector of hydraulic conductivity values that
minimizes the Sum of Squared Errors (SSE) between a set of
observed hydraulic head data and the solution to Eq. (2) [24]. This
problem is mathematically formulated as:

argmin
K2K

XNt

j¼1

XNl

i¼1

ðDi;j � hopðiÞ;jÞ2 ð3Þ

where the decision variable, K , is the set of zoned hydraulic conduc-
tivity values used to solve Eq. (2); K is the search space of K , which
is usually a continuous interval from a Kmin to Kmax; i and j are the
observation location and time indices, respectively; Nl and Nt are
the total number of observation locations and times, respectively;
Di;j and hopðiÞ;j are the observed and model simulated hydraulic head;
and opðiÞ maps the location index to the model nodal index.

3.2. Bayesian inversion problem through Markov Chain Monte Carlo

Bayesian methods link prior knowledge of a model’s parameters
to observed information and the model’s output. A posterior distri-
bution of the parameters can be derived from a Markov Chain
Monte Carlo (MCMC) simulation [2]. The residual between an
observation, Di;j, and its corresponding groundwater simulation
model result, hopðiÞ;j, is assumed to be normally distributed,
Di;j � hopðiÞ;j ¼ ei;j � Nð0;r2

�Þ, with zero mean and an unknown vari-
ance, r2

� , that has an Inverse Gamma prior distribution,
Pðr2

e Þ � IGða; bÞ [25,26]. The variable, e, then lumps together a
representation of all sources of error such as model structure,
parameter error, and observation error [3]. Using Bayes’ Rule with
the above-mentioned assumption the following relationships can
be derived:

PðKjD;r2
e Þ ¼

PðDjK;r2
e ÞPðKÞ

PðDÞ / PðDjK;r2
e ÞPðKÞ ð4Þ

where:

PðDjK;r2
e Þ ¼ ð2pr2

e Þ
�ðNtþNlÞ=2 exp � 1

2r2
e

XNt

j¼1

XNl

i¼1

ðDi;j � hopðiÞ;jÞ2
" #

ð5Þ

PðKÞ ¼ 1
K

ffiffiffiffiffiffiffiffiffiffiffiffi
2pr2

p

p exp �ðlnK � lpÞ2
2r2

p

" #
ð6Þ

Eq. (4) is simplified to a proportional relationship consisting of a
likelihood function, Eq. (5), and a known prior distribution of
hydraulic conductivity, Eq. (6). The prior distribution for the

hydraulic conductivity is assumed to be log-normally distributed
with shape parameters lp and r2

p and parameters are uncorrelated
[27]. Its mean and variance are chosen based on the prior knowl-
edge of the hydraulic conductivity and are used to compute the
shape parameters.

The Metropolis–Hastings algorithm is an MCMC method that
generates a sequence of samples that approximate the posterior
distribution of the hydraulic conductivity. The Markov chain is
constructed from a set of proposed values, K�, that are sampled
from a proposal density function and are either accepted or
rejected based on the likelihood function and the prior
distribution.

We apply the following proposal density function (Prð Þ) for
generating hydraulic conductivity samples:

PrðK�jKÞ ¼ PðK ! K�Þ

¼ 1

K�
ffiffiffiffiffiffiffiffiffiffiffiffi
2pr2

p

q exp �ðlnðK�Þ � lnðKÞ � r2
pÞ

2

2r2
p

" #
ð7Þ

The proposal function is log-normally distributed with a mode
equal to the current value in the chain, K , and shape parameter,
r2

p , set to a user-specified value. When a candidate, composed of
N hydraulic conductivity values, is generated from Eq. (7), its
acceptance probability, â, is calculated by taking the ratio
presented in the following equation:

â ¼ min
PðDjK�;r2

e Þ
PðDjK;r2

e Þ
YN
i¼1

PðK�
i Þ

PðKiÞ
� �YN

i¼1

PrðKijK�
i Þ

PrðK�
i

��KiÞ
;1

( )

where K;K� 2 RN ð8Þ
Applying the given likelihood, Eq. (5), and prior for the hydrau-

lic conductivity, Eq. (6), to the log of the acceptance probability
yields the following equation:

ln â ¼ min
1

2r2
e

XNt

j¼1

XNl

i¼1

ðDi;j � hopðiÞ;jÞ2 � 1
2r2

e

XNt

j¼1

XNl

i¼1

ðDi;j � h�
opðiÞ;jÞ2

(

þ 1
2r2

p

XN
i¼1

½ðlnKi � lpÞ2 � ðlnK�
i � lpÞ2�;0

)
ð9Þ

If the prior’s variance is not known, then it is set to an arbitrarily
large value in order to lower its influence on the posterior. The log
is taken to simplify the equations for faster computation. This log
of the acceptance probability is then compared to the log of a ran-
dom uniform (0 to 1) draw. If it is larger, the value of the hydraulic
conductivity is accepted as a new value in the chain [2]. The fol-
lowing algorithm summarizes the steps that involve the generation
of a Markov chain based on the Metropolis–Hastings method:

Algorithm 1. Metropolis–Hastings Method

Given KðtÞ :¼ K� and Kð0Þ :¼ ðKð0Þ
1 ; . . . ;Kð0Þ

N Þ; iterate algorithm
for t ¼ 1;2; . . .

1. Generate a candidate from a proposal distribution
Kt � PrðKtjKt�1Þ.

2. Generate from the uniform distribution a � U½0;1�.
3. Using the target density to solve

â ¼ min PðDjKt ;r2
e Þ

PðDjKt�1 ;r2
e Þ
QN

i¼1
PðKt

i Þ
PðKt�1

i Þ

� �QN
i¼1

PrðKt�1
i jKt

i Þ
PrðKt

i jKt�1
i Þ ;1

� 	
.

4. If a < â, then keep Kt , else set Kt ¼ Kt�1.
5. Set t ¼ t þ 1 and go to Step 1.

The posterior distribution of r2
� is a combination of a likelihood

function and its prior distribution, Pðr2
e Þ:
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Pðr2
e

��K;DÞ / PðDjK;r2
e ÞPðr2

e Þ

� IG
Nt þ Nl

2
þ a;

PNt
j¼1

PNl
i¼1ðDi;j � hopðiÞ;jÞ2

2
þ b

 !
ð10Þ

Since its prior distribution is a conjugate distribution, its poster-
ior can be derived analytically as an inverse gamma and directly
sampled from Eq. (10) [26]. The choice for parameters a and b have
a small impact on the posterior because the groundwater model
SSE tends to be very large,

PNt
j¼1

PNl
i¼1ðDi;j � hopðiÞ;jÞ2 � b, and the

observed data count is likely to be significantly larger than one,
Nt þ Nl � a.

Solving for the two posterior distributions described in Eqs. (4)
and (10) involves an initial starting point and then iterating
through a three step process. The Metropolis–Hastings algorithm
is independent of the initial value; however, it can affect the length
of time it takes for the chain to converge. To improve the speed of
convergence the initial values, Kð0Þ, are the solution to the
deterministic inverse problem in Eq. (3). With the initial hydraulic
conductivity values given, the first step is to generate a sample of
the likelihood variance, r2, from Eq. (10). The second step is to
sample a new hydraulic conductivity set, ðK�Þ, from Eq. (7), run
the simulation model with the sample, and then evaluate the
acceptance probability, â. If the new values are accepted they are
used to generate a new likelihood variance, r2

� , and the process is
repeated. If they are rejected, then the process is repeated with
the original values. This process continues until the Markov chain
converges to the stationary distribution that represents a sample
from the posterior distribution.

4. Model reduction of a confined groundwater system

4.1. Projection-based model reduction

Projection-based model reduction proceeds by projecting a lin-
ear, discretized groundwater model, h 2 Rn, onto a reduced model
subspace of hr 2 Rr, where r 	 n. For this to occur, it is assumed
that the hydraulic head, h, can be mapped linearly onto the
reduced space, hr , by some orthonormal matrix, P 2 Rn�r, which
contains information about the discretized groundwater model’s
solutions in time [11]:

h ¼ Phr ð11Þ
The vectors in the P matrix are sometimes referred to as spatial

basis functions, empirical orthogonal functions, or principal
vectors.

Let S be a set of snapshots:

S ¼ ½ht1 ; ht2 ;ht3 ; . . . ; htr � ð12Þ
Snapshots are solutions to the groundwater model, hti , under a

constant/reference forcing (e.g. pumping well) taken at specific
simulation times, ti. In principle, a set of snapshots has to be taken
for each forcing term in the groundwater model. For example, if a
model has two extraction wells, then two sets of snapshots must
be taken. The first set is taken with one extraction well pumping
at a constant rate, while the other well’s pumping is set to zero.
The second set is taken by reversing the pumping rate between
the two wells [28]. The snapshots form a basis that has to be made
orthonormal to use as a projection matrix, P, that is the same
matrix as the linear map in Eq. (11). The orthonormalization of
the snapshots, S, is performed by either QR decomposition [29,30],

S ¼ QR ! P ¼ Q ð13Þ
or Singular Value Decomposition (SVD),

S ¼ URVT ! P ¼ U ð14Þ

It is important to recognize that Q may not necessarily be equal
to U, but they do have the same range space that is spanned by the
snapshots. We choose to use QR decomposition because of its effi-
ciency and numerical accuracy. Further reduction of the projection
matrix may be possible by applying principal component analysis
(PCA) on snapshots [11,12,18,21,28,31,32]. However, this paper’s
methodology finds that further removing basis vectors from snap-
shots through PCA results in an insignificant change in the reduced
space dimension, r, and may cause the reduced model to lose its
parameter independence. The reason PCA has a minimal impact
is that the proposed methodology, presented in the next section,
systematically includes the worst fitting snapshot until there is a
high fidelity between the full and reduced models.

The discretized groundwater model presented in Eq. (2) is
projected onto a reduced space by substituting in h ¼ Phr and
applying the Galerkin projection to form the following reduced
model:

PTAPhr þ PTf ¼ PTBP
dhr

dt
ð15Þ

Let Ar ¼ PTAP 2 Rr�r, Br ¼ PTBP 2 Rr�r, and fr ¼ PTf 2 Rr, such
that Eq. (15) becomes

Arhr þ fr ¼ Br
dhr

dt
ð16Þ

Eq. (16) subsequently will be referred to as the reduced model.
As we can see, the reduced model has the identical form of the full
model in Eq. (2). The reduced system now only requires the solu-
tion of r ODEs compared to the full model that has n ODEs. For
the reduced model to be efficient, it is necessary that r 	 n. A spe-
cial property of this substitution and projection is that if A is posi-
tive definite and P is full column rank, then Ar is positive definite.

4.2. Parameter-independent projection matrix construction

Snapshots collected to form the projection matrix, P, are predi-
cated on the parameters that are used to generate the snapshots.
Since both deterministic and Bayesian inverse problems explore
a wide range of parameter values, the validity of a projection
matrix that is based on one set of parameters is subject to question.
This problem is overcome by combining sets of snapshots from dif-
ferent parameter sets, SðKjÞ ¼ ½ht1 ðKjÞ; ht2 ðKjÞ; ht3 ðKjÞ; . . . ;htr ðKjÞ�
where S and hti are now a functions of Kj, into one large snapshot
set that, when made orthonormal, forms a parameter-independent
projection matrix as follows:

~S ¼ ½SðK1Þ; SðK2Þ; . . . ; SðKjÞ� ¼ QR ! Pj ¼ Q ð17Þ
The questions that arise are which parameters are best to take

snapshots from and what are the best simulation times, ti, to use.
The questions are answered through the use of two greedy
algorithms that iteratively build the projection matrix, P, until it
is sufficiently robust for all parameter values within a specified
range and their corresponding snapshot times. Given a projection
matrix, Pj, the first greedy algorithm, called Parameter Greedy Step,
solves the following equation:

argmax
Kjþ12K

J Kjþ1
¼ hSSðKjþ1Þ

khSSðKjþ1Þk
� Pjh

SS
r ðKjþ1Þ

kPjh
SS
r ðKjþ1Þk













2

2

ð18Þ

Eq. (18) searches for a hydraulic conductivity set, Kjþ1, within a
range of reasonable values, K, that maximizes the error between a
normalized full model’s steady state head, hSSðKjþ1Þ, and the
normalized reduced model’s steady state head, Pjh

SS
r ðKjþ1Þ. This

optimization approach can be viewed as searching for a parameter
set, Kjþ1, where the reduced model constructed from Pj fails to rep-
resent the shape of the original full model. The reason for using the
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steady state solution is that it represents the final shape of the
model’s response to pumping. This final response should always
be included as a snapshot for constructing an accurate reduced
model. Snapshots are then taken from the optimized parameter
set to improve the robustness of the reduced model. Once the
snapshots for Kjþ1 have been included into ~S, the projection matrix
Pjþ1 is formed and Eq. (18) determines the next parameter set. This
process continues until the following equation is satisfied:

J Kjþ1
< aKJ K2 8 j > 2 ð19Þ

Eq. (19) is satisfied when J Kjþ1 is reduced by aK orders of mag-
nitude from the initial J K2 value, where J K2 is obtained from the
initial projection matrix, P1, used to initiate the algorithm. From
numerical experiments it has been found that values of aK that
work the best range from 10�3 to 10�5 (less accurate to more accu-
rate, respectively).

The steady state heads in Eq. (18) are normalized (hSS
=khSSk) to

improve the solution stability by comparing their shapes rather
than the magnitudes of drawdown. Without the normalization,
the optimal parameter set would approach zero to maximize draw-
down. The shape is of greater importance because, ultimately, the
final projection matrix is made orthonormal which removes the
magnitudes of the snapshots.

Given the jth parameter set selected from the Parameter Greedy
Step, a second greedy algorithm, called Time Greedy Step, searches
for the optimal snapshot times, ti, by solving the following maximi-
zation problem:

argmax
ti2T

J ti ¼ hti ðKjÞ � Pjh
ti
r ðKjÞ




 


2
2

ð20Þ

where T is simulation time frame. The snapshots are added sequen-
tially to SðKjÞ, updating ~S; which is then made orthonormal to
reform Pj. Each subsequently added snapshot from the Time Greedy
Step (i) increases the column dimension of Pj by one, and as a
consequence renders the reduced model more accurate for the
parameter set Kj. The reduced model is considered sufficiently
accurate when one of the following criteria is satisfied:

J ti < atJ t1 ð21Þ

khti ðKjÞ � Pjh
ti
r ðKjÞk1 < � ð22Þ

Eq. (21) is the main convergence criterion, which ensures that
the reduced model is sufficiently accurate for Kj when the objective
value, J ti , has been reduced as a fraction of the first objective
value, J t1 . A reduction in three orders of magnitude, at ¼ 10�3,
provides the best balance between snapshot count and reduced
model accuracy. The second convergence criterion, Eq. (22), sets
a maximum absolute error bound; for example, � ¼ 1 mm.

For this methodology to begin it needs a starting parameter set
and an initial projection matrix to build upon. The first hydraulic
conductivity values are set equal to one for all zones, K1 ¼ 1 (a vec-
tor of 1’s), and the corresponding steady state solution is used to
compute the first projection matrix, P1. To start the algorithm, an
equal weight is applied to all zones. If prior information on param-
eter values is available, for example, the mean hydraulic conduc-
tivity values (lK), those values should be used to start the
algorithm ðK1 ¼ lKÞ. Again, we use the steady state solution as
the starting vector as it represents the final shape of the model’s
response to pumping and should always be included as a snapshot.
Consequently, the snapshot time selected to start the algorithm
corresponds to the time when a steady state solution is reached.
The Time Greedy Step builds upon the starting projection matrix
P1 until the reduced model is sufficiently accurate for K1. Then
the algorithm begins to iterate between the Parameter Greedy Step
and the Time Greedy Step until their convergence criteria are

satisfied (Eqs. (19), (21) and (22)). The convergence bounds
aK; at and � can be changed depending on the level of accuracy
required for the final reduced model. The overall algorithm for
constructing the parameter-independent projection matrix, Pj, is
summarized below and illustrated in Fig. 1.

Algorithm 2.

1. Set indices i ¼ 1, j ¼ 1, and the initial hydraulic conductivity
as constant for all zones, K1 ¼ 1 (a vector of 1’s). Initialize ~S
as an empty set.

2. Solve for the steady state snapshot using Kj, add it to ~S and
make it orthonormal to get Pj.

3. Solve the ith Time Greedy Step using Kj.
4. If i ¼ 2, then establish J t2 , else if the convergence criteria is

satisfied go to Step 7.
5. Add the new snapshot at ti to SðKjÞ, which is added to ~S.

6. Make ~S orthonormal via QR decomposition to reform Pj, set
i ¼ iþ 1, and go to Step 3.

7. Solve the jþ 1 Parameter Greedy Step to find Kjþ1 using Pj.
8. If j ¼ 2, then establish J K2 , else if the convergence criteria is

satisfied, exit with Pj as the final parameter-independent
projection matrix.

9. Set j ¼ jþ 1, i ¼ 1 and go to Step 2.

5. Application of parameter-independent model reduction to a
confined groundwater model

5.1. One-dimensional test case

Saturated 2-dimensional flow (SAT2D) is a finite-element model
for a two-dimensional, confined, groundwater flow [33]. Using
SAT2D, we construct a one-dimensional model to demonstrate
and validate the proposed methodology. To simulate a one-dimen-
sional groundwater flow in SAT2D, all parameters are distributed
appropriately across the width of the model. The model dimen-
sions are 100 m in length by 10 m wide by 1 m deep. The lithology
is partitioned into five hydraulic conductivity zones,
Kj ¼ ½Kj;1;Kj;2;Kj;3;Kj;4;Kj;5�, with a specific storage, Ss, of 1 m�1

(an unusually large value is used here to shorten the time required
to reach a steady state solution). An initial condition of 0 m is
assumed. The two fixed-head Dirichlet boundary conditions are
set to 0 m. There is an extraction well located at the center with
a pumping rate of 20 m/d (per unit area). Fig. 2 shows the one-
dimensional test case. The finite element grid consists of three
rows of 101 nodes (because SAT2D requires three rows of 101
nodes to create a finite element mesh to simulate the aquifer),
which requires solving a system of 303 linear ODEs for each
advancement in time (Dt). The ODEs are solved through an implicit
finite difference scheme.

The methodology presented in Algorithm 2 is applied to the
one-dimensional model to construct a parameter-independent
projection matrix. As stated in step 1, the starting parameters,
K1, are set to 1 m/d for all five zones. Eqs. (18) and (20), from Steps
7 and 3, respectively, are solved as bounded fitness functions
through a Genetic Algorithm program developed by Carroll (FOR-
TRAN genetic algorithm driver, version 1.7a, 2001, available at
http://cuaerospace.com/carroll/ga.html). The GA code solves for
each hydraulic conductivity set in Eq. (18) using a population of
100 chromosomes with jump mutation of 0.01, creep mutation of
0.02, uniform crossover, elitism, and niching. The lower and upper
bounds used by GA for solving the Parameter Greedy Step, Eq. (18),
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are 0.1 m/d and 20 m/d, respectively, for each of the hydraulic
conductivity zones. The advantage of using GA instead of a gradi-
ent-based search method is that it is derivative-free and, with
multiple starting values, it is more likely to find the global opti-
mum for a nonlinear and non-convex optimization problem. Addi-
tionally, it is an ‘‘embarrassingly parallel’’ workload for solving
each generation. Once the hydraulic conductivity set is selected
the GA code again solves the Time Greedy Step, Eq. (20). The lower
and upper bounds for the snapshot times are 0.1 d and 1000 d,
respectively. Another advantage of using GA is that the Time Greedy
Step only requires a single model call per generation (i.e. step
towards optimal solution) to evaluate a set of snapshot times.

Each Parameter Greedy Step progressively reduces the objective
function value until the convergence criterion of Eq. (19) is satis-
fied. Fig. 3 shows the rate of convergence for each of the optimally
selected parameter sets. The final parameter-independent
projection matrix from Algorithm 2 contains 33 snapshots from
five different hydraulic conductivity sets. When this projection
matrix is applied as shown in Eq. (15), it is capable of reducing
the system of 303 ODEs required at each time step to 33 ODEs
for a wide range of hydraulic conductivity values. Fig. 4 shows
the hydraulic conductivity sets selected at each Parameter Greedy
Step and their corresponding snapshot times selected by the Time
Greedy Step.

To evaluate the reduced model for solving the inverse problems
a synthetic set of 41 head observations ðtobs ¼ 1;5;10;15; . . . ;
195;200 dÞ are generated from the full model. Observations are
taken at the center of each hydraulic conductivity zone at an
assumed ‘‘true value’’, KTrue ¼ ½1;5;10;8;5�m=d. The generated
observations are corrupted by adding Gaussian noise with zero
mean and 0.1 variance. Using the corrupted observations, hydrau-
lic conductivity is estimated by Eq. (3) using Carroll’s FORTRAN
genetic algorithm driver without parallelization. The upper and
lower bounds are assumed to be 0.01 and 50 m/d, respectively.
The full and reduced models’ solutions to the deterministic inverse
problem are presented in Table 1. These values are used as Kð0Þ in
Algorithm 1 to minimize the burn-in period and construct a Mar-
kov chain of 100,000 samples. The chain is subsequently thinned
by keeping every tenth value for a final chain length of 10,000.
The chains from the full model and the reduced model are con-
structed with a prior mean equal to the solution of the determinis-
tic inverse problem and variance of 100. The proposal distribution
has a mode equal to the current value in the chain and shape
parameters hand calibrated to generate candidates with a 40%
acceptance rate. Using the full and reduced Markov chains the pos-
terior distributions are reconstructed using Python’s (SciPy) kernel
density estimation function that uses the mathematics defined in
[34]. Fig. 5 shows the comparison of the posterior density functions

Fig. 1. Flowchart of the methodology for construction a parameter-independent projection matrix. Note that K⁄, t⁄ are the solutions to their respective argmax optimization
problems.
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Fig. 2. One-dimensional groundwater flow model.
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between the full model and the reduced model. Visually the two
distributions are indistinguishable. The descriptive statistics in
Table 1 show that the results obtained from the full model and
the reduced model are within a relative error of 1% to 5% of each
other.

Four statistical tests are performed to validate that the Markov
chains produced from the full model and the reduced model are
equivalent. The first two tests are the Levene and the Fligner–
Killeen Equal Variance Tests, both contain the null hypothesis that
the two sample populations (i.e. the full and the reduced Markov
chains) have equal variance. The third test is the one-way analysis
of variance (ANOVA), which employs a null hypothesis that the two
sample populations have the same population mean. The fourth
test is the Kolmogorov–Smirnov 2 Sample Equal Distribution Test,
which features a null hypothesis that the two sample populations
originated from the same probability distribution. All four statisti-
cal tests failed to reject their corresponding null hypotheses at a
significance level of 0.05 (the smallest p-value is 0.18). This
provides strong evidence that the full and reduced Markov chains
are statistically equivalent.

To evaluate the robustness of the reduced model, we perform a
series of error analysis tests using the following set of equations:

MAE ¼ ð1=NÞ
XN
i¼1

jhi � ðPhrÞij

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1=NÞ

XN
i¼1

ðhi � ðPhrÞiÞ2
vuut

MARE ¼ 100%� ð1=NÞ
XN
i¼1

jðhi � ðPhrÞiÞ=hij 8 hi – 0

NRMSE ¼ 100%� RMSE=ðhmax � hminÞ

ð23Þ

where MAE is the mean absolute error, RMSE is the root mean
square error, MARE is the mean absolute relative error, NRMSE is
the normalized root mean square error, N is the number of model
nodes evaluated, i is the node index, and hmax and hmin are the max-
imum and minimum head value across all nodes, respectively. It is
assumed that errors propagate in the reduced model with each time
step, so the greatest error will occur at the last time step. To evalu-
ate the error analysis tests, Eq. (23), we use 5000 randomly gener-
ated hydraulic conductivity sets (zone 1 through zone 5) that are
sampled from the prior, Eq. (6), with the mean and variance
obtained from the deterministic inverse solution. The solutions
from the full and reduced models for each of the sampled parameter
sets are stored for all nodes at 200 days (last time step). These val-
ues are used to compute the error statistics described in Eq. (23).

Fig. 6 shows exceedance curves from the error statistics described
in Eq. (23) for the 5000 randomly generated hydraulic conductivity
sets. The error analysis results demonstrate that the reduced model
accurately represents the fullmodel over the entire parameter space.
The few parameter sets that result in large errors occur for hydraulic
conductivity samples near zero in Zone 3 (well location).

To benchmark the time savings from the reduced model, we
calculate the average runtime of 1,000 SAT2D simulations using
the ‘‘true values’’ for the hydraulic conductivities. The simulation
model is compiled with default optimizations on the Intel Fortran
Compiler and linked to the Intel Math Kernel Library on a single
core of an Intel 2.67 GHz Xeon X5550 running CentOS 6. The full
model uses the default PCG solver that comes with SAT2D while
the reduced model uses LAPACK’s Cholesky decomposition
(DPOSV) as its solver. For a simulation time of 200 days, the aver-
age runtime of the full model is 0.3454 s while the average runtime
of the reduced model is 0.2649 s. The application of model
reduction results in a computational time savings of 23.3% for
the one-dimensional case. Due to the simplicity of the one-dimen-
sional model the time saving is insignificant. The purpose of using
a simple, one-dimensional model is to verify the proposed method-
ology. As will be seen later, for a highly discretized model, the
reduction in dimension is drastic and time-saving is significant.

5.2. Two-dimensional test case: Oristano plain conceptual model

We test the proposed parameter-independent model reduction
methodology using synthetically generated data on a conceptual,
large, confined aquifer located in the Oristano plain of Sardinia,
Italy [20,32,35,36]. Synthetic data is used to avoid unknown
sources of error, such as model structure error, and keep the focus
on the validation of the proposed model reduction methodology.
The model, referred to as the Oristano model, is solved with SAT2D
[33]. The two-dimensional finite-element model consists of 57,888
triangular elements and 29,197 nodes. The confined aquifer has a
constant depth of 100 m and a constant specific storage of
10�5 m�1. The flow domain is bounded by a zero-Dirichlet bound-
ary condition. There are six pumping wells in the aquifer with a
constant pumping rate of 1000 m/d. Fig. 7 shows the Oristano
model boundary, finite element grids and pumping well locations.
Fig. 8 shows the three different zonation patterns and the
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Fig. 3. Semi-log plot of the one-dimensional, five zone, Parameter Greedy Step
objective for each of the optimally selected parameter sets.
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Table 1
Comparison of the deterministic inverse problem (DIP), 5% confidence interval (CL), 95% confidence interval, and median from the full and reduced one-dimensional models. Note 
that K1, . . . ,K5, refers to hydraulic conductivity for zone 1 to zone 5.

observation well locations used for demonstration (Z3, Z7 and Z15)
[20,32,35]. The number of zones starts at 3, increases to 7, and
finally increases to 15. It also is assumed that the hydraulic
conductivity in each zone is constant.

The parameter-independent projection matrices for each of the
three Oristano zonation patterns are constructed by solving

Eqs. (18) and (20), as shown in Fig. 1, with the same convergence
criteria and parameter bounds as the one-dimensional case (Sec-
tion 5.1). The lower and upper bounds for the snapshot times are
10�5 d and 10 d, respectively, because the solution reaches a
quasi-steady state after five days. The starting hydraulic conductiv-
ity is set to 1 m/d for each of the three zonation patterns. Algorithm

DIP 5% CL 95% CL 50% CL (Median)

Full Reduced Full Reduced Full Reduced Full Reduced

K1 1.005 0.972 0.829 0.830 1.305 1.298 1.000 0.996
K2 5.099 5.198 4.594 4.590 5.774 5.759 5.124 5.122
K3 9.602 9.275 8.488 8.488 11.010 11.007 9.574 9.582
K4 8.344 8.810 7.219 7.218 9.861 9.876 8.377 8.372
K5 4.900 4.878 4.450 4.454 5.291 5.292 4.861 4.863
r2
� – – 0.0792 0.0791 0.1718 0.1722 0.1138 0.1139

K1

K1

K2

K3

K4

K5

K2 K3 K4 K5 K1 K2 K3 K4 K5

Correlation
Coefficient

Full Model Correlation Reduced Model Correlation

Fig. 5. Reconstruction of the posterior distributions from the one-dimensional, five zone’s full and reduced models’ Markov chains. From left to right and top to bottom the
distributions are for the hydraulic conductivity of zone 1 through 5, then the variance, r2

� , and then correllation matricies from the full and reduced models. Note that
K1, . . . ,K5, refers to hydraulic conductivity for zone 1, . . . ,zone 5, respectively.
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2 progressively reduces the objective function value, as seen in
Fig. 9, for each Parameter Greedy Step, until the convergence
criterion is satisfied.

At convergence the 3, 7, and 15 zone models require 69, 127,
and 273 snapshots from 8, 15, and 34 parameter sets, respectively.

Each parameter set requires between 7 and 12 snapshots for the
Time Greedy Step to converge. Even though the Z3 Oristano model
contains fewer zones than the one-dimensional model (Sec-
tion 5.1), it requires more parameter sets to achieve convergence
due to the added complexity of a two-dimensional model. The
actual parameter sets and their corresponding snapshot times for
the Z7 model are presented in Fig. 10. The greedy optimal snapshot
times tend to start by selecting a quasi-steady state time; then sub-
sequent times decrease until near zero and then select another
large simulation time.

Using the same benchmark criteria for the one-dimensional
case (Section 5.1) but with a model simulation time of five days,
the average runtimes of the full Z3, Z7, and Z15 models are
32.16 s, 33.41 s, 33.15 s, respectively. The average runtimes of the
reduced models are 1.82 s, 2.92 s, 5.17 s, respectively, resulting in
a reduction in computational time of 94.3%, 91.3%, and 84.4%,
respectively. This time savings is very significant given that it
would take an estimated 38 days to construct 100,000 sequential
samples from the full model to build the Markov chain. The
reduced model, while less accurate, is the only computationally
reasonable option when many sequential model calls are required.

To demonstrate the applicability of the three Oristano reduced
models, we compare the solutions from the reduced models with
the solutions obtained from the full model. The ‘‘true parameter
values’’ are listed in Table 2. Using these values, a synthetic set
of head observations is generated at 24 observation wells, marked
on Fig. 8, for 40 exponentially spaced simulation times ranging
from 0.04 d to 5 d. The generated observations subsequently are
corrupted by adding Gaussian noise with zero mean and 0.1
variance. Using the corrupted observations, we first solve the

Frequency of Exceedance [%]
60 80

Frequency of Exceedance [%]
60 80

Fig. 6. Exceedance curve of the error statistics, Eq. (23), at 200 days derived from 5000 randomly sampled hydraulic conductivity sets.
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Fig. 7. Oristano model boundary, finite element grid and well locations used in the
SAT2D simulation.
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deterministic inverse problem with Carroll’s FORTRAN genetic
algorithm driver as described in the one-dimensional case (Sec-
tion 5.1). The optimized parameter values, shown in Table 2, are
used as the starting values for the Bayesian inverse problem.
Nearly identical results are obtained with the full model and the
reduced model for the Z3 and Z7 cases. The results for the Z15 case
show small discrepancies between the reduced model and the full
model. Given the large number of zones considered and the limited
number of observation locations, this is not unexpected. Results
could be improved by increasing the pumping rate to increase
drawdown, adding more observation locations or increasing the
number observation times, as in Siade et al. [32]. To solve the
deterministic inverse problem, the Z3, Z7, Z15 full models, running
Carroll’s GA in serial, require approximately 200 h to complete. The
reduced models required 15, 28 and 57 h, respectively. Note that
the reduced models are constructed without any knowledge of
the true parameter values other than the upper and lower bounds
specified in Eq. (18).

The optimized parameters from the deterministic inverse prob-
lem are the first value, Kð0Þ, in the Metropolis–Hastings algorithm,
Algorithm 1, to generate Markov chains from the full and reduced
models. The reduce model easily constructs a Markov chain of
100,000 values, but due to the difficulty of a long run time the full
Z3 model’s chain contains 10,000 samples and the Z7 and Z15
models’ chains contain 20,000 samples. All the Markov chains are
thinned by keeping every tenth value and comparisons are made
using the same length of chains (i.e. first 10,000 samples from
the Z3 reduced model are compared to the full version). The pos-
terior variances of the chains, Pðr2

e

��K;DÞ, from the Z3, Z7, Z15 full
and reduced models pass the Levene Equal Variance Test, the Flig-
ner–Killeen Equal Variance Test, ANOVA, and the Kolmogorov–
Smirnov 2 Sample Equal Distribution Test at a significance level
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Fig. 9. Semi-log plot of the Oristano Parameter Greedy Step objective values for the
Z3, Z7, and Z15 model’s selected parameter sets.
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Table 2
Comparison of the solution to the deterministic inverse problem between the full and
reduced Oristano models.

Zone
number

KTrue Full 3
zone

Reduced
3 zone

Full 7
zone

Reduced
7 zone

Full 15
zone

Reduced
15 zone

1 15 15.026 15.025 15.081 15.194 15.574 16.424
2 5 5.075 5.075 5.081 5.077 7.253 7.071
3 7 6.960 6.959 6.932 6.922 6.997 6.899
4 12 12.170 12.090 12.067 13.186
5 3 2.736 2.705 3.464 2.725
6 16 15.585 15.618 14.002 13.055
7 10 10.031 10.041 10.943 12.978
8 2 1.992 1.980
9 9 8.989 8.753

10 18 17.378 17.352
11 17.5 14.115 14.503
12 4.3 4.379 4.377
13 0.5 0.706 0.833
14 16.1 16.154 15.641
15 1 1.001 1.005
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of 0.05. The full and reduced Z3 model Markov chains produce a
posterior of hydraulic conductivity, PðKjD;r2

e Þ, that passes the four
aforementioned statistical tests at a significance of 0.05. The Z7
model has three zones that pass the statistical tests at a signifi-
cance of 0.01 and none of the Z15 pass. This rejection occurs
because more complex models require more samples to fully

explore their posterior distributions. This is impossible to achieve
since it requires 13 days for the Z7 and Z15 full models to generate
20,000 samples. In contrast, it takes 7 and 12 days, respectively, for
the reduced models to generate 100,000 samples. Using the Mar-
kov chains from the full and reduced models the posterior distribu-
tions for the Z7 model are reconstructed, shown in Fig. 11, using

Correlation
Coefficient

Full Model Correlation Reduced Model Correlation

K1

K1

K2

K3

K4

K5

K2 K3 K4 K5

K6

K7

K6 K7 K1 K2 K3 K4 K5 K6 K7

Fig. 11. Reconstruction of the posterior distributions from the Z7 full model’s Markov chain and the first 20,000 values of the Z7 reduced model’s chain. From left to right and
top to bottom the distributions are for the hydraulic conductivity of zone 1 through 7, then the variance, r2

� , and then correllation matricies from the full and reduced models.
Note that K1, . . . ,K7, refers to hydraulic conductivity for zone 1, . . . ,7, respectively.
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Fig. 12. Exceedance curve of the error statistics, Eq. (23), at 5 days derived from 5000 randomly sampled hydraulic conductivity sets.

S.E. Boyce, W.W.-G. Yeh / Advances in Water Resources 69 (2014) 168–180

35



Python’s (SciPy) kernel density estimation function. Visually the
two distributions compare favorably even though they fail some
of the statistical tests.

Despite not passing the statistical tests, the confidence levels
produced by the full model and the reduced model are very similar,
with relative percent errors between 1% and 3% for most of the 5%,
50%, and 95% confidence interval values. However, the errors for
seven of the confidence levels for the Z15 reduced model varied
from 6% to 13%. These slightly large errors occur near the lower
bound of Eq. (18) or are located far from a pumping well with only
one observation location. The reduced models are sensitive to sam-
ples drawn beyond the lower bound of K, but can handle any value
greater than the upper bound.

To analyze and evaluate the robustness of the Oristano reduced
models, we perform the same error analysis tests as described in
the one-dimensional case. The last time step (5 d) is assumed to
have the greatest error. The full and reduced models are run using
5000 hydraulic conductivity sets (zone 1 through 15) that are ran-
domly sampled from the prior, Eq. (6), using the deterministic
inverse problem’s solution as the mean and a variance of 100.
The error exceedance curves for the Z3, Z7, and Z15 models are
presented in Fig. 12. The Z7 and Z15 models have similar MAE,
RMSE, and MARE, with the Z15 model slightly less accurate. This
is expected since the Z15 reduced model has to reproduce a more
complex full model.

6. Conclusion

The key contribution of this paper is its development of a new
methodology for assembling snapshots from different sets of
hydraulic conductivity that form the basis of a parameter-indepen-
dent projection matrix. This projection matrix, when applied
through the Galerkin projection, can significantly reduce the
dimensionality of a transient, confined groundwater model. Most
model reduction methods are predicated on the parameter values
selected to generate the snapshots. This limits the range and valid-
ity of the reduced model when it is used for parameter estimation
through either a deterministic or Bayesian inverse solution. The
proposed methodology determines the best parameter sets to use
to generate snapshots that form a parameter-independent projec-
tion matrix. This final projection matrix, composed of snapshots
from different parameter sets, is used to reduce the full model such
that the reduced model reproduces accurate solutions for the
entire parameter space. Thus, the reduced model can be used to
solve the Bayesian inverse problems of highly discretized ground-
water models (e.g., a model with 57,888 elements and 29,197
nodes). Such problems were not possible to solve in the past
because of excessive computational requirements.

The proposed methodology constructs the parameter-indepen-
dent projection matrix by iteratively selecting parameter sets and
their corresponding snapshot times through the use of two greedy
algorithms. The parameter sets are selected by solving a bounded
optimization problem, Eq. (18), at each greedy stage, called the
Parameter Greedy Step. In between each Parameter Greedy Step a
set of corresponding greedy optimal snapshot times are selected,
Eq. (20). At each greedy stage, called the Time Greedy Step, a single
snapshot time is selected and added to the parameter-independent
projection matrix. The bounds of Eq. (18) determine the extent to
which the parameter independence works sufficiently. A general
rule of thumb is to pick a parameter range based on the prior dis-
tribution, using values within three to four standard deviations
around its mean.

We validated the proposed methodology on a conceptual one-
dimensional, five zone confined aquifer. The constructed projection
matrix reduced the dimensionality from 303 to 33 ODEs, resulting

in an average savings of 23% (0.08 s) in CPU time. We then tested
the reduced model on a synthetic observation set to solve the
deterministic inverse and Bayesian inverse problems. The results
obtained from the reduced model were compared with the full
model solutions. The deterministic inverse solution of the reduced
model differed from the full model solution with relative errors
from 1% to 5%, while the resulting Markov chains for the Bayesian
inverse solutions were found to be statistically equivalent between
the reduced model and the full model.

The range and validity of the proposed parameter-independent
model reduction methodology was demonstrated by exploring
three different large-scale, highly discretized models of a two-
dimensional, conceptual, confined aquifer in the Oristano plain of
Sardinia, Italy. The three versions (Z3, Z7, and Z15) differed only
in their number of hydraulic conductivity zones and all required
solving 29,197 ODEs per simulated time step. The proposed meth-
odology reduced the Z3, Z7, and Z15 models to 69, 127, and 273
ODEs, respectively, resulting in an average CPU time savings of
94%, 91%, and 84%, respectively. The reduced model maintains a
high level of accuracy for a wide range of parameter values, with
the majority of the mean absolute errors 3 cm or less and the mean
absolute relative errors 4% or less, as shown in Fig. 12. The time
savings is substantial considering that it would take an estimated
38 to 60 days to construct a Markov chain of 100,000 samples from
the full Oristano model. In contrast, the Z3, Z7, and Z15 reduced
models require 4, 7, and 12 days, respectively, to complete.
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a b s t r a c t

Projection-based model reduction techniques have been shown to be very effective for reducing the com-

putational burden of high-dimensional groundwater simulations, but only applied to confined groundwater

flow. A new methodology is proposed that reduces the dimension of a discretized, transient, unconfined

groundwater-flow model. This unconfined model reduction technique is based on Galerkin projection and

the Newton formulation of MODFLOW. The method is implemented following the standard package de-

sign and code structure that MODFLOW employs for all its features. When the package is invoked within

MODFLOW it can collect snapshots, produce a basis, construct the reduced model and propagate the reduced

model forward in time. The new formulation accurately represents the water-table surface under a variety

of nonlinear settings, such as intraborehole flow from a Multi-Node Well. The unconfined model reduction

is applied to four test cases to illustrate its flexibility in handling nonlinear features. Several test cases are

discussed to demonstrate the unconfined model reduction applicability. The final test case applies the new

model reductionmethodology to a scopingMODFLOWmodel of Santa Barbara, CA composed of 113,578 cells,

which requires solving 113,578 equations per time step, and reduces it to 127 equations.

1. Introduction

Understanding of groundwater resources is enhanced through the

application of mathematical models that simulate the dynamics of an

aquifer system. Conducting advanced analyses such as optimization

of pumping schedules under different scenarios requires a large num-

ber of simulations. Such analyses are intractable for complex, highly-

discretizedmodels with large computational requirements. Reducing

the computational burden associated with these simulation models

provides the opportunity to perform more advanced analyses on a

wider spectrum of groundwater management problems.

Projection-based model reduction techniques via the Galerkin

method have been shown to be very effective for reducing the com-

putational burden of large-scale, linear, groundwater simulations

[1–4]. This type of model reduction involves construction of a basis

spanned by solutions, referred to as snapshots, from the original sim-

ulation model. To form the basis, selected snapshots are collected as

a snapshot set and analyzed with Proper Orthogonal Decomposition

(POD). POD is a statistical pattern analysis technique that extracts a

low-dimensional basis from a high-dimensional process, such as the

∗ Corresponding author. Tel.: 3108252300; fax: 3108257581.

E-mail addresses: seboyce@usgs.gov (S.E. Boyce), tnish@usgs.gov (T. Nishikawa),

williamy@seas.ucla.edu (W.W-G. Yeh).

snapshot set [5]. The discrete form of POD is identical to singular

value decomposition where the POD basis, which is the Galerkin pro-

jectionmatrix, are the left singular vectors and the proper orthogonal

modes are the right singular vectors [6,7]. POD has also been referred

to as Principal Component Analysis [8], Karhunen–Loève Expansion

[9], and Empirical Orthogonal Functions [10,2]. The selection of the

snapshots that compose the snapshot set is an area of active research,

but not the focus of this paper. For more detailed information regard-

ing snapshot selection see Boyce and Yeh [4] and Siade et al. [11].

Currently, most model reduction applications are applied to a lin-

ear, confined, groundwater model and demonstrate a reduction in di-

mensionality by several orders of magnitude. Vermeulen et al. [1] ap-

plied model reduction to the confined, groundwater-flow equation

by collecting from a simulation model a snapshot set of simulated

hydraulic heads at a constant, reference pumping rate. Vermeulen et

al. [1] then applied principal component analysis (PCA) to the snap-

shot set to generate the basis used by the Galerkin method to derive

the reduced model. McPhee and Yeh [2] followed this methodology

and demonstrated that a reduced model maintains its sensitivity of

hydraulic head with respect to pumping, enabling it to embed in a

management optimization problem. Baú [12] increased the utility of

POD model reduction by deriving a set of reduced models for each

Monte Carlo realization of hydraulic conductivity to solve a stochas-

tic, multi-objective, confined groundwater management problem.

http://dx.doi.org/10.1016/j.advwatres.2015.06.005
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In theory, the Galerkin projection model reduction technique only

applies to linear systems, such as confined aquifers. Application to

nonlinear systems is possible, but the reducedmodel’s error is greater

and may require significantly more basis functions (snapshots) to

characterize the model [13]. The basis functions derived from POD

can be thought of as tangent spaces that approximate the non-

linear system [5]. Robinson et al. [14] and Li and Hu [15] applied

POD model reduction to several synthetic one- and two-dimensional

mass-transport models without chemical reactions. Buchan et al. [16]

solved for the population growth of free moving neutrons, an Eigen-

value problem, in a nuclear reactor system. The Eigenvalue problem

was reformulated to create pseudo-time dependence that describes

the snapshots used in their projection basis. With these nonlinear ex-

amples there has been limited application of model reduction to the

nonlinear, unconfined groundwater flow equations.

Simulating unconfined groundwater flow is an essential part of

groundwater modeling projects. MODFLOW [17] and its variants

are one of the most popular groundwater modeling software pack-

ages available that solve the confined and unconfined equations.

MODFLOW is designed as a series of independent modular pieces

called packages. To solve the governing equations, MODFLOW uses

a three-dimensional, block-centered finite difference scheme to dis-

cretize themodel domain and implicit finite differencing to discretize

time. The nonlinear system of equations is solved using the Picard

method. To improve stability of solving the MODFLOW unconfined

flow equations the Newton method has been shown to be a useful al-

ternative to the Picard method [18,19]. This led to the development of

the Newton formulation of MODFLOW, MODFLOW-NWT [20], which

expands upon previous work with upstreamweighting for determin-

ing horizontal intercell conductance, conductance smoothing func-

tions, and a Newton solver. The two main packages for the Newton

formulation of MODFLOW are the flow package UpstreamWeighting

(UPW) and solver package Newton Solver (NWT). Conductance is

MODFLOW’s finite difference representation of hydraulic conductiv-

ity between two modeled grid cells and is derived from Darcy’s Law

and finite differences. While the Newton solver is more stable than

the Picard method, it requires solving for the inverse of the nonsym-

metric, Jacobian matrix for each Newton step (inner iteration).

Solving unconfined models with a high discretization through the

Newton method can become computationally intractable due the

difficulty of solving for the inverse of the nonsymmetric Jacobian. To

reduce the computational burden, and thus the simulation runtime,

we propose an approach that combines the Newton formulation

of MODFLOW [20] with projection-based model reduction. This

approach is implemented following the standard package design

and code structure that MODFLOW employs for all its features. The

source code modifications are implemented within a recent release

of MODFLOW called MODFLOW One-Water Hydrologic Flow Model

(MF-OWHM) [21]. The model-reduction package initially collects

snapshots from a MF-OWHM simulation and converts them to a

basis. Once the basis is constructed, the package performs a reduced

model simulation by intercepting the NWT package where it solves

for the inverse of the Jacobian. The reduced model uses Galerkin

projection to form a reduced dimension Jacobian, solves for the

inverse of the reduced Jacobian, and then calculates the Newton step.

2. Groundwater-flow modeling

2.1. Discretized groundwater-flow modeling

Darcy’s Law is combined with the continuity equation to derive

the governing equation for anisotropic, saturated groundwater flow.

The resulting confined and unconfined groundwater flow equations

are the following [19,22,23]:

∇ · (K∇h) ± Q = Ss
∂h

∂t
(1)

∇ · (Kh∇h) ± Q = Sy
∂h

∂t
(2)

where ∇ · is the divergence operator, ∇ is the gradient operator, K is

the hydraulic conductivity tensor [L/T], h is the hydraulic head [L], Q

is a volumetric flux per unit volume in or out of the system [T−1 for
Eq. 1 and L/T for Eq. 2], SS is the specific storage [L

−1], t is the time [T],
and Sy is the specific yield [–]. Within a three-dimensional ground-

water system, Eq. (1) applies to regions under confined conditions

(fully saturated model layers) and Eq. (2) applies to regions under

unconfined conditions (not fully saturated model layers). During the

course of a model simulation a particular model cell can switch from

confined (Eq. 1) to unconfined (Eq. 2) conditions and vice-versa. For

unconfined conditions the additional h variable, representing the sat-

urated thickness, makes the equation nonlinear and acts as an upper

boundary condition created by the water table.

Applying a spatial discretization to Eqs. (1) and (2) through a dif-

ferencing scheme (e.g. finite differences or finite elements) yields

a system of nonlinear ordinary differential equations (ODEs) of the

form:

Ah+ f = B
dh

dt
(3)

where h ∈ R
n is a vector of hydraulic heads at each nodal location;

A ∈ R
n×n is a nonlinear stiffness matrix, which contains spatial infor-

mation about hydraulic conductivity and is a function of h (i.e. the

saturated thickness) for model cells that are under unconfined con-

ditions; B ∈ R
n×n is the mass matrix; and f ∈ R

n is a vector containing

all Dirichlet, Neumann and part of the Cauchy boundary conditions.

To solve for the time derivative an implicit difference scheme is ap-

plied to the time derivative to form the following system of nonlinear

equations:

(B− �tA)ht+1 = Bht + �tf (4)

where t is the time step index and�t = tt+1 − tt is the time step that

propagates the model forward to a new time. Nonlinearity arises be-

cause matrix A is a function of h for layers that are not fully saturated.

2.2. Newton formulation of the groundwater-flow equation

The Newton formulation, as described in Niswonger et al. [20] and

Painter et al. [18], rearranges Eq. (4) into the following:

(B− �tAi)ht+1,i − Bht − �tf = Ri (5)

Ji�h = Ri (6)

Jiht+1,i+1 = Ri + Jiht+1,i (7)

where i is the Newton step index, Ai is the stiffness matrix evalu-

ated at ht+1,i, ht+1,i is the head at the ith Newton step for the t + 1 th

time step, Ri ∈ R
nis the residual that results from an estimate of

ht+1,i, Ji is the Jacobian matrix defined as Ji = ∂Ri/∂ht+1,i ∈ R
n×n, and

�h = ht+1,i+1 − ht+1,i. The Newton procedure then iteratively solves

for ht+1,i+1 until Ri → 0.

The original MODFLOW approach removes dewatered cells from

the finite difference equations and treats them as a no-flow boundary.

A cell is dewatered when its hydraulic head (h) fall below its bottom

elevation. Unlike the original version of MODFLOW, dewateredmodel

cells are not removed in the Newton formulation of MODFLOW. Due

to this design, the reduced model must reproduce the results from all

the model cells, including the dewatered ones.

3. Model reduction via POD and the Galerkin projection for the

Newton formulation of groundwater-flow

3.1. The Galerkin projection matrix

Projection-based model reduction proceeds by projecting a dis-

cretized groundwater-flowmodel, h ∈ R
n, onto a reduced model sub-

space of hr ∈ R
r , where r � n. For this to occur, it is assumed that the
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hydraulic head, h, can be mapped linearly onto the reduced space, hr,

by some orthonormal matrix,P ∈ R
n×r , which contains information

about the discretized groundwater-flow model’s solutions in time

[1,4]:

h = Phr (8)

The vectors in the P matrix are sometimes referred to as the POD

basis, spatial basis functions, empirical orthogonal functions, or prin-

cipal vectors [4,8–10].

The matrix P is derived from a time series of solutions, htk , called

snapshots, that are collected from the groundwater-flow model un-

der a constant/reference forcing (e.g. pumping well) taken at specific

simulation times, tk. A set of snapshotsmust be taken for each linearly

independent forcing term in the groundwater-flowmodel. For exam-

ple, if a model has two extraction wells that have no linear relation

between them, then two sets of snapshots must be taken. If there are

any linear relationships (e.g. Well A = 2×Well B), then a single set of

snapshots can be taken at that relationship. All the sets of snapshots

are then combined to form the final snapshot set:

S j = [ht1 ,ht2 ,ht3 , . . . ,htk ] ∀ j = 1,2, . . . ,NSET

S = [S1, S2, . . . , SNSET] ∈ R
n×m (9)

where Sj is a set of snapshots collected for the jth linearly indepen-

dent forcing and is composed of k snapshots, NSET is the total num-

ber of linearly independent forcings, and S is the final snapshot set

containingm snapshots.

For each snapshot set, Sj, the number of snapshots, k, and their

specific solution time, tk, are problem-dependent. Both the number

of snapshots and specific solution times do not have to be the same

for each snapshot set, Sj. From the literature and empirical tests using

this study’s methodology, each snapshot set, Sj, should be composed

of snapshots that have 10–50 exponentially distributed values of tk
from the initial condition to quasi-steady state with the forcing set to

a constant value and then another 10–50 snapshots with no forcing

to adequately capture the model’s nonlinear response and recovery.

For simplicity, a set of exponentially distributed snapshots times are

selected by visually examining the model output. For a more system-

atic approach to estimate the optimal number of snapshots, see Boyce

and Yeh [4].

The snapshots from Eq. (9) form a basis that, when made or-

thonormal, derives the Galerkin projection operator. This operator is

the samematrix as the linear map, P, defined in Eq. (8). The orthonor-

malization of the snapshots, S, is performed by POD, which for the

discrete case is the Singular Value Decomposition (SVD) [24,25]:

S = U�VT =
∑rank(S)

i=1 σiuivTi ⇒ P = U (10)

where rank(S) is the minimum between the number of linearly in-

dependent columns or rows in S, σ i are the singular values that are

ordered from largest to smallest,� is a diagonal matrix with singular

values along the diagonal, U = [u1,u2, . . .] are the left singular vec-

tors that comprise the POD basis set equal to P, and V = [v1, v2, . . .]

are the right singular vectors that represent the proper orthogonal

modes. For the test cases presented in Sections 4 and 5 the SVD is

performed with the LAPACK library [26].

Without knowledge of the optimal choice for snapshots, the sin-

gular values can serve as weights to distinguish the left singular vec-

tors, subsequently referred to as POD basis vectors that contribute

the most amount of information to the projection operator P. This is

accomplished by solving for r in the following relationship:

min r

Subject to:

∑r
i = 1 σi∑rank(S)

i=1 σi

× 100% ≥ PE
(11)

where PE is a user-specified minimum required percent energy con-

tribution of the sum of the r largest singular values. Typical values for

PE range from 99% to 99.99%, where smaller values lead to fewer ba-

sis vectors at a cost of less accurate reduced model results. Once r has

been established, the final truncated POD basis is P = [u1,u2, . . . ,ur],

which defines the dimension of the reduced model, hr (Eq. 8). This

process of removing insignificant basis vectors is called singular-

value truncation; if S is symmetric, then it is also called principal

component analysis.

There are two methods that can improve the selection of basis

vectors before applying SVD to construct the POD basis. The first

method involves normalizing each column in S (i.e., each snapshot)

by dividing it by its respective L2 norm. Normalization produces a

better spread of singular values by removing any issues of scale from

the snapshots. The second method is to mean center and redefine S

as follows:

h̄ = 1

m
[S1m]

S := S − h̄1Tm

(12)

where 1m is a column vector ofm ones, h̄ ∈ R
n contains the mean for

each row in S. If the snapshots are mean centered, then Eq. (8) must

be adjusted to include the missing information from the POD basis

(P), i.e.,

h = Phr + h̄ (13)

The advantage of mean centering is that it removes all time-

invariant effects from the snapshots and can stabilize problems that

may arise from boundary conditions. If both normalization and mean

centering are required, it is important to first apply the mean center-

ing and then normalize the redefined S to preserve the relationship

defined in Eq. (13). For most situations the reduced form of the New-

ton formulation of MODFLOW (Section 3.2) produces the most accu-

rate reduced models with both mean centering and normalization.

Of the two improvements, our test cases indicate that mean center-

ing has the greatest effect on improving accuracy and normalization

only results in a minor improvement.

3.2. The Galerkin projection and the Newton formulation of MODFLOW

The Newton formulation of MODFLOW [20] is projected onto a re-

duced space via the Galerkin projection and a substitution thatmakes

the system of equations dimensionally correct. The Galerkin projec-

tion involves pre-multiplying Eq. (7) by the transpose of the POD ba-

sis (PT). The resulting system of equations now requires one of two

possible substitutions to make it dimensionally correct. If mean cen-

tering is not applied, then substituting in ht+1,i+1 = Pht+1,i+1
r is re-

quired to form Eq. (14). If there is mean centering, then substitute

ht+1,i+1 = Pht+1,i+1
r + h̄ to form Eq. (15).

PTJiPht+1,i+1
r = PT[Ri + Jiht+1,i] (14)

PTJiPht+1,i+1
r = PT[Ri + Jiht+1,i − Jih̄] (15)

Let Jir = PTJiP ∈ R
r×r and bir = PT[Ri + Jiht+1,i] ∈ R

r , or if there is

mean centering, bir = PT[Ri + Jiht+1,i − Jih̄] ∈ R
r , then Eqs. (14) and

(15) are then transformed to:

Jirh
t+1,i+1
r = bir (16)

Eq. (16) is subsequently referred to as the reduced model and

Eq. (7) as the full model. The reduced model only requires the solu-

tion of r equations for each Newton step compared to the full model’s

n equations. After solving for ht+1,i+1
r for one Newton step either

Eq. (8) (no mean centering) or Eq. (13) (mean centering) provide a

means of obtaining ht+1,i+1. For the reduced model to be efficient, it

is necessary that r � n.
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Fig. 1. Two-dimensional, vertical test case, TC1, with three wells (WEL) and time-

variant specified-head (CHD) boundary conditions.

4. Two-dimensional synthetic, vertical test cases

A synthetic, unconfined, two-dimensional (2D), vertical

groundwater-flow model is constructed in MF-OWHM [21] to

demonstrate the application of model reduction to the Newton

formulation of MODFLOW. The modeled domain contains 500 sim-

ulated cells with a total length (column direction) of 10 km and

depth of 50 m. The model’s top and bottom elevations are set to

0 m and –50 m, respectively. The initial condition is set to a uniform

water level of –2 m to force an unconfined condition. The model

discretization consists of five, 10 m-thick, convertible layers, one

100 m-wide row, and one-hundred, 100 m-long columns. A con-

vertible layer in MF-OWHM uses, where appropriate, the confined

(Eq. (1)) and unconfined (Eq. (2)) equations. The domain is divided

into two zones with columns 1 through 40 and columns 41 through

100 having horizontal hydraulic conductivity values of 5 m/d and

15 m/d, respectively. The vertical hydraulic conductivity is set to

be one-tenth that of the horizontal. The entire model domain has a

specific yield (Sy) of 0.3 and specific storage (Ss) of 1E–5 m
−1. Using

the aforementioned properties we evaluate two different test cases

using different stresses and boundary conditions.

4.1. Three wells and fixed head boundary condition

The first test case, TC1, applies model reduction to a 2D

groundwater-flow model that uses MODFLOW’s well (WEL) and

time-variant specified-head (CHD) packages (Fig. 1). The WEL pack-

age simulates pumping into or out of the model and CHD applies a

time varying fixed-head boundary condition [23]. The three WEL lo-

cations are at layer 2, column 51; layer 4, column 21; and layer 5,

column 51 (Fig. 1) and are subsequently identified only by their layer.

All model cells that are specified with the CHD package are set to a

constant value of –2 m to maintain unconfined conditions through-

out the simulation.

Three sets of 90 snapshots are collected (NSET = 3) to con-

struct the reduced model. Each snapshot set, j, is taken with one

of the wells set to a pumping rate of 400 m3/d for 50,000 days, the

quasi-steady state time, followed by 50,000 days of recovery (no

pumping). Taking snapshots for each well allows their values to vary

independently within the reduced model. The distribution of snap-

shot times, tk, are shown in Fig. 2, where the 46th snapshot is the

first one taken without pumping to record the model’s recovery. The

three sets of 90 snapshots are combined to form S ∈ R
500×270, which

is subsequently mean centered and normalized. Using a PE of 99.99%

results in a final POD basis composed of 61 vectors. This basis then

reduces the Newton method’s system of equations (Eq. (7)) from

500 equations to 61 (Eq. (16)). Further reduction could have been

achieved if it was assumed that two or more of the wells pumped

at the same rate. Then their snapshots could have been combined,

resulting in a smaller final basis.

The simulation time frame used to compare the full and reduced

models is 3000 dayswith pumping followed by 3000 days of recovery

with a time step of 10 days. The pumping rate is set to 1000 m3/d for

each well to illustrate that the reduced model is independent of the

pumping rate that was used for the snapshots (i.e., 400 m3/d).

To evaluate the reduced model’s accuracy the following equations

are defined:

MAE = (1/N)
∑N

i=1 |hi − (Phr)i|
RMSE =

√
(1/N)

∑N
i=1 (hi − (Phr)i)

2

NRMSE = 100%× RMSE/(hmax − hmin)

(17)

where MAE is the mean absolute error, RMSE is the root mean

squared error, NRMSE is the normalized root mean squared error, N

is total the number of model cells, i is the model cell index (e.g., row

1, column 1, layer 1 has index of 1), and hmax and hmin are the maxi-

mum and minimum head values across all model cells, respectively.

The NRMSE weights the RMSE by the spread of information to pro-

vide a method of comparing accuracy of different models. The largest

value of NRMSE from all the time steps is 0.075%. Fig. 3 presents a

histogram of the MAE calculated at each time step and an error ex-

ceedance curve of the RMSE for TC1. The MAE errors are clustered

around 0.007 m (Fig. 3, left) with the largest values being 0.015 m.

The reduced model replicates the full model with all the errors less

than 0.02m. The error exceedance curve demonstrates that the RMSE

is very small with a 5% chance of being 0.016m or greater. In addition,

the full and reduced models’ cumulative percent mass balance errors

at the end of the simulation are 0% and 0.39%, respectively.

The water table is calculated as the hydraulic head of the upper

most model cells that are not dewatered. Fig. 4 presents the sim-

ulated water-table elevation for the full and reduced models at se-

lected times during the 6000 day simulation. In the figure the model

cells that are above the water table have hydraulic heads below their

bottom cell elevation; conversely cells below the water table have

hydraulic heads above their top elevation. During the first 3000 days

Fig. 2. Distribution of snapshot times. The first 45 are taken with pumping and the remainder without.
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Fig. 3. TC1 (left) histogram of the mean absolute errors from all time steps and (right)

exceedance curve of the RMSE. Note that the units are in mm.

of simulation (Fig. 4, left) the pumping well removes water causing

the water table to decline below layers 1, 2, and 3 within most of

the model domain. This illustrates that despite multiple layers being

dewatered, the reduced model accurately represents the full model.

During the next 3000 days (Fig. 4, right) there is no pumping and the

reduced model still accurately reproduces the nonlinear recovery of

the water table.

Unique to the Newton formulation of MODFLOW is that a WEL

model cell simulates loss of production due to dewatering by reduc-

ing the pumping rate as a function of saturation in the pumping cell.

The pumping wells located in layers 2 and 4 (Fig. 1) undergo this re-

duction in rate during the first 3000 days of pumping (Fig. 5). Due

to dewatering of the cell, the well located at layer 2 completely stops

production after 850 days. The reducedmodel follows the same trend

and visually matches the full model’s reduction in pumping as illus-

trated in Fig. 5.

4.2. One multi-node well and a general head boundary condition

The second test case, TC2, applies model reduction to a two-

dimensional model that uses MODFLOW’s revised Multi-Node Well

(MNW2) [27,28] and the General-Head Boundary (GHB) packages,

shown in Fig. 6. The MNW2 package [28] simulates wells that extend

over more than one model cell and is a more realistic representation

of a groundwater pumping well than the WEL package. The MNW2

package calculates the head level within the well; its possible pro-

duction rate is based on a desired flow rate and allows for intrabore-

hole flow (i.e., flow within the well itself). When there is no desired

flow rate specified, anMNW2well can transmit water between layers

via intraborehole flow. The location of the MNW2 well is at column
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Fig. 5. Two-dimensional test case, TC1, full and reducedmodel’s loss of pump capacity

due to drawdown.
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Fig. 6. Two-dimensional test case, TC2, with one multi-node well with two screened

intervals (MNW2) and general head boundary conditions (GHB).

51 with a screened interval from –10 m to –20 m and –40 m to –50 m

(layers 2 and 5, respectively, in Fig. 6). The MNW2well in TC2 has the

losstype set to “skin” [28], a radius of 0.15 m (inner radius), a skin

radius of 0.2 m (outer radius). The hydraulic conductivity of the skin

material is 1.5 m/d.

The GHB package simulates head-dependent flux boundaries by

allowing water to flow into or out of the system based on the water

level and a user-specified conductance. For TC2, the GHB boundary

head (Bhead) is set to –2 m and the conductance assigned to columns

1 and 100 is calculated such that it represents the model grid’s hy-

draulic conductivity.

To construct the reduced model, one set of 90 snapshots is col-

lected (NSET = 1). The first 45 snapshots are taken with the MNW2

well set to a desired pumping rate (Qdes) of 400 m3/d for 50,000

days—the quasi-steady state time, to capture the response to MNW2

pumping. After the quasi-steady state is reached, 45 more snapshots

are taken over 50,000 days with the MNW2 well’s desired pumping

rate set to 0 m3/d to capture the recovery from pumping and any as-

sociated intraborehole flow. The distribution of snapshot times, tk, are

Fig. 4. Two-dimensional test case, TC1, simulated water-table elevation during the first 3000 days of pumping (left) and the next 3000 days of recovery (right) at selected times

for the full and reduced models. Note that MAE and NRMSE are calculated from the simulated head at all 500 model cells.
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Fig. 7. TC2 (left) histogram of the mean absolute errors from all time steps and (right)

exceedance curve of the RMSE. Note that the units are in mm.

the same as used in TC1 (Fig. 2). The TC2 snapshots from the MNW2

well are thenmean centered and normalized. Using a PE of 99.99% re-

sults in a final POD basis composed of 22 vectors for reducing the Ja-

cobian. The TC2 basis is smaller than the TC1 basis because the former

is able to exploit the fact that the nodes within the MNW2 well are

related while the latter assumes no relationship between the three

wells.

Like TC1, the simulation timeframe used to compare the full and

reduced models is progressed with a 10-day time step and composed

of 3000 days of pumping at a desired rate (Qdes) of 1000 m3/d fol-

lowed by 3000 days of recovery at a desired rate of 0 m3/d. At the

end of this timeframe the full and reduced models both have a 0%

cumulative percent mass balance errors. The MAE and RMSE results

from the full and reduced models are summarized in Fig. 7. The re-

duced model accurately represents the full model with all MAE’s be-

ing less than 0.018 m and the largest NRMSE across all time steps

is 0.135%. The exceedance curve increases slightly compared to TC1

with a 5% chance of being 0.021 m or greater. The errors are slightly

greater than TC1 because there are more nonlinear features that the

reduced model must represent and the reduced model dimension

is smaller. This increase is nominal considering the overall accuracy

of the reduced model and that the full model dimension is reduced

by 96%.

The simulated water-table elevation for the full and reducedmod-

els at selected times is presented in Fig. 8. The water table is accu-

rately represented by the reduced model despite dewatering layers

1, 2, and 3 and an MNW2 well extracting water from layers 2 and 5

(Fig. 8). MNW2determines the flow rate at each screen location based

on a calculated well water level (hwell) relative to the head in layers

2 and 5 as it attempts to meet the desired pumping rate. Fig. 9 shows

the full and reduced model’s simulated well water level and screen

flow rates. During the first 3000 days, the pumping rate of 1000 m3/d

lowers the well water level (Fig. 9, top). When layer 2 dewaters at the

well site (Time: ∼1500 days; Fig. 9, left) the screen’s flow rate low-

ers to zero and the layer 5 screen increases to meet the desired rate.

This nonlinear response is visually identical between the full and re-

ducedmodels. For the 3000 days of recovery (Time: 3000–6000 days;

Fig. 9, right) the desired flow rate is set to zero; however, intrabore-

hole flow may still occur. Water from layer 5 flows into the well bore

and travels into layer 2 (Fig. 9, right). The reduced model does not vi-

sually match this nonlinear response, but the differences are negligi-

ble considering the scale of the flow rates, with the largest deviations

no more than 0.06 m3/d.

5. Three-dimensional test cases

Two synthetic, unconfined, three-dimensional (3D) groundwater-

flow models are evaluated with the proposed model reduction

methodology. The first 3D test case (TC3) is similar to TC1 and TC2, ex-

cept a third dimension is added as well as other MODFLOW packages.

The second 3D test case (TC4) is a complex-refinement of a scoping

groundwater-flow simulation of Santa Barbara, CA [29]. This model

is partially calibrated and only constructed to illustrate model reduc-

tion for the presented scenario.

5.1. Test case 3: synthetic model with multiple packages

The third test case, TC3, is a synthetic, three-dimensional,

unconfined groundwater-flow model that incorporates multiple

MODFLOW packages. The model is composed of 5 layers, 100 rows

and 100 columns for a total of 50,000 simulated cells. Each layer is

10 m thick with the model’s top and bottom elevations set to 0 m and

–50m, respectively. The length of each row and column is 100 m. The

horizontal domain of TC3 is presented in Fig. 10. The initial condition

is set to –2 m for the entire model domain. The domain is divided

into two zones with columns 1 through 40 (Zone 1) and columns

41 through 100 (Zone 2) having a horizontal hydraulic of 5 m/d and

15 m/d, respectively, with no horizontal anisotropy. The vertical hy-

draulic conductivity is set to one-tenth of the horizontal. The entire

domain has a Sy = 0.3 and Ss = 1E–5 m−1.
TC3 is bounded by two GHB conditions located along columns 1

and 100, across all rows and layers, and has a boundary head of –

2m and conductance calculated to represent a hydraulic conductivity

of 5 m/d and 15 m/d, respectively. Within the domain there are two

recharge fields and a drain field simulated using the recharge (RCH)

and drain (DRN) packages, respectively (Fig. 10). The recharge fields

distribute a specified flux over the top of the model and are located

Fig. 8. TC2 simulated water-table elevation during the first 3000 days of pumping (left) and the next 3000 days of recovery (right) at select times for the full and reduced models.

Note that MAE and NRMSE are calculated from the simulated head at all 500 model cells.
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Fig. 9. TC2 full and reduced model’s simulated well water level (top) and screen flow rate with (left) and without pumping (right). The MNW2 screen flow rate is positive when

flow is out of the layer and into well. Note the center and right parts are on different scales.

in the upper left (columns 11–30) and upper right (columns 11–30)

of the model and have a recharge flux of 0.1 mm/d. Note that since

the Newton formulation does not allow cells to deactivate when de-

watered, a dewatered upper layer cell will receive the recharge and

then transmit it downward toward the upper-most saturated layer.

The drain field is located between columns 21 and 30, has a drain

elevation set to –5 m, and the hydraulic conductance of the inter-

face between the aquifer and the drain is 100 m2/d. Drains only re-

move water from themodel when the water table elevation is greater

than –5 m.

A fault line is simulated using a horizontal flow barrier (HFB) [30]

that is between two columns. There is a break and shift in the bar-

rier near a river to allow groundwater flow through and to simulate

a shifted and washed-out barrier. The barrier is located across all lay-

ers and is either between columns 37 and 38 or between columns 39

and 40. The barrier has a thickness of 5 m and a hydraulic conductiv-

ity of 0.001 m/d. Running parallel to the barrier is a river (RIV pack-

age) that crosses it near its break and then runs parallel again. The

riverbed bottom elevation (Rbot) is –2 m and the head of the river

(Stage) is set to 1 m. The riverbed hydraulic conductivity is 0.25 m/d

and 0.5 m/d for Zones 1 and 2, respectively.

Water is extracted from the groundwater system by seven wells

(WEL) and one multi-node well with two screens (MNW2). The well

field represents four wells that always pump at the same rate and are

located at layer 4 and along column 80. The left-most well is located

at layer 4, row 26 and column 21, and the remaining two wells in

Fig. 10 pump at the same rate and are located at layers 2 and 5 at

row 71 and column 51. The location of the MNW2 well is at row 26

and column 65 with a screened interval from –20 m to –30 m and

–40 m to –50 m (layers 3 and 5, respectively). The MNW2 well uses

the “skin” losstype, has a radius of 0.1 m (inner radius), and a skin

radius of 0.25 m (outer radius). The hydraulic conductivity of the skin

material is 0.5 m/d.

To construct the reduced model, six sets of snapshots are col-

lected (NSET = 6) from MNW2, WEL, RIV, and RCH for a total of

460 snapshots. For MNW2 and WEL there are 45 snapshots, ex-

ponentially distributed in time, taken while pumping is active for

50,000 days (quasi-steady state time), and then 45 more snap-

shots are taken for 22,500 days of recovery (no pumping). Since

the well field always pumps at the same rate, it only requires

one set of snapshots to represent the four wells. For both RCH

and RIV there are 50 snapshots, exponentially distributed in time,

taken for over 50,000 days. The snapshot set (S) is mean centered

and normalized; SVD is then applied to obtain the singular val-

ues and POD basis. The magnitude of each singular value and its

corresponding percent energy is presented in Fig. 11. This illus-

trates that there is a good spread of information among the chosen

snapshots. Even with a good spread of singular values the PE indi-

cates a rapid increase to 99.9% around the 60th singular value. To

demonstrate an extreme reduction, a PE of 99% is selected, which

results in a POD basis composed of 28 vectors. The lower PE still

produces acceptable errors with the extreme reduction of the Ja-

cobian dimension by 99.9% and Eq. (16) from 50,000 equations to

28 equations.
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Fig. 11. Percent energy (left y-axis) and singular values (right y-axis) from applying

SVD to the 460 snapshots taken from TC3.

To compare the full and reduced models, a simulation timeframe

of 3000 days is divided into 20 150-day, stress periods with a time

step of 2 days. Water is extracted from the domain from the wells

during the odd-numbered stress periods (e.g. 1, 3, etc.) and there is

no pumping during the even-numbered stress periods (MNW2 may

still have intraborehole flow). For all stress periods the GHB, DRN,

RCH, and RIV remain at non-zero values. At the end of the simula-

tion the full and reduced models’ cumulative percent mass balance

errors are 0% and 0.6%, respectively. The largest NRMSE across all

time steps is 3.5%. The error results from the full and reduced models

are summarized in Fig. 12. The histogram and RMSE exceedance curve

2 4 6 8 10 12 14 16

MAE [cm]

0

50

100

150

200

250

C
o

u
n

t

0 20 40 60 80 100

Excedence [%]

0

5

10

15

20

25
R

M
S

E
 [

cm
]

Fig. 12. TC3 (left) histogram of themean absolute errors from all time steps and (right)

exceedance curve of the RMSE.

is compiled by computing the MAE and RMSE from the reduced and

full models for each time step of the simulation. Themean average er-

rors are acceptable considering the level of reduction demonstrated

in TC3. The exceedance curve has a 5% chance of being 0.212 m or

greater, which is about an order of magnitude greater than the 5%

from TC1 and TC2. This increase is expected since the number of cells

in TC3 is an order of magnitude greater than TC1 and TC2.

Assuming that errors propagate from previous time steps, the

results of the final time step should be the least accurate. Fig. 13

is a contour plot of the water-table elevation at the last pumping

stress period (2850 days) and the last recovery stress period (3000

days), which occur at times 1425 and 1500 days, respectively. The

reduced model matches the full model with the contours in general
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Fig. 13. TC3 comparison between the full (left) and reduced (right)model’s water table

elevation at the last pumping stress period at 2850 days (top) and the last recovery

stress period at 3000 days (bottom).

agreement of each other (Fig. 13). By splitting the calculation theMAE

and NRMSE for only the time steps with pumping (Fig. 13, top) and

those with recovery (Fig. 13, bottom) shows that the reduced model

is slightly more accurate during pumping. These associated errors for

pumping and recovery are aMAE of 0.108m and 0.116m, respectively,

and NRMSE of 0.62% and 2.4%, respectively. The larger error metrics

during the recovery time steps is most likely the result of selected

snapshots not adequately representing the recovery of the model or

information that was related to the recovery is removed by using a PE

of 99% (a higher PE would include more information from the snap-

shots).

Fig. 14 presents the pumping from the MNW2 well in TC3 for the

full and reduced models. Since the desired pumping rate (Qdes) is

non-zero for the odd stress periods, the head in thewell rapidly drops

due to pumping. During the even stress periods there is no pumping

and the well water level in the MNW2 well (Fig. 14, left) recovers as

water seeps in from the two screened layers. During the course of

an odd stress period (pumping) the net flow rate from the layer 3

screen starts to drop as the head in the well lowers. Consequently the

layer 5 screen’s net rate increases to meet the desired pumping rate.

The reduced model does not exactly reproduce these nonlinear re-

sponses; however, the differences are negligible and the overall trend

matches.

5.2. Three-dimensional test case (TC4) of Santa Barbara

groundwater-flow model

In order to present our method’s applicability to a “real-world”

problem, we developed a scoping groundwater-flow model based on

the published model of the Santa Barbara groundwater basin [29],

located in Santa Barbara, CA, Fig. 15. The original model input files

are designed for MODFLOW-88 [31]. To apply model reduction the

flow and solver input files are converted to the UPW/NWT input files,

and the remainder of the packages updated for simulation with MF-

OWHM. Thismodel has been partially calibrated and is constructed to

illustrate the applicability of model reduction for the presented test

case.

The Santa Barbara model, now referred to as TC4, is composed of

56 layers, 58 rows, 152 columns and has 113,578 active model cells.

The first layer follows the land topography with a maximum and

minimum elevation of 179 m mean sea level (msl) and –4 m msl,

respectively. Each model layer has an average thickness of 6 m and

the deepest model cell bottom has an elevation of –340 m msl. The

row and column lengths are a constant value of 76 m. The TC4 do-

main (Fig. 15) contains six mapped fault lines that are represented

as horizontal flow barriers (HFB). Mountain-front recharge along the

northeast boundary is represented by the recharge package (RCH).

In the southeast region there is a drain network (DRN) that removes

water from the groundwater system. The rivers located in the ac-

tive model domain are simulated using the RIV package. The ocean

boundary is represented as a freshwater equivalent head using the

GHB package and the remainder of the model boundary is no-flow.

The cell-wise hydraulic conductivity data is developed by compiling

drillers’ log data, electrical-resistivity data, and geologic maps to de-

rive a semi-continuous hydraulic conductivity value for every model

cell. Seven production wells are simulated with the WEL package

and have screening intervals that span across multiple layers. Un-

like MNW2, the well package cannot accommodate pumping spread

across multiple model cells directly. Instead, multiple WEL cells are

required to represent a well’s screened intervals. The total pump-

ing from a well is distributed across the multiple WEL cells accord-

ing to the cell’s hydraulic-conductivity value. Due to this limitation

the seven production well sites (Fig. 15) are represented by 114 WEL

cells.

To construct the reduced model eight sets of snapshots, exponen-

tially distributed in time, are collected (NSET = 8). To capture the

model’s unpumped dynamics, one set of 28 snapshots is collected,

without pumping but with RCH, RIV, GHB, and DRN, spanning from

0.1 days to 5000 days (near the initial condition to quasi-steady state

time). The next seven sets of snapshots contain 19 exponentially dis-

tributed snapshots from 0.03 days to 1323 days (near the pumping

quasi-steady state) with one of the seven wells set to a constant
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Fig. 14. TC3 full and reduced model’s (left) MNW2 well water level and (center and right) MNW2 screen flow rate where positive flow is out of the layer and into the well.
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Fig. 15. Overview of the Santa Barbara Model, TC4.

pumping rate. The combined snapshot sets are mean centered, nor-

malized and then SVD is applied to obtain the POD basis. The associ-

ated errors from different POD basis dimensions are then evaluated

using the TC4 scenario.

The accuracy of the reduced model is compared with the full

model during a 2-year simulation with monthly pumping changes

(24 stress periods). Each stress period is equal to the days in a month

(e.g. 31, 28, 31 days) with four time steps per stress period and

beginning in January. During the first year, the pumping rate for the

sevenwells increases from a small rate to amaximum rate from stress

period 1 to 9 and then decreases to zero from 10 to 12. The pump-

ing rates are different across the seven wells with the smallest stress

period 1 rate being 178 m3/d and largest stress period 9 rate being

4823m3/d. The second year repeats the same pumping schedule that

is applied to the first.

For this synthetic scenario, the full and reduced models are evalu-

ated at 99%, 99.9%, and 99.99% PE, which results in a POD basis com-

posed of 86, 127, and 147 vectors, respectively. The three different

bases derive reduced models with different levels of accuracy. At the

end of the simulation the full and 99%, 99.9%, and 99.99% PE reduced

models have a cumulative percent mass balance errors of 0.1%, 2.9%,

1.9%, and 1.88%, respectively. Fig. 16 presents the snapshot set’s sin-

gular values and their corresponding PE values along with the as-

sociated errors for the three aforementioned PE values. The largest

NRMSE across all time steps for the three PE values is 0.16%, 0.13%,

and 0.13%, respectively. There is a direct correlation with the accuracy

loss by lowering the PE below 99.99%. As would be expected, smaller

values of PE have the benefit of a smaller POD basis, but at a loss in

accuracy. This is not necessarily true for larger values of PE (>99.99%)

due to the fact that eventually basis vectors will be included that con-

tribute nearly zero information to the reduced model. This is demon-

strated by (Fig. 16) the large improvement in the reduced model’s

MAE histogram and exceedance curves between PE values of 99% and

99.9%, but a negligible improvement from PE values of 99.9–99.99%.

In fact, the RMSE for PE values of 99.9% and 99.99% are nearly identi-

cal (Fig. 16).

Since there is little improvement beyond a PE of 99.9% the sub-

sequent discussion and analysis are from this PE value, which re-

sults in a POD basis composed of 127 basis vectors. This POD ba-

sis then reduces the model derived from TC4 from 113,578 equa-

tions (Eq. 7) to 127 (Eq. 16), reducing the dimension by 99.9%. Fig.

17 presents four hydrographs from the full and reduced models at

well locations specified as A, B, C and D in Fig. 15. Only the well sites’

upper-most (top WEL cell) and lower-most (bottom WEL cell) WEL

cells are presented in the hydrographs. Due to the three-dimensional

nature of this highly heterogeneous model, the Top WEL Cell does

not necessarily have a higher hydraulic head. Many factors can

cause this effect, such as having the top WEL Cell being surrounded

by lower hydraulic conductivity cells than those that surround the

bottom WEL Cell. The reduced model precisely represents the full
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Fig. 16. TC4 snapshot set’s singular values and corresponding percent energy (top) and

the error between the full and reduced models at different percent energies (PE).

model at each location through both the pumping and recovery of

TC4.

The simulated water table at the end of the 2-year scenario is pre-

sented in Fig. 18. The simulated water-table elevation varies from

–1.3 m msl to 133.5 m msl (Fig. 18). The effect of the fault lines

(Fig. 18) is easily identified by the sharp contrasts in water-table ele-

vation (Fig. 18). The drain network (Fig. 18) is also apparent from the

loweredwater-table elevation. At the scale of Fig. 18, visually, the sim-

ulated water tables for the full and reducedmodels are indistinguish-

able. This is quite significant considering the original model requires

the solution of 113,578 equations for each Newton step compared to

the reduced model’s 127 equations.

5.3. Quantification of CPU time savings

It is difficult to quantify improvement in CPU time due to many

factors that affect overall simulation time. For example, the reduced

model’s system of equations are solved by using the LAPACK’s Gen-

eral Matrix LU decomposition with partial pivoting and row inter-

changes (DGESV) [26], while the NWT package includes a choice

of two highly optimized solvers specifically designed for its matrix

structure. The current implementation is also undertaken in a way to

ensure that the computer code performs as expected with minimal

code refactoring for speed purposes. What is common between the

full and reduced models is that they are compiled with the Intel Vi-

sual Fortran Composer XE 2013 SP1 for single thread execution and

run on a Dell Precision M6700 with Windows 7,32 GB RAM, a Sam-

sung 840PRO SSD hard drive, and Intel Core i7-3840QM processor at

2.8 GHz. With the aforementioned computer the CPU time required

for completion of the full and reduced models for TC3 are 24.3 min

and 7.6 min, respectively. For TC4 the CPU times are 33.5 min and

6 min, respectively. For this initial investigation of unconfined model

reduction, there is a significant savings in CPU time. Further improve-

ment is possible through better identification of snapshots and opti-

mized solvers.

6. Discussions and conclusion

This paper describes a novel method for applying projection-

based model reduction to unconfined groundwater-flow systems and

applies it to four test cases. The POD basis is derived from taking snap-

shots from the original, full model and applying singular value de-

composition to identify the dominant proper orthogonal modes. This

POD basis is applied through the Galerkin projection to the Jacobian

in the Newton formulation of MODFLOW. This results in a significant

reduction in the dimensionality of the Jacobian for transient, uncon-

fined groundwater-flow models. This method is not limited to the

unconfined groundwater flow and can be applied to a groundwater

system that is strictly confined (Eq. 1). In fact, the model reduction of

the four test cases were originally validated using only the confined

equation (Eq. 1), before their evaluation with the unconfined equa-

tions (Eqs. 1 and 2).

The four test case examples illustrate that the reduced model

can replicate the full model under a variety of scenarios and main-

tain a small mass balance error. TC1 and TC2 demonstrate that

the reduced model replicates the original model when multiple

MODFLOW layers are dewatered. TC2 and TC3 incorporate an MNW2

well to increase the complexity. The reduced model verifies that not

only for the simulated water table; it also closely matches the simu-

lated well head level and intraborehole flows. TC3 and TC4 produce

reduced models that simulate three-dimensional groundwater flow

in a heterogeneous system. TC4 is amore complicated case composed

of 113,578 model cells with a spatially varying horizontal hydraulic

conductivity, vertical hydraulic conductivity, and specific storage. In

each of the test cases, the dimensionality reduction is at least an order

of magnitude, resulting in faster simulation runs.

Snapshot selection does affect the reduced model’s fidelity to

the full model. Poorly selected snapshots result in a poor basis and

consequently a reduced model that does not accurately reflect the

full one. In this case, the best reduced models are developed from

exponentially distributed snapshot times starting just after the initial

condition to steady state under a constant forcing. For certain nonlin-

ear problems the reduced model is further improved by continuing

to take snapshots with the forcing turned off in order to capture the
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Fig. 17. TC4’s full and reduced models’ simulated hydrographs at the four production wells identified as A, B, C and D in Fig. 15.

Fig. 18. TC4’s full (top) and reduced (bottom) models’ water table elevation at the end

of the 2 year scenario.

dynamics of the nonlinear recovery. This is especially important for

multi-node wells in order to capture the intraborehole flows under

no pumping. Another improvement, which was not needed for the

presented test cases, is to collect snapshots at different constant rates

(e.g. two snapshot sets for one well, but at different rates). Taking

two sets at different rates makes the set less sensitive to the actual

snapshot times, though generally this results in larger-dimensioned

reduced models. After the snapshots are collected, applying mean

centering to the final set greatly improves the reduced model and is

recommended for the presented model reduction formulation. An

important area for future research and expansion is for an automatic

or optimal decision tree for the selection of snapshots.
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Chapter 4 

Conclusion 

Groundwater resources provide a stable, potable water supply when exploited appropriately. 

Assessing groundwater resources through the application of mathematical models that simulate 

the dynamics of an aquifer system provides a better understanding of them. Mathematical models 

provide information on how to minimize negative environmental impacts and aid in quantifying 

and analyzing groundwater sustainable usage. Complex, highly-discretized groundwater 

simulation models often have a large computational requirement that can prevent more advanced 

understanding and analysis. This dissertation presented two new model reduction techniques that 

significantly lower the computational burden by reducing the state dimension, hydraulic head, of 

a groundwater simulation model. This chapter concludes and summarizes the two papers 

presented in Chapters 2 and 3.  

4.1 Parameter-Independent Model Reduction 

Groundwater simulation models require the specification of hydraulic conductivity values that 

are assigned to a predefined zonation pattern. The zonal hydraulic conductivity cannot be 

directly measured requiring its inference from an inverse problem. Solving both a deterministic 

and Bayesian inverse problem require numerous simulation runs to complete their evaluation of 

hydraulic conductivity. Model reduction can significantly lower simulation time, but only works 

for zonal values of hydraulic conductivity near the zonal values used to construct reduced models 

Galerkin projection operator. This limits the applicability of model reduction to inverse problems 

because as hydraulic conductivity deviates from the value used to build the Galerkin projection 

operator would necessitate recollecting new snapshots and rebuilding the operator. This is 
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especially problematic for Bayesian inverse problems because sampled hydraulic conductivity 

varies lognormally, necessitating a new Galerkin projection operator for each sample. Presented 

in Chapter 2 is a new methodology that constructs a Galerkin projection operator that does not 

have to be rebuilt for any sampled hydraulic conductivity. The reduced model has a high 

reusability because it can also work for solving a deterministic inverse problem and pump 

schedule management problems. 

Most model reduction methods are predicated on the parameter values selected to 

generate the snapshots. Chapter 2’s methodology automatically determines parameter sets that 

should be represented in the reduced model and then automatically selects the appropriate 

snapshots for that parameter set. The proposed methodology constructs a reduced model that 

accepts any reasonable combination of hydraulic conductivity as input. The reduction is done via 

a Galerkin projection operator, which is an orthonormal basis, and called, in Chapter 2, the 

parameter-independent projection matrix. This orthonormal basis is constructed by iteratively 

selecting parameter sets and their corresponding snapshot times through the use of two greedy 

algorithms. A greedy algorithm solves a multi-stage optimization problem by combining the 

optimal solution obtained from each stage. In general, a greedy strategy does not guarantee 

global optimum, but, in many instances, yields a good approximation to the optimal solution. 

The advantages of Greedy optimization are its easy implementation, fast execution, and often it 

yields a solution when multi-objective optimization problems fail due to nonuniqueness.  

The parameter sets are selected by solving a bounded optimization problem at each 

greedy stage, called the Parameter Greedy Step. In between each Parameter Greedy Step a set of 

corresponding greedy optimal snapshot times are selected. The process of selecting a new 

snapshot time is called the Time Greedy Step and yields a single snapshot for each Greedy stage 

that is added to the parameter-independent projection matrix. These snapshots from different 

groups of parameters are collected into one large basis that when made orthonormal becomes a 

parameter independent Galerkin projection operator. This operator reduces by one to three orders 

of magnitude the dimensionality of the original, full model and reproduces accurate solutions for 
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any reasonable combination of parameter values.  

The proposed methodology is validated on a conceptual one-dimensional, five zone 

confined aquifer, Chapter 2-Figure 2. The constructed Galerkin projection operator reduces the 

groundwater flow system equations from 303 to 33, resulting in an average time savings of 23% 

(0.08 s) using the Chapter 2’s described computer architecture. A synthetic observation set, that 

is corrupted with noise, is derived to validate the reduced models ability to reproduced the same 

deterministic inverse and Bayesian inverse problems solutions as the original, full dimensional 

model. The deterministic inverse solution of the reduced model differed from the full model 

solution with relative errors from 1% to 5%, while the resulting Markov chains for the Bayesian 

inverse solutions were found to be statistically equivalent between the reduced model and the full 

model.  

The range and validity of the proposed parameter-independent model reduction 

methodology was demonstrated by exploring three different large-scale, highly discretized 

models of a two-dimensional, conceptual, confined aquifer in the Oristano plain of Sardinia, 

Italy. The three versions contain the same well locations and boundary conditions and differ only 

in their number of hydraulic conductivity zones. The number of zones between the different 

versions are: 3, 7 and 15 zones and referred to as Z3, Z7, and Z15, respectively. All three 

versions required the solution of 29,197 equations per simulated time step. The proposed 

methodology reduced the Z3, Z7, and Z15 models to 69, 127, and 273 equations, respectively, 

resulting in an average CPU time savings of 94%, 91%, and 84%, respectively. The reduced 

model maintains a high level of accuracy for a wide range of parameter values, with the majority 

of the mean absolute errors being 3 cm or less and the mean absolute relative errors 4% or less. 

The time savings is substantial considering that it would take an estimated 38 to 60 days to 

construct a Markov chain of 100,000 samples from the full Oristano model for all three versions. 
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In contrast, the Z3, Z7, and Z15 reduced models require 4, 7, and 12 days, respectively, to 

complete.  

4.2 Model Reduction of Unconfined Groundwater Flow  

When the piezometric surface of a confined aquifer lowers below its upper confining unit or 

there exists no upper confining unit, then the aquifer dynamics change from a linear response to 

nonlinear. This change is the result of how water is released from storage under confined 

conditions compared to unconfined. The unconfined condition produces a free surface upper 

boundary called the water table or phreatic surface. Since most shallow well systems extract 

water from unconfined aquifers, and excessive pumping of confined aquifers can dewater them 

to unconfined conditions, the simulation of unconfined flow is an essential part of regional 

groundwater modeling projects.  

Complex, highly discretized unconfined models can have a substantial computational 

requirement to simulate groundwater flow. Using MODFLOW-OWHM and the Newton 

Formulation of MODFLOW, which is a variant of the Newton-Raphson method, improves the 

stability of the solution and the convergence speed of the simulation, but for many scenarios is 

computationally intractable to allow advanced analysis. The issue with the Newton formulation 

is it involves solving the inverse of the nonsymmetric Jacobian. To reduce the computational 

burden, and thus the simulation runtime, Chapter 3 uses the Galerkin projection to form a 

reduced dimension Jacobian, solves for the inverse of the reduced Jacobian, and then calculates 

the Newton step. This drastically reduces the computational demands of solving the inverse of 

the Jacobian allowing more advanced unconfined analysis. 

The projection-based model reduction uses a POD basis that is derived from taking 

snapshots from the original, full model. The basis removes any linear dependence and identifies 
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the most dominant basis vectors, the proper orthogonal modes, through singular value 

decomposition. This POD basis is applied through the Galerkin projection to the Jacobian in the 

Newton formulation of MODFLOW. This results in a significant reduction in the dimensionality 

of the Jacobian for transient, unconfined groundwater-flow models. This method is not limited to 

the unconfined groundwater flow and can be applied to a groundwater system that is strictly 

confined with significant improvements on accuracy and time savings because the groundwater 

flow equations become linear. 

Chapter 3 presents four test cases that illustrate that the reduced model can replicate the 

full model under a variety of scenarios and maintain a small mass balance error. The most 

significant reduction occurs in the fourth test case. This case contained a real world simulation 

model of the Santa Barbara and Foothill groundwater basins and requires solving for the inverse 

of a Jacobian matrix composed of 113,578 rows for each Newton-Raphson iteration. Applying 

the Galerkin projection results in a reduced dimension Jacobian is composed of 127 rows. That is 

a three order of magnitude of reduction (~99.9% reduction) in the Jacobian dimension. 

Snapshot selection does affect the reduced model’s fidelity to the full model. Poorly 

selected snapshots result in a poor basis and consequently a reduced model that does not 

accurately reflect the full one. This limitation of POD includes the number of snapshots, the 

simulated times that they are taken at, and, for nonlinear models, the value of the forcing itself. 

From empirical tests, each independent forcing should have between 10 to 50 snapshots that are 

exponentially distributed in time. These snapshots are collected under a constant reference 

forcing and range from slightly beyond the initial condition to quasi-steady state. If the model is 

highly nonlinear, then more snapshots maybe necessary increasing the number of snapshots at 

times where the reduced model performs unsatisfactorily.  
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The reduced model for unconfined flow tends to be more accurate while under stress      

(i.e. pumping) compared to its recovery from that stress. To increase the accuracy during 

recovery, it is recommended to take an additional 10 to 50 exponentially distributed in time 

snapshots. These snapshots begin slightly beyond the termination of the forcing and end when 

the groundwater system returns to its no forcing, steady state condition.  

Selection of the pumping rate does influence the accuracy of the reduced model to 

replicate nonlinear responses. A good rule of thumb is to select a rate that dewaters the aquifer 

layer or produces a drawdown equivalent to the largest observed drawdown at that well location. 

This ensures that the snapshots that are collected contain all drawdown and the recovery 

information that the original, full model could potentially calculate as output. If this is 

problematic or the reduced model fails to reproduce the original, full model, then another 

alternative is to take sets of snapshots at different pumping rates for the same pumping well. 

These two sets of snapshots, taken at different pumping rates for the same well, would start just 

beyond the initial condition, end at their respective steady states, and then capture their 

respective recovery.  

After the snapshots sets have been collected and combined, the size of the final projection 

basis is determined by the Percent Energy (PE). Typical values for  range from 99% to 

99.99%, where smaller values lead to fewer basis vectors at a cost of less accurate reduced model 

results. The fourth test case explored the accuracy of the reduce model at different values of PE. 

This test case at 99%, 99.9%, and 99.99% PE results in a POD basis composed of 86, 127, and 

147 vectors, respectively. PE less than 99% yielded reduced models that produced unacceptable 

results. Increasing PE increases the reduced model accuracy with diminishing returns. Eventually 

PE
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the gain in accuracy is nominal and the reduced model dimension approaches the original, full 

model providing no significant time savings. 
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Chapter 5 

Future Research 

Two new model reduction techniques are presented in this dissertation. These techniques open 

new aspects of research and potential investigations that were not previously available. This final 

chapter discusses some potential future research ideas. 

5.1 Parameter-Independent Model Reduction and Sedimentary 
Texture Groundwater Flow Models 

A common practice for numerical modeling of groundwater flow is to distribute hydraulic 

conductivity into an aggregate of model grid cells, called zones. The zonal hydraulic 

conductivity values are calibrated by an inverse procedure using water level observations. It has 

been shown in the literature that a highly discretized model can be reduced by three orders of 

magnitude through methods developed for model reduction. The most popular method for model 

reduction is based on the Galerkin projection of the high dimensional model equations onto a 

subspace, approximated by a small number of optimally chosen basis functions. Chapter 2 

demonstrates that for a small number of zones, it is possible to develop a parameter-independent 

reduced model that will cover the entire parameter space in the original full-scale model. This is 

done by using basis functions from different combinations of parameter values. However, for a 

model with numerous zones it becomes infeasible to search for all parameter combinations. 

To reduce the number of zones, current groundwater modeling efforts have been making 

the assumption that horizontal (Kh) and vertical (Kv) hydraulic conductivities are correlated to 

sediment texture. Sediment texture is defined as the fraction of coarse-grained and fine-grained 
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sediment. An example location is a texture defined as 45% coarse and 55% fine (must sum to 

100). This assumption is based on the spatial correlation between saturated hydraulic 

conductivity and pore-size distributions in geologic media [1]. A method for estimating 

hydraulic conductivity based on this assumption has been applied successfully in previous 

groundwater-flow models of the central western San Joaquin Valley [2,3] and northeastern San 

Joaquin Valley [4,3]. The method uses the estimated sediment texture assigned to every model 

cell as a fraction of coarse and fine along with horizontal and vertical hydraulic conductivity 

estimates for each textural end member. The end members represent 100% coarse (Kc) and 100% 

fine (Kf) sediment. 

Faunt and others [5] identify the power mean as a useful means for estimating hydraulic 

conductivity values. In addition, their work includes a review of the literature that describes the 

use of the power mean for calculating hydraulic conductivity. A power mean is a mean (M) of 

the form: 

 ( )
1

1

1M
n p

p p
k

k

x x
n =

 =  
 
∑   (5.1) 

where 

 p is the averaging power-mean exponent from range -1 to 1, 

 n  is the number of elements being averaged, and  

 kx   is the thk  element in the list. 

The power mean can take any number set and derive different statistical means based on the 

value of p. The most common values of p are -1, 0, 1 to produce the harmonic mean, geometric 

mean, and arithmetic mean, respectively. A partial mean can be derived by using a fractional 

value of p, such as 0.8 would produce a mean between an arithmetic and geometric. 
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The horizontal hydraulic conductivity (Kh,i) can be calculated as the weighted arithmetic 

mean (p = 1) of the hydraulic conductivities for each cell (i) of the coarse-grained (Kc) and fine-

grained (Kf ) lithologic end members and the distribution of sediment texture: 

 h,i c c,i f f,i K K F K F= +     (5.2) 

where: 

 c,iF   is the fraction of coarse-grained sediment in a cell, estimated from sediment 

texture data as described in the previous section, and 

 f,iF   is the fraction of fine-grained sediment in a cell (
f,i c,iF 1 F= −  ). 

Because Kf is much smaller that Kc, the arithmetic mean largely is influenced by the K and 

fraction of the coarse-grained end member. 

Vertical hydraulic conductivity between layers (Kv,k+1/2) was calculated as the pth 

weighted power mean of the hydraulic conductivities of the coarse-and fine-grained lithologic 

end members [5]: 

 
1

1 1 c 1 fv,k+ c,k+ f,k+2 2 2
K F K F K

pp p = +  
  (5.3) 

where 

 1c,k+ 2
F   is the fraction of coarse-grained sediment between layer midpoints, and 

 1f,k+ 2
F   is the fraction of fine-grained sediment between layer midpoints. 

 

Phillips and Belitz [2] determined that vertical conductivities could be calculated using 

either weighted harmonic or weighted geometric means. Belitz and others [3] represented the 
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vertical conductivities with the weighted harmonic mean. Faunt and others [5] calculated the 

vertical conductivities as power means in which p varied between –1.0 (the harmonic mean) and 

0.0 (the geometric mean).  

The relationship between hydraulic conductivity and the percentage coarse-grained 

deposits that are combined with the hydraulic conductivity end members and the exponent of the 

power mean is nonlinear. Kf is sensitive to the averaging method used. Both the harmonic and 

geometric means more heavily weight the fine-grained end member and as a result, the 

calculated vertical hydraulic conductivity is much lower than the horizontal.  

The sedimentary texture formulation results in a semi-continuous representation of hydraulic 

conductivity that only requires calibrating the two end-member K values (Kc and Kf). This 

formulation changes the search space for the construction of the parameter-independent reduced 

model from the number of zones to just the two end-member K values. This would change the 

Parameter Greedy Step to the following: 
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 (5.4) 

Equation 5.4 searches for the two end members, fK  and Kc , within a range of reasonable values, 

 , that maximizes the error between a normalized full model's steady state head, 1( )SS
jh K + , and 

the normalized reduced model's steady state head, 1P ( )SS
j r jh K + . This drastically reduces the 

search space in the construction of the parameter-impendent reduced model.  

The proposed methodology can be tested on a sedimentary texture version of the Chapter 

2 test case of the confined aquifer in Oristano, Italy. The Oristano model can be altered from its 

original zonation pattern by defining the 57,888 elements with a fraction of coarse- and fine-
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grained sediment. This highly-heterogeneous model is reduced by selecting combinations of the 

end member coarse (Kc) and fine (Kf) hydraulic conductivity at a specific/constant power, p, of 

the power mean function. Using this parameter independent reduced model, the deterministic 

inverse problem and Bayesian inverse problem can be evaluated to test the accuracy of the 

reduced model and time savings.  

5.2 Unconfined Model Reduction Using the Picard Method  

Chapter 3 presents a new methodology that reduces the dimension of the Jacobian required to 

solve discretized, transient, unconfined groundwater flow via the Newton-Raphson method. 

Previously, unconfined groundwater has not been successfully combined with model reduction. 

The code discussed in Chapter 3 was implemented as a standalone package within the 

groundwater simulation software, MODFLOW-OWHM [6,7]. Another method of solving 

unconfined flow is to use Picard iterations until the solved heads match the heads used to satisfy 

the nonlinearity. In practice the Picard method is less stable than the Newton when modelled 

layers dewater (i.e. the simulated head is below the model cell bottom). However in practice if 

model layers do not dewater, then the Picard method is significantly faster than the Newton. 

Using the existing framework described in Chapter 3, it should be easy to modify the code to 

solve unconfined flow with the Picard solution and model reduction.  

5.3 Optimal Snapshot Selection and Unconfined Flow  

One issue found in Chapter 3 is that the snapshot selection is critical for producing accurate 

reduced models. The Time Greedy Step described in Chapter 2 presents a unique way of 

identifying greedy optimal snapshots. This method could be applied for selecting snapshots for 

the unconfined groundwater reduced ground model. Also since the original publication of Boyce 
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and Yeh [8], Chapter 2, there has been many new and more advanced releases of Genetic 

Algorithm (GA) codes that can handle more complex multi-objective optimizations. Given these 

GA codes the            Time Greedy Step can be recast as follows:  
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  (5.5) 

where each greedy stage, i, would select the greedy optimal pumping rate, Q, within the pumping 

range  , to take snapshots a user specified count of snapshots, n, within the time frame .� Note 

that now the resulting hydraulic head, ( ),k
j i

th K Q  , is a function of both the current hydraulic 

conductivity set, jK , and the pumping rate. Since snapshot times are not added sequentially, this 

method will lose the greedy optimal minimum snapshot count. However, instead of using QR to 

evaluate Pj  at each Greedy stage, this method would use singular value decomposition and 

percent energy to automatically trim the insignificant basis vectors. This will lead to excess 

snapshots being taken, but will find the greedy optimal pumping rate to collect snapshots from 

and provide an automatic framework for determining if multiple pumping rates should be 

employed to collect snapshots.  
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