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Cost Optimization in the SIS Model of Infectious
Disease with Treatment

Steven M. Goldman James Lightwood
October 31, 1995

Abstract

We consider the intertemporal social optimization problem of minimiz-
ing the present value of the costs incurred from both disease and treatment.
Though the analysis is complicated by the analytical failure of concavity ,
we are able to substantially characterize both the long run equilibria and
the adjustment paths. The cost minimizing program is shown to exhibit
a tendancy towards decreased levels of treatment in the presence of higher
disease levels. The socially optimal program is compared to individually ra-
tional behavior and the inefficiencies in private behavior from the infection
externality are shown to cause potentially large increases in the equilibrium
rate of infection.

1. Introduction to Economics Of Medical Treatment In The
SIS Infectious Disease Model

1.1. Background

The control of infectious disease has been one of the most dramatic successes of
modern science. It has certainly been one of its most important contributions to
the current standard of living in all but the most undeveloped countries. Much
of this is due to prevention through improved hygiene, and improved medical
technology, particularly immunization and and treatment with modern antibiotics.
However the reasons for changes in the prevalence of many infectious diseases
are still poorly understood (tuberculosis in developed countries is an example)




and the economics of treatment and prevention of many diseases is still at a
rudimentary stage of development. The formal basis for the study of epidemiology
of infectious disease was only developed in the twentieth century. Pioneering work
by Ross (1911), and Kermack and McKendrick (1927) established an empirically
useful mathematical theory. Their work has been the foundation for almost all
subsequent empirical and analytical research in epidemiology and cost-benefit
analysis of control programs. Much of this research in reported in the authoritative
references of Bailey (1975), and Anderson and May (1992).

Research on the costs and benefits of particular control programs has a long
history, beginning with Daniel Bernoulli’s analysis of smallpox prevention through
variolation in the eighteenth century (See Bailey 1975 for a detailed discussion).
There is now a large body of work on the cost-benefit analysis of infectious disease
control in the public health literature. Macdonald (1965) is an early analysis of
the control of helminth infections. Hethcote and Yorke (1984) is an analysis of
the comparative effectiveness of different policies for control of gonorrhea. There
is also a large literature on the control of tropical parasites, and childhood viral
diseases such as measles, rubella and polio, as described in Anderson and May
(1992). The full dynamic solution of the control problem is usually very difficult
and a closed form solution does not exist except for very special cases. Therefore
many dynamic analyses are numerical simulations of particular models. See Gupta
and Rink (1973) for an example. This type of analysis, while useful for many
public health issues, is lacking in robustness and does not yield general principles
because the basic parameters of the disease processes vary, so the sensitivity and
applicability of the results are open to question.

The economic analysis of the interaction of public health control strategies and
individual incentives to engage in treatment and prevention activities is still in its
infancy. The primary work in this area concerns the economics of immunization
against vaccine preventable diseases, and HIV infection. Fine and Clarkson (1986)
examine the difference between the social and individual private value of immu-
nization levels. Brito, Sheshinski and Intriligator (1991) show that compulsory
immunization is not optimal, and examine the optimal subsidies for immunization
against vaccine preventable diseases in a population with heterogeneous tastes for
engaging in prevention. Geoffard and Philipson (1992) study the incentives for
eradication of vaccine preventable diseases. Philipson and Posner (1993, 1994)
study the economics of prevention and treatment for HIV infection. Blower and
MacLean (1994) and Le Point and Blower (1991} examine the effect of control




programs for HIV infection on the behavior of sexual active adults. These papers
are important contributions to a poorly understood field. However, none of them
provides a complete analysis of the dynamics and equilibrium of both the socially
optimal policy for disease control and the effect of decentralized individually ra-
tional decision making by members the population. This is an important area
of research because of the well publicized re-emergence of infectious disease as a
serious public health threat, and the decreasing levels of funding for public health
efforts. This paper attempts to provide the foundation for such an analysis.

The general analysis of the economics of infectious disease is quite difficult
for at least four reasons. First, the generic lack of closed form solutions to the
dynamic control problem, as mentioned above. This is related to the second
reason: typically the value function for a social optimum will not be concave
(See Lightwood 1994). Third, many individual decisions in the prevention and
treatment of infectious disease are rather complex involving the dynamic nature of
both costs and benefits. For example, immunization against childhood disease is
an irreversible and individual specific durable investment rather than consumption
of a flow service. A discussion of the difficulties involved in modeling economic
decisions with regard to HIV infection is found in Philipson and Posner (1993).
Four, infectious disease involves an obvious economic externality. An infected
individual is often infectious, and not only incurs the cost of his own disease, but
also imposes costs on other susceptibles in the population who are liable to be
exposed to the contagion. This paper studies a simple model of medical treatment
in one of the simplest models of infectious disease: the SIS model.

1.1.1. The SIS Infectious Disease Model Without Medical Treatment

The SIS infectious disease model is appropriate for a diseases for which both
recovery and re-infection are likely to occur. Therefore the model is most often
used for bacterial or parasitic infections for which no permanent immunity occurs
after recovery. There are two states in the model: the susceptible state, S, and
the infectious state, I. The letters S and I will be used to denote the state and the
number of individuals in that state whenever there is no danger of confusion. A
person in the infectious state S is healthy but susceptible to become infected with
the disease upon exposure to the contagion. Upon infection the person enters the
infected state I. The person remains in the infected state I until recovery, and
is assumed to be infectious to susceptibles for the entire duration of the infected




state. There is a constant and finite probability of natural recovery in each period,
and no superinfection is assumed to occur. The assumption of no superinfection
limits the applicability of the model to microparasites such as bacteria, and certain
macroparasitic diseases where the variation of the parasite population living in the
individual is not important. Upon recovery the person re-enters the susceptible
state. The initials SIS refer to the movement of a typical individual through the
two states of the disease: Susceptible—Infectious—Susceptible.

The model will be in continuous time, and the individuals will be modeled as
a continuum of representative agents. A large number approximation will be used
for the probability of infection in this analysis, so the model will be deterministic
and the infection rate will be used to model the continuous time probability rate
of infection

The SIS model without medical treatment is usually presented in three equa-
tions:

1. dS/dt = —(BI)S + A
2. dI/dt = (BI)S — Al
3.S+I=N=1

where [ is the transmission coefficient of the disease, lambda is the sponta-
neous recovery rate of an infected person, and S, I, 8, A > 0. For simplicity the
total population IV is normalized to unity.

Equations (2) and (3) are sufficient to characterize the disease process. The
force of infection is equal to the transmission rate, 3, multiplied by the level of
infection in the population, I. The incidence of infection, SIS, results if the mass
action principle of contagion holds. This means that infected persons spread a
short lived infectious material into their local environment which then can be
transmitted to susceptibles upon contact. The economic implication of the mass
action principle is that modification of individual behavior is not a reliable means
of prevention. This is particularly the case when the individual is infectious at or
before the onset of the disease symptoms. Measles is a good example of a disease
which exhibits this characteristic. People infectious with measles will spread the
virus into the local environment when they breath. Susceptibles coming into
contact with the same area will be exposed even after the infected person has
been gone for up to several hours. The mass action principle does not hold in




general for sexually transmitted diseases, where direct person to person contact is
required. See Anderson and Nokes (1991), or Cappasso (1993) for & more thorough
discussion.

Setting dI/dt = 0 in (2), there are two possible sets of equilibrium levels of
susceptibles and infectives, which are determined by the value of A/8. ¥ A/8 > 1
then there is one stable equilibrium,

S§*=1,I"=0. _

Disease can occur temporarily in this case if an infected is introduced to the
population, however the epidemic will eventually die out. If A/ < 1, there are two
equilibria. There is one unstable equilibrium, often called the trivial equilibrium,
where I* = 0 and a stable equilibrium with a proper fraction of the population
infected with the disease at all times,

St =AB,I*=1-MX/8.

The unstable equilibrium will be broken by the introduction of a small number
of infecteds and the disease process will approach the stable equilibrium above.
All epidemics of the disease will approach this stable equilibrium and the disease
is endemic.

Elementary introductions to the SIS model can be found in Hethcote (1976)
and Allen (1994). Briscoe (1980) is a discussion of the use of the SIS model in
early research on tropical parasites. A cost benefit analysis using the SIS model
applied to the control of trachoma on a Native American Reservation can be found
in Sanders (1971). Modifications of the SIS model can also be used as a basis for
simple models of gonorrhea and syphilis, as shown in chapter 19 of Murray (1989).

1.1.2. The SIS Infectious Disease Model With Medical Treatment

This paper will consider the economics of a simple medical treatment. Qur anal-
ysis begins with an extension of the work begun by Sanders (1971). Assume that
during each period the infected individuals can purchase and consume medicine
or other therapy that will increase their rate of recovery. The treatment will be
assumed to be a flow good, and its effect is independent of the duration of treat-
ment and it has no preventive properties upon recovery. Therefore only infecteds
will purchase treatment, and their decision to purchase will be independent across
time. The treatment will also be assumed to exist in discrete units, with each in-
fected consuming exactly zero or one unit of treatment. Using equation (2) this
results in the following model: dI/dt = (81)S— A\(I -~ M)—6M, where § > A > 0,




I>M >0, and M is the number of infected individuals consuming treatment.

If M = I in each period, i.e. every infected individual receives treatment then
the model reduces to dI/dt = (81)S - 61.

The equilibria of the model with full treatment is parallel to that of the model
without treatment. If §/A < 1 then there is an endemic full treatment equilibrium
with one stable steady state with §* = §/A, I* = 1—-§/A. Otherwise full treatment
will eliminate the disease from the population.

Assume that the disease imposes a constant per period economic cost (say, in
lost work days, reduced activity levels and physical suffering) of Cj, and a per
period cost function for treatment of C(M).The principal analysis below will be
carried out assuming C(M) exhibits increasing marginal cost, i.e. is convex, but
a variety of alternative assumptions will also be considered.This completes the
framework for the economic model.

It should be noted that in evaluating the benefit of treatment the infected
will also need to evaluate the risks of re-infection in returning to the susceptible
state. If the probability of re-infection is high, the benefit of treatment will be
reduced. This is because, in the absence of any effective preventive measures, the
infected will expect to avoid the costs of infection for a only short period since the
individual expects to be re-infected quickly. However if the probability of infection
is low, then the benefit of treatment will be higher because the infected will enjoy
a long period in the susceptible state. Also note that at low levels of infection,
full treatment can occur because the cost of treatment is low, but the benefits of
treatment tend to be higher than otherwise because of the low probability of re-
infection. At high levels of infection, it will often be the case that only a fraction
of infected individuals will seek treatment because the cost of treatment will be
high and quick re-infection is very likely.

Two assumptions on infecteds’ expectations will be analyzed, including

1. static but continuously adjusted expectations, and

2. fully rational expectations in which the infected correctly predicts the entire
future time path of the level and probability of infection in the population.

Sanders (1971) presents a similar social control model (using Calculus of Vari-
ations techniques) but restricts C(M) to a simple linear form which results in a
typical ”"bang-bang” solution for treatment. Subsequent work by Sethi (1974) (us-
ing Pontryagin’s Maximum Principle) analyzes the same structure and employs
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turnpike theory to consider the infinite horizon case. For linear costs, Sethi is able
to establish the uniqueness of the optimal program. Our analysis extends these
results in three significant directions:

1. The non-robust assumption of linear costs is removed and more general
behavior emerges,

2. The dynamic adjustment paths are described and characterized,

3. The model examines individually rational behavior w.r.t. the socially opti-
mal.

1.1.3. Limitations of the Model

The SIS model is a standard epidemiclogical mode! which has been found ac-
ceptable in empirical work. The practical application of the SIS model is limited
compared to other mathematical models of the disease (e.g. the SIR model,
which covers diseases for which infection confers permanent immunity, is appli-
cable to such serious and important diseases as viral meningitis, hepatitis, and
typhoid).Nonetheless, the SIS analysis serves as a foundation for other categories
of disease.

The basic model is very simple and it ignores such factors as a incubation
and latency periods, and the reduction or disappearance of infectiousness that
often occurs before recovery. The assumption of mass action transmission has
been found acceptable in empirical research for most diseases that do not require
direct contact. A serious limitation of the model is the assumption of a constant
and time independent recovery rate, with and without medical treatment. This
assumption is most questionable for recovery with treatment, since in actuality
repeated failure will often lead to a change in therapy, or an attempt at a re-
diagnosis. This is the same as assuming an exponential distribution of time to
recovery, but it has been found to be acceptable as a rough approximation to
time dependent recovery processes in epidemiology. See chapter 3 of Anderson
and May (1992) for a fuller discussion.

The cost of the disease can be interpreted as the expected cost. Since the
model] is linear in terms of the cost of disease, this is an acceptable approximation
for diseases which may have relatively rare but serious side effects for risk neutral
agents. If the disease remains at a low level for a long period, there may be




delays in the application of treatment because the disease is unrecognized, or the
appropriate protocol for treatment is poorly understood. In practice there also
usually will be significant adjustment costs, which are ignored in this model.

2. The statement of the optimization problem.

Our problem then is to minimize the total discounted cost of disease - both direct
and from treatment - over the indefinite future. We shall initially deal with the
finite period version of this problem and then examine the limit of these programs
as T becomes arbitrarily large.

2.1. The Maximum Principle!

Minimize the objective function:
T
/ (Cal(t) + C(M(2))) e~ "t
0

where p is the rate of time preference, subject to the continuous time version of
the infection equation:?

-6:;—?)=ﬁ1(1—~1)——)\(1—M)——6M

2.1.1. Necessary Conditions for Optimization.

The spot value of the Hamiltonian expression for the intertemporal optimization
problem can then be written

H = C(M)+ Cal +@[BI(1 = I) = \(I — M) ~ 6M]

where the spot shadow cost of another infected individual, ¢, changes according
to: : ‘

ER0) _8H

ot PPT a1

1See e.g. Knowles (1981) especially Chapter 3 and 4.
>The time argument (t) is surpressed in the notation where no confusion would result.




or, expanding,

dp(t
—(g%—l =(,Dp—Ca+<P(-fﬁ+2ﬁI+A)
and M is chosen to minimize H so 0
>
C(M)+o(A=8)¢ =03onlyif M={ €][0,]]
< I

With increasing marginal cost, M is an increasing function in ¢®. The ratio-
nale for these diseconomies stem not only from production but from individual
differences in the cost of obtaining treatment resulting from both personal imped-
iments as well as difficulty of reaching increasingly more remote members of the
effected population and, of course, crowding and capacity limitations in general.
Finally, since I(T’) cannot reach zero in finite time, the transversality condition
may be written (T) = 0.

2.1.2. The interpretation of .

Along the optimal path, the costate variable ¢(t) -the spot cost of another infected
- equals the addition to the minimum present value of costs from t onward of
another infected at time {. Minimizing the Hamiltonian w.r.t. M then trades off
the instantaneous cost of treatment against the reduction in the rate of change of
infection that results. For an interior solution this dictates that the marginal cost
of treatment be equal to the marginal cost of infection, ¢, multiplied by (§ — A),
the reduction in the rate of change of infection due to the additional treatment.

2.2. Characteristics of the Phase Space.
The &l = 0 locus is described by

BI1-1)—A(I—-M)—6M=0

or
=B+ (B= NI =(—- M

which describes a concave curve with intercepts of 0 and Q—E—’l in the IM phase
space. Above this curve, I is decreasing and below it’s rising. This locus is

3Sanders(1971 ) considers a special case where marginal costs are constant. We shall recon-
sider his model in a later section as a special case of our formulation here.
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modified for implied values for M larger than I: When I < ﬂ then M cannot

attain a high enough value to cause & = 0 (since M is bounded by I). Thus,
should ‘BT > 0, the & m = 0 locus dlsappears for I < *‘BT and further g{ = 0 for
I= ? and ¢ > —C-f‘-g‘(-?-_%:ﬂ,
Now 2%9 (or %@) is positive (or negative) as
Ca < (>)olp + 28I + A~ )
so the g%gﬂ = { locus is described by:

Ca
(p+28I+2-0)

When I = 1 this always yields a positive value for . As I is lowered the
denominator falls and ¢ is higher rising asymptotically at I = EJ’—— For still

{’pz

smaller values of I, -%—l is always negative.

Letting C"(M) = «, the steady states to %g—l =0 and %ﬂ = 0 must solve
Ca(6 — 2)?
(8~ N1 - a1 p+ 2~ 2o - SE=N_g

We shall characterize the Phase Space by its major structures - here the J-l ==
0 and —‘P—(—l = () loci and the locus for the adjoint variable associated w1th full
treatment M = 1. The stationary points are those associated with the
intersection between %ﬂ 0 and —‘f’ﬂ = 0. Of course, (p,I) = 0 is also a
stationary solution in the sense that —gﬁ Wu = {0, It must be remembered
that for particular parameter values the model may be degenerate and some, or
even all, of these intersections may fail to occur. For our exposition here, we shall
concentrate on the most general cases.

Figure 2.1 illustrates the nature of the phase space with the —”—9 = {) and

i";—(tﬂ = 0 loci along with the M = I boundary, on and above thch the entire
population is treated, indicated as a dashed line.*

4The diagrams are constructed using Maple V3 from the following parameter values:
a=1000, 3=0.12,6 =0.1, A =0.06, p = 0.05, Cy = 200
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Figure 2.1:

2.2.1. An informal walk through the dynamics of the Phase Space

The 2%?) = ( locus becomes asymptotic at [ = &5’;—_3. For combinations of (1, )
above this locus, @ is rising while below, it declines.

The 19_‘19(;2 = 0 locus has the form of an inverted parabola with I increasing
below and decreasing above. There is, however, one modification which arises
from the limitation that the number treated M cannot exceed the number infected,
I. Thus for high values of the shadow price, ¢, ng(tﬂ becomes simply BI(t)(1 —
1(t)) — 61(t) so that when the total population of infected individuals is treated, I
simply moves in the direction of maz{0, 9—;—5} When Qg-‘i > 0, the %@ = 0 locus
becomes vertical at max{0, 'B—gﬁ} za.nd%(tEl = 0 is undefined for I € (0, %)

We may summarize the critical values for I in the phase space as follows:

1. the no-treatment equilibrium for I ({€) in figure 2.1): -‘-5-;—"
2. the I asymptote for stationary ¢: I = E%E
3. the full treatment saddle point {(a) in figure 2.1): maz{0, 4}

4. the low treatment saddle point ({¢) in figure 2.1): the largest root to ((8 —
2
M~ BI%)(p+ A — B+ 28I) — SlED g
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5. the unstable steady state ((b) in figure 2.1): the smallest positive root to
2
(8= NI = BP) o+ X~ p+201) — S0 =0

2.2.2. The Stationary Loci

A necessary condition® that there be interior stationary solutionsis 3 — A > 0 in

which event there are as many as three stationary points in the phase space in
addition to (0,0):

1. A stationary point of type a exists if the Q%Eﬂ = 0 locus intersects the vertical
lineat I = *‘% at a value of ¢ larger than A+ p — 8+ 28 max{0, ng}(as in
figure 2.1). Otherwise stated:

Cy amax{{),%}
A+p—ﬂ+2ﬁmax{0,£§-‘§}_ §— )

The (possibly)? interior saddle point (a)describes full treatment at M = J =
-5 -$
(%°) and o = (%5°) (%)

2. Stationary points of type b and ¢ exist if the unmeodified %Q = 0 and
%ﬂ = 0 loci intersect. This intersection will fail to occur if the cost of the
disease, (Y, is sufficiently great. The solution (¢} is at a relatively high infec-
tion rate characterized by a saddle point (the rightmost of the intersections
between the 2 = 0 and 242 = 0 loci), while the second (b) is described
by an explosive and possibly cyclic point at a lower infection rate.(see the

Appendix on the Equilibria in the Phase Space for the derivation of the
roots to the approximating linear systems at the stationary points).

Since the optimization problem is not concave, the usual uniqueness and suf-
ficiency characteristics of the transversality conditions fail and comparisons must
be made along all paths satisfying the necessary (or first order) conditions.

The characterization of the optimal solution can now be described in terms of
behavior w.r.t. these stationary points.

5By applying Descartes’ rule of signs. In the event that §—\ < 0, the disease will disappear on
its own without intervention. The only economic question is what resources to use in hastening
its inevitable self-eradication.

8The point a could occur on the vertical axis if 5—55 <0.
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2.3. The Finite Time Horizon

Since there is no constraint imposed on I(T'), then the optimal endpoint value
for the adjoint variable along an optimal path, p* (T) = 0. As T becomes large,
¢{0) must adjust so as to lengthen the time it takes the trajectory to reach the
horizontal axis. Figure 2.2 illustrates the backward paths from the I axis.In order
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Figure 2.2

to gain an understanding of the possible finite period optimal paths, consider all
paths which terminate in finite time along the I axis. This may be accomplished
by starting at points along that axis and running time backwards in the first
order differential equations describing the motion in the phase space. Figure 2.2
illustrates this family of backward paths. In this illustration we note three distinct
type of trajectories depending upon the terminal value for 1. For low values, the
backward paths miss the (a) saddle point to the left, for intermediate values they
lead back to the unstable equilibrium (b) and for still higher values they trace
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back toward the neighborhood of the saddle point at (c) to the right.

There are essentially four different stories (resulting from two possibilities in
each of the following two cases) depending upon where the backward paths from
the saddle points intersect the %ﬂ = 0 locus. (see figure 2.3 below for perhaps
the most mathematically interesting).

1. If the left backward path from the rightmost saddle {¢) does not intersect
the Q{le = 0 locus to the right of max{ég-é,()} (point (d) in figure 2.1), the
trajectory is monotone. The right backward path is always monotone and
any initial ¢(0) below these paths results in ¢(t) reaching zero in finite time.
For paths above, ©(t) cannot converge to 0; it may approach a stable limit
cycle or may become arbitrarily large. Thus, the backward paths from the
I axis will lie under the two branches of this path. These optimal programs
“ride along” below, the stable branch of the saddle point only to, eventually,
depart downwards for the horizontal axis. As the time lengthens, these
paths bow in toward the saddle point (in whose neighborhood they move
with nearly negligible speed). These paths exhaust the possible solutions.

2. Alternatively, if the left backward path from the rightmost saddle (c) passes
to the right of (d) , then the (reverse) stable branch bends backwards where
it crosses the %&9 = 0 locus and spirals inward either toward (b) or to a
stable limit cycle enclosing (b). Then for low initial values of I, paths which
miss (a) on the low side may either proceed monotonically toward the J
axis or even possibly spiral inward about (b) themselves. As time lengthens,
these paths bow inward towards the turnpike at (a).

The branches to the two saddle points divide the space. Either one of the
paths (both stable branches) misses the parabolic portion of the 2L = 0 locus or
they both "connect” at (b). This latter case where both of the backward arms
spiral in about (b) is depicted below in figure 2.3. This division will aid in defining
a region for the ¢(0) where ¢(T') could reach 0.

2.4. Infinite Time Horizons

The choice of an infinite time horizon poses possible problems relating to existence
of a solution. We shall instead suppose that there is a finite horizon, 7', as above,
then allow T' to become arbitrarily large and examine the limiting path.

14
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Figure 2.3:

Under the assumption that costs are quadratic, it is possible to show that any
path which asymptotically approaches I = % without treatment is dominated
and hence, cannot be optimal.” These are precisely the paths for which the
shadow price becomes negative in finite time. This result follows directly from
the assumption that marginal cost goes to zero as the level of treatment is small,
so it would always be cost effective to treat minimally.

As T' — oo the optimal paths must take longer and longer to reach ¢(T") = 0.
The way in which this can be accomplished from a given starting I (0) is to alter
©(0) so that the paths lie closer to the stable branches from the saddle points
causing the trajectories to "bow inward” toward those saddle points (where they
move slowly) in the manner of the usual turnpike theorems in growth theory.
Therefore the limiting program must either coincide with a stable branch to a
saddle point converging to either the rightmost equilibrium (type (c) )or else to
the leftmost (type (a) ).

"The argument is developed more fully in the Appendix on the Non-optimality of Inaction.
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In the example above (figure 2.3), the limiting response as T ~+ oo is described
by the stable branches to the saddle points at (a) and (¢), i.e. the two spiral arms
emenating from (b) outward to {(a)} and beyond and (c) and beyond. For any
initial I, choosing (0) to place oneself along this locus would lead toward one of
the saddle points. However, where the paths are spirals, only those portions of
the paths between the saddle points and the %&9 = 0 locus need be considered
since it can never be optimal to choose an initial value for (0) such that the
trajectory returns to the same value of I at a later time (see figure 2.4).2

8000+
6000+
4000+

2000+

Figure 2.4:

The remaining overlap between these two paths cannot be resolved without
direct computation - a consequence of the non-convexity in the problem itself. In
that event that the rightward path does not extend fully to I = 0, there will be a
discontinuity in the relationship between I(0) and the optimal starting value for

8See the appendix on repetition of I values

16




©(0). There will be a single switching point (as we increase the starting value for
I} where we ”"jump” from the leftward moving path to the rightward. °

Consequently, there is a negative monotone relationship between the level of
infection and the optimal number of individuals treated - either of the two paths
separately and even if there is a jump from the left path (i.e. the one through
(a)) to the right one (through (c)). This somewhat surprising result is driven by
the lowered value of treatment resulting from the increasing risk of reinfection as
the number of infecteds in the population is increased.

2.5. A Brief Digression on Full Treatment and Eradication
2.5.1. Optimality and Full Treatment

Under what conditions could it not be optimal to remain in such a full treat-
ment state? These circumstances are dealt with in the Appendix on Phase Space
Behavior, and summarized as follows:

The left backward path from (c) must pass to the left of (d). Thus all fi-
nite period optimal program trajectories lie under the stable saddle point paths
through (c) so their turnpike is at equilibrium (¢). In this event, the limiting
program must leave the full treatment state. This situation is guaranteed to arise
when § > 8 and p+ A+ 8—-26 <0 (or B < 6 and p+ A — 8 < 0). Eventually
Q%ﬂ would become negative (and less than —Cy) in the neighborhood where [ is
near maz{0, 973_-‘-5} and ultimately ©(t) < 0. As mentioned above, these programs
cannot be efficient.

2.5.2. The Possibility of Eradication 8 < §:

The capability to eradicate of the disease entirely would require that mwould
be negative for small values of I. Now when M = ], Aﬂ = [B(1 = I) - 8] ! so,
for small I, —!—@ < 0 if and only if 3~ 8§ < 0.

9If the valuations are the same along the two paths for any two distinct values of J then, at
intermediate I's, the valuations must also be the same. If this were not true, then it would be
possible to start at a point on the lower valuation path, to then move along that path until the
future valuations were equal and then jump to the other path and move in the reverse direction
until the original value of I was reached again, thereby creating a superior (i.e. lower cost) cycle

violating the necessary conditions. The argument is expanded in the Appendix on Valuation
Paths.
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This is exactly equivalent to the condition that the / = M boundary (depicted

in figure 1.1) lies everywhere above the %‘P = 0 locus. The slope of that locus,
evaluated at I = 0, is equal to
(B—Aa

(6—A)?
while the slope of the boundary where I = M is given by
a

& A
We have presumed that both § and § are larger than A. If A > 3, the disease
disappears without intervention.

2.6. Other Structures for Treatment Costs
2.6.1. Constant Marginal Costs

Where marginal costs are constant, say at MC, the above analysis takes on a
slightly different flavor. The expression for %ﬂ along with the ?—‘;ﬂtﬂ = 0 locus
remain unchanged but now M = I (or 0) as ¢ >(or<} €. The phase space
then takes on an extreme form of figure 2.1(see figure 2.5) with the same locus for
_r?%%?) = 0 but with %ﬂ = {} replaced by a horizontal line segment at % between
a vertical extension upwards at Eg—é and one downwards at “% . These vertical
segments denote the full treatment and no treatment equilibria respectively. When
the shadow value of treatment ¢(t) exactly equals MC the level of treatment is
indeterminant but could be set so as to equate Qgtﬂ with 0.

The stability properties are as in the general case, with the intersection of the
vertical segments and the ?%9 = 0 locus as saddle points and the intersection with
the horizontal line as an unstable stationary state. As before, there are two sets of
paths, one from each of the saddle points which constitute the possible solutions
for optimal behavior. It is quite possible that an optimal program would initially
treat and then cease treatment after the infection rate rose above some boundary.
The turnpikes - or long run equilibria - would occur with either no or maximal
treatment.

2.6.2. U-Shaped Average Costs

Our consideration here is principally with a program that incurs setup costs. The
analysis is similar to that of the main presentation except that now treatment
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Figure 2.5:

ceases entirely when its shadow value, (6 — 1), falls below the minimum of
average cost, M AC. The phase space picture in figure 2.1 is altered to reflect a
region of zero treatment where (6 — A) < MAC. When ¢ attains this value, the
level of treatment is at either zero or that associated with M AC. For values of ¢
above this level, the story is unaltered. The effect then is to split the phase space
(see figure 2.6) horizontally at MAC and to replace the portion of the a_{_l =0

locus in the lower portion by a vertlcal line at ‘@-—— For ¢ = ﬁg”‘f , Aﬂ may be

maintained at 0 by ”chattering”, though in the deplctlon in figure 2.8, —‘ﬂ(—l would
be negative and the system would quickly fall into the no-treatment state 10

2.6.3. Decreasing Marginal Costs

Where the marginal cost of treatment, C'(M), is actually declining, then it is
Hamiltonian minimizing to treat the entire infected group if Q(Q < (6 — A)

and otherwise treat none. The horizontal portion of the ~—5&l = 0 locus - which
separates the full treatment from the no treatment region - in figure 2.5 is here
replaced by the montonically declining (6—%7 There may be numerous special

cases depending now on the additional complexity of the relative curvatures of

101t is possible to "pick up” two additional equilibria if the 2‘%53 = 0 locus intersects the new

flat and vertical portions of the 9%%1 = 0 locus - one, an unstable equilibrium at the minimum
of the average cost curve and the other a stable no-treatment equilibrium.
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Figure 2.6:

c{

VY boundary and the Q%tm = 0 locus.

the p =

3. Individual Behavior

3.1. The behavior of firms:

Here, we shall be deliberately vague. The structural nature of the treatment ”in-
dustry” is a potential source of concern and is a basis for study in itself. Decreasing
marginal costs may lead to a natural monopoly while increasing marginal costs
could result in a veritable continuum of firms.We will simply assume that each

agent can purchase one unit of the treatment at the marginal cost of production
as reflected by C'(M).

3.2, Stationary Expectations

The individual’s treatment decision depends upon forecasting the likelihood of
future reinfection. Here, the rate of future infection in the population is taken
as a stationary projection of the current rate. At each moment, the individual is
presumed to change that projection to reflect the current rate of infection. We
shall characterize an equilibrium in such a model as a forecast which, if believed,
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would indeed instantly be realized from the cost minimizing individual behavior.
The individual’s problem may then be reduced to treating if and only if

L (Cot Pyt < [7 (Coute)erar

where y,(t) and y,(t) denote the probabilities of being infected at time t where
the individual always chooses treatment or no treatment, respectively.

In particular, the probabilities of such individuals being infected at some future
time are given by:

.ia%ft@ = BI(t)(1 - ¥ (t)) — by (1)
and
3%(” = BI(t)(1 — yu(t)) — Mu(t)

where the change in the individual’s probability of infection equals the likelihood
of infection if healthy less that of cure if infected. Supposing that the societal rate
of infection is perceived to be constant, these equations may be solved for y,(t)
and y,(t) starting with an individual who is infected, i.e. y(0) = 1. Thus

BI + e~}

r{t) =
vl = =51
and
BI + Ae—(BI+Ap
1) =
The integrals of these costs, treated and untreated, become, respectively,
*° - Ca+ P)(BI + p)
Cu + Py (t)) e~"tdt — {58
[ (Cat Prut)e ot iy
" CalBI +9)
oo C tWYe Pidt = Ld\PL TPy
i (Caeyeriae =5 =8

An equilibrium is described by a triple {P, I, M} such that:

1. P<L %‘T—:} with strict inequality implying that M = I.

2. oM =P
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3. BI(1—=1)~MI - M)—6M=0

The first condition simply states that individuals will purchase treatment if the
marginal benefit of treatment exceeds its price. The second states the equality
of the marginal cost of treatment to its market price - the usual competitive
condition and the third states the long run equilibrium condition that the overall
level of infection in the society is constant at 1.

Then, in an interior solution,

_ Cal6— )
T BI+X+p

BI1=1I)=AI—M)-6M=0.

Solving simultaneously, I must satisfy
Ca(6— N —al(B-A~BD)(p+A+B8I) =0

There is a boundary solution at [ = M, where I = max{O,E—E-é}, These
equilibria correspond to those of the more sophisticated expectations model below.

3.3. Individually Rational Behavior

Our model here corresponds to the notion of rational expectations. Individuals
correctly predict the future path of the infection rate in the population and their
optimizing behavior brings about this very path. Suppose first that the societal
level of infection is perceived to follow some future path I(t). The individual, if
infected, bears a cost Cy and may choose treatment at some additional per period
cost of P. In deciding whether or not to treat, the individual must look forward
to the future probability of becoming reinfected. The higher that likelihood, the
less valuable will be intervention. As before, the proposed treatment raises the
rate of cure from A to 6.
The representative individual’s problem may then be reduced to minimizing

| (et vyPO@) e et

where y(t) denotes the probability of being infected at time ¢, P(t) is the cost
of treatment at time ¢, and () is a control variable - (either 0 or 1) identifying
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whether the individual chooses treatment if infected at time t. The probability of
infection evolves as:

2 — pr(e)(1 - y(0) - M1 - W) - 50

where I(t) is the rate of infection in the population as a whole. The problem
is, again, one in the calculus of variations.. The spot Hamiltonian expression
governing this minimization is then

H = (Ca+ 9O P)y(®) + B BIE)(1 — y(t)) — M1 = %(8))y(t) — Su(t)y(t)]

where the future path of both I(t) and P(t) is presumed correctly known to the
individual (i.e. perfect foresight). The control variable is chosen so as to minimize
H thus 9(t) = 1 if P{t) + p(t)[A — 6] > 0 and ¥(t) = 0if P(t) + o(t)[A - 6] < 0.
If we are to have an internal solution where some proper fraction of the infected
population elects treatment, then P(t) = ¢(t)[6 — A]. The shadow price (t) must

evolve according to 2%9 = pp— %‘g— or

%(t) = —(Ca+ Y(E)P®) + () BI(E) + A+ p — Mp(t) + 69(t))

But since P(t) = ©(t)]6 — A] this can be rewritten as

%@ = —Ca+o(t)[B1(t) + A+ p]

Now in aggregate, the fraction of the population infected, /() must be equal
to the probability of any individual being in the infected state, or y{t). Further,
the number of individuals receiving treatment M (t) must equal 9 (f)y(t). 1! So,
we have an equilibrium described by

1. aM(t) = @@)[6 — A
—\\2
2. 20 = BI(1)(1 — I(t)) — M (1) — E=2Lel)

3. 20 = Gy + (1) BI(E) + A + ]

1 Remember that with individuals indifferent to treatment or not, the fraction treated will be
just that number necessary to equate the marginal cost of treatment with its shadow price.
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The phase space characterizing the necessary conditions for an optimum tro-
Jectory has the same general appearance as in the socially optimal case. Indeed,
the a—Ia(? = 0 loci are identical but the Q%(tﬂ = 0 locus is now shifted downwards

to
- %
YO = s+ x5

- the denominator has increased from p+28I+A— 8 by (1 —I(t)) . The stationary
solutions now are roots to

Mmg
o

((B = NI = BI)(A+p+pI) ~

and the rightmost saddle point is at a higher level of infection than in the socially
optimal case.

Figure 3.1:

3.4. A Non-marginal observation and the role of intervention

When, in the socially optimal model, the Q—é‘%)- = (0 and 2%59 = 0 loci fail to
intersect, the optimal path will ultimately involve full treatment. The individually
rational model, with its lower Qﬁg = 0 locus could still present a right saddle
point solution with a higher asymptotic level of infection. The difference is not
merely the marginal shift from the higher locus but a global one from the absence
of the right saddle point in the social model. In this event, there may be a major
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impact from the introduction of subsidies to modify individual behavior. In our
example here, the only long run equilibrium in the individual case in figure 3.1
is at (') and there is no individual solution corresponding to (a) at all! Since
paths (individual or social) will spend most of there time near the turnpikes,
for some initial conditions (e.g. for initial I's in the neighborhood of (a)) the
social optimum will be near (a) while the individually rational equilibrium will be
located near (¢'). Thus there can be a substantial duvergence between individually
rational behavior and the social optimum.

The difficulty lies in the individual’s failure to recognize the higher risk of
infection which his or her own would impose on others. Thus, any single person
undervalues the benefits of treatment. Standard solutions of the form of either
subsidizing treatment or raising the cost of being infected (albeit a heartless ap-
proach) could serve to alter the individual incentives to correspond to the social
costs.

3.5. Growing Population

If population, P, grows at some steady rate, say n, then the model may be recast
in terms of % and %. With two critical assumptions, the dynamies of the model
remain virtually unaltered.

1. The rate at which susceptibles are infected depends upon the density of
infecteds in the overall population, i.e. ﬁ% replaces A1 in the dynamics infection
equation, and

2. The costs of treatment depends on both the level of treatment and the total
population size in a linear homogeneous relationship, i.e. C(M, P). The costs of
treatment are assumed to vary from the distribution of individual characteristics
in the population - e.g. variations in opportunity costs. Greater numbers are
presumed to simply replicate this diversity.

In the dynamics, A 4+ n replaces A and the other variables, namely I and M
are simply converted into per capita terms. This increase in the ”effective” rate
of recovery by n reflects the tendancy of f},— to decline through growth in P.
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4. Appendices

4.1. On the Non-optimality of Asymptotic Inaction

Consider any path for which ¢(t) eventually becomes negative. Several observa-
tions are in order. First, once negative, (t) remains negative thereafter. Then

M (t) remains at zero and the level of infection grows to Y= Q—EA. As shown here,
under our assumptions regarding the costs of treatment, such a path cannot be
optimal.

Suppose the path ¢(t) has reached zero by time 7 and y(t) is proceeding toward
2'} and has reached :li\l —e. Redesignate this time as 0.

Then, uninterrupted, & = By(t)(1 — y(t) — Ay(t) and y(0) =% —¢. That is,
A
—(y -9 -2
(B —€) + A = Ble6-% — B( —¢)
The costs of following this program are then

/@Q! _ -9-n }(%t
0 (B(Y —€) + A — Ble=B-2t — B(y —e)

A
Alternatively, we could remain at ¥ —e by setting

y(t) =

B -1 — @ —€)) - A( ~o)

M) = Y

and incur costs of
A A A 2
/:o Cd(é’\' —€) + 0.5a (ﬁ(y —O)(1 - (¥ —¢)) — AW —-e)) } e Ptdt

&N
The difference in costs is then

A —~ {8\
w | Call¥ =6) i:(ﬁ(a—e)+a\—.6§f“(f’)‘*)‘~ﬁ(§"f} - 1] ¢
A(G) = _[ A A A 2 e "dt
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The first term in the above expression becomes
—(B=N) — (B —€) + A ~ Ble~E-Mt 4 B —e) __ Be(enpa 1)
(B(F —€) + A — Ble-E-Nt — B(Y —) Be(l — e B-3%) = B+ A

so the large integral expression becomes

I ( ~( )1 — eV (ﬁ(ﬁ —)(1 = (¥ —¢) — AW —e))) .

“Be(1— e~ B—) — G+ A 6— X

Differentiating w.r.t. € and setting € equal to zero reveals that the first term
becomes

(Be(l — e (=2 — g4 A) ((uﬁ y (1—e (B3 1 28¢(1 — e‘(ﬁ"‘)t))
. + (6 ~0pe(s - e E29p(1 - -
jl; Cy (Be(1 — e-B-2t) — g + A)?

which becomes

foo c (1 — e~ tB6-21) ((2,86 —B+A)(Be(1 —e TN — B4 X) + (8 — A — Be)e(1 — e“(ﬁ"‘)t)ﬁ)
(i (Be(1 — e=(5-2t) —~ g 4 A)®

or, for € = 0,
fo Ca(1 — e~ E-Mt)ertgs 5

The derivative of the second term w.r.t. € is:

_foooa (ﬂ(y —6)(1—'(‘63’_'}';;2— A(y _E))) (‘——ﬁ(l— 'ﬁ +€) +ﬁ(§ _f) + )\) e Ptdt.

which reduces to:

~ / (ﬁ(y —e)(1— ¥ +€) — A(¥ «-e))) (26 + B X)e"d

6—Ap2

When ¢ = 0 this becomes:
A s A
o ﬁy(lﬁy)_)‘y) —pt
-/:} a( TSN, (B— ) e *dt
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which, upon substituting ‘!’J\'= % can be shown equal to 0.
Combining these results we have shown that A’(0) > 0 and since A(0) =0
it follows immediately that, for small ¢, the cost of continuing to 9 will exceed

A A

that for remaining at ¥ —¢. Since any path that converges to ¥ will have to pass

through this stage, it could not be optimal to discontinue treatment at any time
A

prior to ¥.

4.2. On the Equilibria in the Phase Space

The following treatment deals with the parabolic %ﬂ = 0 and the 22 = 0 loci.

¢ at

The Hessian associated with the pair of differential equations is simply
—B+28I4+p+X 28y | A B
e -26I+p-2|"|C D

At the rightmost stationary point where %‘f along %f = () is negatively steeper
than %‘_‘,3 along %‘g =0or
—B D
A7
respectively. (At the leftmost, this inequality is reversed.)
The eigenvalues must solve

(A-z)(D-2)-BC =2~ (A+D)z+ AD—BC =0

or

B

. (A+ D)y [(A+ D)*— 4(AD - BC)]

- 2
If BC > AD then the values of z are real and one root is positive and the other
negative. If BC < AD then the roots may be imaginary and exhibit cycles. Now

at the rightmost equilibrium %5} along % =0 and %‘;i along %t’e = (0 are negatively

sloped so 0 > :f > —_D—C, and —C and B are positive. Therefore A must also be

positive and

"BC > AD

roots are real and of opposite signs so the equilibrium is a saddle point.
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At the leftmost equilibrium, the inequality relating the sloped of the stationary
loci is reversed, i.e.

-B D

— < ————
' A -C
and %‘f along %‘f = 0 is negatively sloped, so once again A and —C are positive
and now

BC < AD

and now T is either complex or has two positive real roots!

Finally, note that A+ D = p and therefore if the roots are complex, then
the real part equals p and is positive! So behavior at the leftmost equilibrium is
always explosive if p > 0, i.e. the rate of time preference is positive.

4.3. On Phase Space Behavior

Consider and differential equation %gl = —C + 0f(t). The genera! solution is
then given by: o
() = C+ ;96
where & is determined by initial conditions.
Now the behavior of (t) is bounded as follows:

—CatoO)(p+r=B) < 228 — o) (prA-B+261()) < ~Carplt) (4 148)
since I must lie in the interval [0, 1].

But £ is determined by the initial conditions so (taking 0 = (p + A — )
and C = Cy) if (0 + X — B) > 0 then a choice of p(0) > €2 will compel the
corresponding & to be positive and o(t) will go off to infinity. Eventually on such a
path, M(t) would become equal to I(t) and remain so. Then I(t) — max{0, £5¢}.

?ltematively, a choice of p{0} < p—g‘ﬁ would cause ¢(t) to approach —oo.
or

Cd Cd
prr—p > ¢(0)> p+A+p

or (p+ A — f) < 0 we need to examine the interaction between ¢ and I in more
detail.
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We are interested in whether, asymptotically, ©(t) can remain high enough
to cause M(t) = I(t) mdeﬁmtely - the full treatment trajectory. Now I{t}) —
max{0, %} so we have two cases to consider:

1. B > 6: Supposing that we keep M(t) = I(t) then I{t) — "5 £-% and 2;%(? —

—Ca + o(t)(p+ A + B — 26). I, initially I(t) > *‘9— , then _%El > —Cy+
e(t)p+ A+ B — 26) so p{0) > M—A%—"ﬁ andp+/\+ﬁ— 26 > 0 imply
the associated value for £ > 0 and (&} — co. If p+ A+ 8 — 26 < 0 then
eventually ¢(f) must fall and continue to fall (when I(t) nears 3———-) and

M(t) < I(t).

2. § > B: The above argument is repeated except that I{t) — 0 in the full
treatment mode. Here Qa%(? = =Ca+ot)p+A-0). H(p+2~-8) >0
then, for a choice of ¢(0) > p+A—B"p(t) — o0. With p+ A — 8 < 0 then,
again, eventually (t) becomes low enough to cause M(t) < I(t).

4.4. On repetition of [ values

Suppose a path began at some value of I and @ and eventually returned to that
same value of I at some later time 7. Denote the discounted cost during this
interval as A and the discounted cost for the remainder of time to be B so that
total cost is then

A+e B

If this program is better than simply starting with B then A+e "B < B. But
then, replacing the B in A+e "B by A+¢7#" B would produce a still lower value,
ie. A+e ?(A+e P B) and so forth. This A+ Ae "+ Ae™%"... = 2 would
be lower still. But this path is disontinuous in ¢ and violates the Pontryagin’s
necessary conditions.

4.5. On Valuation Paths

Consider the diagram in figure 4.1 respresenting the stable branches to the saddle
points at (a) and (c).

Suppose that the valuations from I and I3 are equal but that the valuation
from I is lower on the bottom path. Let the time it takes to traverse region C
be ty, B be t;, D be {3 and E be f;. Denote the valuation begining at I and
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Figure 4.1:

proceeding along the upper path by C+e ™ B+e~"(t11%2) A and the valuation from
I5 along the lower path is strictly less than along the upper path, i.e. F+ Fe~" <
B + Ae™™. Then, multiplying both sides of this inequality by e~ and adding
C' we have

C+e—rt2E+ Fe—r(t2+t4) < C+e—rth+Ae—r(h+t2)

but the R.H.S. of this inequality is simply equal to F by assumption. Hence a
contradiction.
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