Skip to main content
eScholarship
Open Access Publications from the University of California

UC Riverside

UC Riverside Electronic Theses and Dissertations bannerUC Riverside

Developmental Implications for Prenatal Exposure to Environmental Toxins: Consumption Habits of Pregnant Women and Prenatal Nicotine Exposure in a Mouse Model

Abstract

This dissertation provides a discussion of the effects of maternal consumption of environmental toxins, and will hopefully contribute to the prevention and understanding of developmental disorders and physiological deficits. Developing systems are particularly susceptible to toxic insults, and small changes in utero can result in long-term deficits. Chapter one of this dissertation reviews the potential teratogenicity of nicotine, alcohol, caffeine, MeHg, PCBs, BPA, and tap water contaminants, so as to characterize the current body of literature detailing the effects and implications of prenatal exposure to toxins. In chapter two, research on maternal consumption habits is presented, with an emphasis on commonly-consumed, potentially-teratogenic substances. Occurrences and frequencies of maternal intake of healthy and unhealthy foods, beverages, and medications in a population of predominantly Hispanic women in Southern California were assessed using the Food, Beverage, and Medication Intake Questionnaire (FBMIQ). The described study reveals that a proportion of pregnant women consumed BPA, MeHg, caffeine, and alcohol at varied levels during pregnancy. The following chapters provide an in-depth analysis of the postnatal effects of a particular neuroteratogen, nicotine, which has been shown to impart various detrimental postnatal effects on exposed offspring. A CD-1 mouse model of prenatal nicotine exposure (PNE) was used to analyze aspects of the brain and neocortex that may underly some of the cognitive and behavioral phenotypes seen with PNE. Analyses included postnatal measurements of brain weight, brain widths and lengths, development of neocortical circuitry, and cortical thickness measures. Exposed mice were found to exhibit reduced brain and body weights at birth, a phenotype that recovered by postnatal day 10. No changes in neocortical circuity or thickness in sensory and motor areas were found. PNE also resulted in persistent behavioral effects, including increased anxiety and deficits in sensorimotor integration abilities, in six month old females. Such analyses describe immediate and long-lasting postnatal effects of prenatal nicotine exposure, underscoring the importance of abstaining from nicotine during pregnancy. Hopefully, the works detailed in this dissertation will provide a foundation upon which future researchers can build a better understanding of how prenatal exposures contribute to developmental deficits.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View