Skip to main content
eScholarship
Open Access Publications from the University of California

UC Davis

UC Davis Previously Published Works bannerUC Davis

Paneth cells secrete lysozyme via secretory autophagy during bacterial infection of the intestine

Abstract

Intestinal Paneth cells limit bacterial invasion by secreting antimicrobial proteins, including lysozyme. However, invasive pathogens can disrupt the Golgi apparatus, interfering with secretion and compromising intestinal antimicrobial defense. Here we show that during bacterial infection, lysozyme is rerouted via secretory autophagy, an autophagy-based alternative secretion pathway. Secretory autophagy was triggered in Paneth cells by bacteria-induced endoplasmic reticulum (ER) stress, required extrinsic signals from innate lymphoid cells, and limited bacterial dissemination. Secretory autophagy was disrupted in Paneth cells of mice harboring a mutation in autophagy gene Atg16L1 that confers increased risk for Crohn's disease in humans. Our findings identify a role for secretory autophagy in intestinal defense and suggest why Crohn's disease is associated with genetic mutations that affect both the ER stress response and autophagy.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View