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Abstract

This paper shows that in a general equilibrium model with an infinite horizon in which
production may exhibit increasing returns to scale or nonconvexities which are internal to the
firm, marginal cost pricing equilibria exist and are essential, that is, stable with respect to small
perturbations of the economy. As in models with a finite number of commodities, marginal cost
pricing equilibria need not be Pareto Optimal, yet most systematic approaches to equilibrium
analysis in infinite dimensional commodity spaces rely crucially on the First Welfare Theorem,
which fails not only for marginal cost pricing equilibria in models with nonconvexities in
production, but also for equilibria in many economies with distortions such as extemnalities or
incomplete markets. This paper models equilibria in infinite dimensional commodity spaces as
the solutions to a system of nonlinear equations and introduces Leray-Schauder degree theory,
the extension of degree theory to Banach and locally convex spaces, as the natural methodology
~ by which to demonstrate that solutions to this system of equations exist, and by which to analyze
qualitative features of these solutions. These methods are used to show that marginal cost pricing
equilibria exist and are essential in an infinite horizon model with a finite number of
heterogeneous agents, and a single firm with nonconvexities in production.




1 Introduction

In his Principles of Economic Analysis, Alired Marshall introduced the term “external
economies” to describe economies of scale which were exogenous to individual firms
but endogenous to the industry. As refined by Edgeworth (1905), Pigou (1912),
and other proponents of this concept, it came to stand for the idea that increasing
returns to scale might exist in an industry in which each individual firm operated
under constant or decreasing returns to scale, but in which external effects between
firms produced industry-wide increasing returns to scale. As such, proponents of the
idea of external economies argued that increasing returns could be compatible with
perfect competition, since each firm did not recognize the industry-wide externality,
and would act like a classical price-taking firm producing subject to decreasing returns
to scale. The concept of external economies, and in particular the conclusion that
increasing returns to scale could be compatible with perfect competition, was rejected
by many economists of the time, including Sraffa, Young, and Knight. Indeed, Knight
objected to the entire concept of external economies, claiming “external economies in
one business unit are internal economies in some other” (1924, p.597), and introduced
the famous phrase “empty economic boxes” (1925) to describe external economies.

The same dichotomy can be found in contemporary work, but with the advent
of generai equilibrium theory, the claim that increasing returns to scale can be com-
patible with perfect competition was formalized, starting with the work of Chipman
(1970} who considers a single period homogeneous agent economy with production
characterized by such external nonconvexities. More recently, work on endogenous
growth models, which can be viewed as dynamic generalizations of Chipman’s model,
has begun to explore the implications of nonconvexities for the long run behavior of
dynamic, infinite horizon economies. Most of this work posits this specialized type of
nonconvexity in which individual firms face constant or decreasing returns to scale,
but operate in an industry characterized by externalities between firms, due for in-
stance to the effects of research and development or learning by doing, so that the
economy as a whole exhibits increasing returns to scale (see, e.g., Romer, 1986, 1990;
Stokey 1988). Suzuki (1990) has proven that competitive equilibria exist in a het-
erogeneous agent version of these models in which firms face what Chipman called
“parameterized returns to scale.”

The general equilibrium literature on economies with nonconvexities has focused
instead on nonconvexities which need not be external, but may be internal to the
firm, so that the source of increasing returns to scale need not be some external force
in the economy, but may arise from internal characteristics of the firm. Since com-
petitive equilibria will not generally exist in such models, the competitive notion 1s
replaced by notions such as marginal cost pricing equilibria or average cost pricing
equilibria. Mantel (1979) shows that in the finite horizon heterogeneous agent version
of Chipman’s model, the introduction of fundamental internal nonconvexities in the
firm’s production does not preclude the existence of equilibria, albeit not competitive




equilibria but marginal cost pricing equilibria, and proves that for smooth noncon-
vexities, marginal cost pricing equilibria exist. Indeed, there are quite robust results
on existence and determinacy of marginal cost pricing equilibria in finite horizon
models with nonconvexities in production (see Beato (1976, 1982), Beato and Mas
Colell (1985), Brown and Heal (1979), and for a survey, Brown (1990)). One of the
most important and illuminating methods of studying equilibria in economies with
nonconvexities in production, and indeed, in other models with distortions such as
incomplete markets, has been degree theory, whereby one can at once establish both
existence and local uniqueness of equilibria, and which also leads to computational
algorithms for calculating equilibria (Brown and Heal, 1982; Kamiya, 1988, Brown,
DeMarzo and Eaves, 1993}.

Although a considerable amount of research has focused on optimal growth mod-
els with nonconvexities, in which a social planner or representative agent seeks to
maximize an objective function over an infinite horizon consumption stream sub-
ject to production constraints which may be nonconvex (see, e.g., Chichilnisky, 1977,
1981; Majwndar and Mitra, 1982, 1983; Majumdar and Nermuth, 1982}, nothing is
known about the existence or nature of decentralized equilibria in models with an infi-
nite horizon, many different households, and general nonconvexities in production, as
would result in heterogeneous agent versions of the endogenous growth models if non-
convexities were not required to be external but rather were internalized by the firm.
Moreover, it is certainly not clear from the existing literature on infinite dimensional
models with convex production how such results might be obtained.? With the excep-
tion of Bewley’s (1972) work, all of the systematic approaches to equilibrium analysis
in infinite dimensional spaces rely crucially on the First Welfare Theorem, which, as
the seminal work of Guesnerie (1975) shows, fails for marginal cost pricing equilibria,
as well as for equilibria in other models with distortions such as incomplete markets
models. Both the Negishi approach {MasColell, 1986), searching over the Pareto op-
tima for prices and allocations at which each agent’s budget constraint is satisfied,
and the Edgeworth equilibrium approach (Aliprantis, Brown, and Burkinshaw, 1987a,
1987b, 1989), showing the existence of prices supporting allocations which are in the
core of every replica economy, are of no use when the equilibrium need not be Pareto
optimal or the core may be empty, as is the case with marginal cost pricing equilibria.
The limiting argument of Bewley, which demonstrates the existence of an equilibrium
as the limit of a sequence of equilibria of finite dimensional economies, becomes quite
complicated as the economy in question grows more complex, and could never be used
as the basis for a systematic approach to studying qualitative features of equilibria
in infinite dimensional models, features such as local uniqueness, comparative statics,

‘Indeed, Mas-Colell {1992) argues, “Equilibrium theory, however, is not exhausted by the classical
model. Its practical use has required the consideration of many departures and the incorporation
of many forms of “imperfections ” and market failures.... It would be comforting if we could assert
that once the infinite-dimensional extension of the classical model is well understood the extension
of the non-classical theory presents no particular difficulty. Unfortunately, this is not s0.”




stability, or for computation of equilibria.

This paper shows that marginal cost pricing equilibria exist in an infinite dimen-
sional analogue of Mantel’s (1979) model, a model with a finite number of heteroge-
neous agents, a single firm with nonconvex production, and an infinite horizon, and
that the set of marginal cost pricing equilibria is essential or “stable” with respect
to small perturbations in the economy. Marginal cost pricing equilibria are charac-
terized as solutions to a system of equations, and Leray-Schauder degree theory, the
extension of degree theory to Banach and locally convex spaces, is introduced as the
natural and systematic means by which to demonstrate that solutions to this system
of equations exist, and that the set of solutions is essential.

The paper proceeds as follows. Section 2 presents the assumptions of the model,
characterizes marginal cost pricing equilibria as the solutions to a particular system of
equations, and uses Leray-Schauder degree theory to show that marginal cost pricing
equilibria exist and are essential. Examples are given in section 3, and concluding
remarks appear in section 4. Finite dimensional degree theory is briefly reviewed in
the first appendix, and the main definitions and results concerning Leray-Schauder
degree theory are discussed there. Lengthy or tedious proofs are contained in the
second appendix.

2 Marginal Cost Pricing Equilibria

The setting for this paper is a private ownership economy with a finite number of
households in which production is carried out by a single firm. Increasing returns
to scale are allowed by permitting the firm’s production set to be nonconvex. To
capture the idea that this is a generalization of discrete time, infinite horizon growth
models, the commodity space is £, the space of all bounded real-valued sequences.
Before precise assumptions about the nature of consumers’ preferences or the firm’s
technology can be stated, some notation will be required. Let Y denote the production
possibility set of the firm. Given the social endowment vector w, let Y = (Y 4+w)Nloos
denote the feasible production set, let Y denote the boundary of the production set,
and let 8Y denote the efficiency frontier. The following properties analogous to those
assumed. for example, by Mantel (1979), Brown and Heal (1982), or Kamiya (1988)
in the finite dimensional case, are assumed to hold for the production set Y of the
economy.

Assumption P.
1. 0eY,Y — ({oy) CVY (free disposal);

2. 8Y is a smooth hypersurface in £, i.e., there exists a continuously Fréchet
differentiable function f : foo — R such that Y = {z € £ : f(z) < 0} and
Y ={y€ lx: fly)=0}




3. £ — R is weak™ continuous® and bounded;

4. Df(y) € 14r = {p € &1 : p, > 0 Vt} for every y.

Assumptions P1 is standard, with the exception that Y is not assumed to be
convex. Assumption P2 requires that the production possibility frontier be smooth,
so that while nonconvexities are allowed, they must be smooth ones. This assumption
ensures that the marginal cost pricing rule y = Df(y) is a well-defined function.
However, this assumption, and the restrictions it places on the type of nonconvexities
that production can exhibit, is not necessary; the results of this paper carry over
immediately to a more general model with a pricing rule ¢(y), such as average cost
pricing, so long as this rule satisfies the requisite assumptions made in the paper
concerning the marginal cost pricing rule. Assumption P4 reflects the requirement
that marginal cost always be strictly positive. The role that these assumptions play
will become cleaver after the equilibrium equations are defined. Examples satisfying
all of these assumptions are discussed in section 3.

Fach of the m households in this model has an endowment vector w;, owns share
8; in the firm, and has utility function U;. The following properties of households’
characteristics are assumed to hold.

Assumption H. For:=1,2,...,m,

1. U; : fuy — R is Mackey continuous,? strictly concave, strictly monotone, and
U0)=0;

9 ;= o, where w € by = {2 € loe 1z >0V}, 6, >0, and T2, 6: = 1.

Again assumption H1 is relatively standard, with the exception that consumers’
utility functions are assumed to be strictly concave, and serves among other purposes
to guarantee that certain optimization problems are well-defined and have nonempty
solution sets. The assumption that utility functions are Mackey continuous carries
the behavioral assumption of impatience or generalized discounting on the part of the
agents (see Brown and Lewis, 1981). Assumption H2 is the standard assumption of
a fixed structure of revenues, or a fixed income distribution. Under this assumption,
given prices p € ¢; and a production plan y € Y, a consumer’s income is simply fip -
(y+w). As Brown (1990) points out, this expression for income should be interpreted
as after-tax income, as the agents’ shares carry unlimited liability, and unlike the

2The weak™ topology on £ is the locally convex topology on £, under which a net {z°} in £
converges to an element z € £ if and only if p-z* — p-z for every p € 4y, and will be denoted
o‘(ﬂm , E; ) .

3The Mackey topology for the pairing {£w,£1}, which will be denoted 7(£oo, #1), is the locally
convex topology on £n, of uniform convergence on weak® compact, convex, balanced sets. A set §
is balanced if z € S and jA] € 1 implies that Az € S. Unqualified topological statements will refer
to the norm topology, and the standard topology on R™ will be denoted rgn.




convex case, by pricing at marginal cost with nonconvexities the firm may incur
losses. When the firm makes losses, owning shares in the firm then amounts to paying
a lump sum tax to cover those losses and provide a balanced budget for the economy
as a whole. While simplifying the analysis to a certain extent and representing a
plausible structure for income distribution, this assumption of a fixed structure of
revenues could be weakened, replaced by an assumption like that used by Bonnissean
and Cornet (1988a), for example, of some exogenously specified income distribution
{ri(y),i = 1,...,m}, provided these income functions are bounded, nonnegative,

weak” continuous, and satisfy Walras’s Law, so that p- 3. ri(y) = p- (y +w) forall p
i=1

and y.

In this framework, a marginal cost pricing (MCP) quasiequilibrium is a combi-
nation of consumption plans (z1,...,2Zm), & production plan y, and prices p such
that

. y+w € B}"’;

i p=Dfly);

. i T =y
v U@ > Ue) = 2tp-(ytw)lore=1,...,m.

A marginal cost pricing quasiequilibrium requires that production be efficient,
prices be set equal to the firm’s marginal cost of producing the plan y, all markets
clear, and that given prices p, agents minimize expenditures. If Y is assumed to be
convex, this notion of quasiequilibrium coincides with the standard notion of competi-
tive quasiequilibrium, thus competitive quasiequilibrium in a model with a single firm
is a special case of marginal cost pricing quasiequilibrium in this model. If income is
distributed according to a fixed structure of revenues, then in a quasiequilibrium with
strictly positive prices, every consumer has positive income, which guarantees that
any such consumption plans are also utility maximizing given the budget constraint.
When there is a fixed structure of revenues, marginal cost pricing quasiequilibria are
then equivalent to marginal cost pricing equilibria.

The assumptions made thus far will not be sufficient to guarantee that marginal
cost pricing quasiequilibria will exist, however. In finite and infinite dimensional
models, whether production is convex or nonconvex, in general one must ensure that
the set of feasible allocations

A={{z1,. ., zmy) EI[ Xix Y : Y zi =y +w)}

=1 =1

is compact to guarantee the existence of quasiequilibria. Since the consumption sets
X, and the production set Y will be assumed to be closed, as is standard, the set
of attainabie allocations A will at least be closed. In finite dimensional models, A




will then be compact provided it is bounded. The standing assumption in the most
general and encompassing work on general equilibrium in models with nonconvex
production, that of Bonnisseau and Cornet (1988a, 1988b), is precisely that: that the
set of attainable allocations is bounded. As shown by Hurwicz and Reiter (1973), in
a finite dimensional setting the boundedness of the set of attainable allocations can
also be shown to be a consequence of more primitive assumptions on the production
set, such as irreversibility.

In models with an infinite dimensional commodity space, the compactness of the
set of attainable allocations will not follow from assumptions such as irreversibil-
ity, but rather more direct assumptions of compactness of the feasible production
or consumption sets are required to guarantee compactness of the set of attainable
allocations. As the following proposition, which is a strajghtforward consequence of -
a proposition of Aliprantis, Brown, and Burkinshaw (1989, Theorem 4.2.4), demon-
strates, there are several assumptions which will guarantee that the set of attainable
allocations is weak™ compact.

Proposition 2.1. Assume that the firm’s production set Y is weak* closed.

i. If the attainable production set

Y ={y€Y:3(a1,...,Tm; 2) € A such that z = y}

is order bounded, then it is weak® compact.

ii. If Y is weak™ compact, then the attainable consumption sets
X, ={z e X;:3z1,....Tm;y) € A such that z; = z}
are weak™ compact for each i. Moreover, A is weak™ compact.

Thus if the firm’s attainable production set is bounded, it will be weak* compact,
and if the firm’s attainable production set is weak®™ compact, the set A of atiainable
allocations is weak® compact as well. The standard assumption in the literature on
infinite dimensional models with convex production is then either that each attainable
production set is weakly compact, or that the aggregate feasible production set Y is
weakly compact (see e.g., Aliprantis, Brown and Burkinshaw, 1987b, or Zame 1987).
As the following lemma shows, when the commodity space is £o, this assumption is
actually no weaker than the assumption that each set is order bounded.

Lemma 2.1. Let A C £,. Then A is weak® compact if and only if it is weak® closed
and order bounded.

Proof: Since order intervals are weak” compact by Alaoglu’s Theorem, clearly if A
is weak™ closed and order bounded, it is weak™ compact. The converse follows from
Corollary 20.10 and Exercise 5 p. 163 of Aliprantis and Burkinshaw (1978). |




This lemma also demonstrates that if the set of attainable allocations is to be
weak™ compact, it must be order bounded. Moreover, in a model with a single firm,
the boundedness of the set of attainable allocations has a clear connection with the
boundedness of the feasible production and consumption sets, as shown by the fol-
lowing lemma, the proof of which should be clear.

Lemma 2.2. If each consumner’s feasible consumption set X; is a subset of the posi-
tive cone £y, then the set of attainable allocations A is order bounded if and only
if either '

i. the firm’s feasible production set Y = (Y + w) N £y is order bounded above,
or

it. each consumer’s feasible consumption set X; is order bounded above.

Provided that the firm’s production set is weak™ closed, which follows from as-
sumption P, and that each consumer’s consumption set X; is weak” closed, which
will also be assumed, the set of attainable allocations will be weak* closed, and thus
by Lemma 2.1, it will be weak® compact if and only if it is order bounded above.
Then as in the literature on finite dimensional models with nonconvex production,
the standing assumption here will be the following:

Assumption B. The set A of attainable allocations is order bounded.

As argued above, this assumption will only hold if either the firm’s feasible pro-
duction set is bounded, or if each consumer’s feasible consumption set is bounded.
Accordingly, we will consider these two implications of the boundedness condition
separately. The first part of this section considers the case in which the firm’s feasi-
ble production set is bounded, and each consumer’s feasible consumption set is the
positive cone in f4; that is, the following is assumed.

Assumption BF.
1.V = (Y + w) N £y, is order bounded.

2. Xi= Loy fori=1,...,m.

To show that equilibria exist in this model and to study qualitative features of
the equilibrium set, the approach taken in this paper will be the same one which has
been fundamental to studying questions of existence, determinacy, and computation
of equilibria in finite-dimensional models with market distortions such as incomplete
markets or nonconvexities. Equilibria will first be characterized as the solutions to
a system of equations. Questions about the existence and nature of equilibria can
then be rephrased as questions concerning the existence and nature of solutions to
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this system of equations, questions which are perhaps most naturally and powerfully
answered by degree theory and related methods.

In a standard finite dimensional setting, the degree of a function f : R* — R",
calculated on a set A and at a point y in the range of the function, gives a rough
“count” of the number of solutions to the equation f(z) = y which lie in the set A.
This is easiest to see in the case when the function f is continuously differentiable
and the point y is a regular value of f, ie., a point such that for every preimage
z € f~!(y), the derivative Df(z) is nonsingular. In that case, the implicit function
theorem implies that each solution is locally unique, and if in addition the set A is
bounded and no solutions lie on the boundary of A, there can only be a finite number
of solutions. In this case, the degree counts each solution with multiphcity +1 or —1,
corresponding to the sign of the determinant of the derivative at that solution. More
precisely, in this case the degree, denoted d(f, A,y), is given by the formula

df,Qy)= 3 sen(det Df(2)).

zef~Hy)

However, even if the function f fails to be continuously differentiable, the degree
still conveys information about the existence and qualitative features of the set of
solutions. If d{f,A,y) # 0, then f~1(y) # @, i.e., if the degree is nonzero, then
there exist solutions in A to the equation f{z) = y. Moreover, even if the function
{ is only continuous or if y is not a regular value of f, the degree still contains
information about the qualitative features of solutions to the equation f(z) = y,
and in particular, the degree may yield information about the stability of solutions
" with respect to perturbations in the model. A subset K of f~'(y) is called stable
or essential if for every neighborhood U of K, there exists a neighborhood V' of
the graph of f such that if g is any continuous function whose graph lies in V,
the equation g(z) = y must have a solution in U. Essential solutions or sets of
solutions cannot be removed by arbitrarily small perturbations of the underlying
equations, as sufficiently small perturbations of the original equations must have
nearby solutions. In contrast, if a solution or set of solutions is inessential, arbitrarily
small perturbations of the system of equations need not have any solutions close to the
original solutions, so that these small perturbations in effect remove those inessential
solutions. For example, if f: R — R is given by f(z) = #?, then f(0) = 0, but this
is an inessential solution, since arbitrarily small perturbations of the function f have
no zeros at all. This concept of stability, introduced by Fort (1950) and discussed
by Dierker (1974) and Geanakoplos and Shafer (1990}, is closely related to degree.
Indeed, if d(f,Q,y) # 0, then f~(y) 1s an essential set of solutions by homotopy
invariance (see Geanakoplos and Shafer (1990)). Even in the continuous case then,
the degree contains information not only about existence of solutions but also about
the qualitative behavior of solutions. '

Homotopy invariance is the key to most economic applications of degree theory
to the problem of demonstrating that the solution set of the equilibrium equations




is nonempty and finite. This is the method applied by both Dierker (1972) and
Kamiya (1988), and more recently by Brown, DeMarzo, and Eaves (1993) to compute
equilibria in incomplete markets models. Even if f is continuously differentiable and y
is a regular value of f, the degree is usually impossible to calculate from scratch, since
without a great deal of information about the derivative D f, one would have to be able
to compute all of the solutions to the equation f(z) = y for z € Q in order to compute
the degree. These are the solutions we are searching for; being able to compute them
would obviate the need to know the degree. A more useful way to calculate the degree
is to try to construct a well-behaved homotopy between the function f and some
function g, where the degree of g is easily computable and nonzero, and then to use
homotopy invariance to conclude that d(f,Q,y) = d(g,£,y). Such an argument also
yields in theory a method for computing equilibria by constructing a path between
solutions of the equation g{x} = y, which should ideally be easily computable, and
solutions to the equation f(z) = y. Indeed, this will be the approach employed in
this paper.

One encounters a number of difficulties in attempting to extend the notion of
degree to infinite dimensional spaces. The degree should still provide a useful and
meaningful answer to questions concerning the existence and number of solutions to a
system of equations. In infinite dimensional spaces however, degree cannot be defined
for all continuous functions and still satisfy desirable properties like homotopy invari-
ance; see e.g., Krasnosel'skil and Zabreiko (1980) and Appendix I for a more complete
discussion of this point. As is often the case in infinite dimensional spaces, what is
lacking is some form of compactness. The key idea which leads to an appropriate
class of functions for which a meaningful notion of degree can be defined is that of
a compact operator. If X is a Banach space, 1 C X, and C : {1 — X, then (' is a
compact operator if C is continuous, and if for every bounded set B C 2, C(B) is
compact. X and Y are finite dimensional and {2 is bounded, then any continuous
function which is defined and finite on 2 is compact. Of course this is no longer
true in infinite dimensional spaces. More generally, if (X, ;) and (Y, 72) are locally
convex linear topological vector spaces,  C X is open and C : @ — Y, then C is
called a 7y — 7 compact operator if C is 71 — 12 continuous, i.e., continuous as a map

C:(X,m) = (Y,7), and if C(Q) is 7 compact. If (X,n) = (¥, m2), C will simply
be called a 7, compact operator, and references to the topology may sometimes be
omitted altogether if the relevant topology is clear. For a more detailed discussion of
the properties of compact operators see Appendix I.

The appropriate extension of Brouwer’s degree to infinite dimensional spaces,
called Leray-Schauder degree, can then be defined for the class of compact pertur-
bations of the identity, which are maps of the form f — C where C : {} —» X is a
compact operator. As in the finite dimensional case, the distinction remains between
the interpretation of the degree for compact perturbations of the identity which are
in addition continuously differentiable and for which y is a regular value, and those
which are merely continuous. If C' is continuously Fréchet differentiable on @ and
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y is a regular value of [ — C, that is, a value for which D(I — C)(z) is surjective
for every point x satisfying the equation (J — C)(x) = ¥, then the implicit function
theorem again implies that (/ — C)~'(y) is a finite set. Moreover, as in the finite
dimensional case, in this case the degree also counts the solutions with multiplicities
+1 or —1 depending on the derivative at each solution. If C is only continuous or if
y is not a regular value of / — C, one can still ask as in the finite dimensional case
whether a solution or set of solutions is essential. Again by homotopy invariance, if
D(I—C, €, y) # 0, the set of solutions to the equation (/ —C)(z) = y is essential, and
hence given any neighborhood U of the set of solutions, arbitrarily small perturba-
tions of the system of equations I — C must still have solutions in this neighborhood
U.

Then to apply the tools of the previous section to demonstrate the existence and
essentiality of MCP quasiequilibria, we need to characterize the quasiequilibria as
the zeros to a system of nonlinear equations of the form I — C on a suitable domain

' C X containing all of the marginal cost pricing equilibria, such that C : @ — X
is a compact operator in the relevant topology, and such that I — C has no zeros on
the boundary of the domain ). Often the most difficult part of this process is finding
a suitable domain © which contains all of the solutions of interest, and for which
the homotopy has no solutions on the boundary 82, and knowledge about a priori
bounds on the possible solutions of the equation ({ — C)(z) = y is often necessary to
determine this domain 2.

There are natural a priori bounds on the possible MCP quasiequilibria. Since Y
is bounded, there exists some b € {4 such that Y C[0,l)={r€len:0<z<b}!
Any MCP equilibrium allocation (z1,...,Zm) must be feasible, thus for any MCP
equilibrium, both total output y + w and individual consumption bundles z; must lie
in the interval [0, D]. Moreover, Ui(z;) < Ui(b) for every ¢ = 1,...,m. In that respect,
the problem of finding MCP equilibria is well suited to the methods of Leray-Schauder
degree theory.

However, most finite-dimensional equilibrium existence proofs rely on degree-
theoretic or fixed point arguments built around maps from the price space to the
commodity space, such as the excess demand map, or between the commodity space
and the price space, such as the first order conditions. Of course when there are
a finite number of commodities, the price space and the commodity space are the
same, or at least isomorphic; both are simply isomorphic to R” for some n, and
using Brouwer’s degree is not a problem. This certainly won’t be true in general
when the commodity space is infinite dimensional, as the price space will typically
be some subspace of the dual space of the commodity space. For example, 1n this
model, the price space is the separable space £;, whereas the commodity space is the
nonseparable space £.°

4The notational conventions here are that z < y = z, < yp forevery n, z < y = 2, < Yy, for
every n and = # y, and that £ € y = zn < yn for every n.
5Even though £, is a subspace of £, it is a proper subspace, and degree can be utilized only
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Consequently, guasiequilibria will be characterized in terms of Hicksian demand
functions. As before, let b € fooys be such that ¥ C [0,8] and y + w < b for
every y + w € Y. Choose b € int £y such that b > b (see Figure 1). Define for
{=1,...,m,for p € &, and for U € [0, U;(B)}, the expenditure function for consumer
!

Ef(p,U) = mi .
(p,U) pn, P
0<z<h

and consumer 1’s Hicksian demand

M ,L[ = i - I.
z:(p,U) = arg yEs, P e
0<z<b

Theorem 2.1. Forp € & and U € [0,Ui(b)], Ei(p,U) and z:(p,U} are well-defined.
Forp € t144, zi{p,U) is single-valued.

Proof: By Alaoglu’s theorem, the order interval [0,3] is weak™ compact, and by
assumption H1, {z € {fwy : Ui(z) > U} is Mackey closed and convex for every
[7 > 0, and hence is weak™ closed as well.
Since the function z + p-z is certainly weak” continuous, and {z € {4 : Ui{z) >
U. 0 <z <1} is weak™ compact, both Ei(p,U) and z,(p,U) are well-defined. Since
r > p-z s convex, r4p,U) is convex-valued. If p € 144, fix 24,22 € z:(p,U). If
U'=0,p€ by = 31 = 22 = 0, since U;(0) = 0 and z;(p,U) C [0,5]. Similarly, for
{7 = U;(b). by strict convexity #; = z, = b. Suppose U € (0,U;(b)). Then z1,z2 # 0,
so p-ay > 0. But then '
z:(p,U) = arg max Ugz).
prEp-I)
0<Lr<h
If 2, % x,, then for a € {0,1), azr; + (1 — a)z; € z:(p,U), and Uj(z) strictly concave
= Uilazy + (1 —a)zs) > ali(z)+ (1 — a)Ui(zs) = Ui(z1) = Ui{azr + (1 — a)z2) since
ar, + (1 —a)zg, ) € xi(p,U). This is a contradiction, hence z; = z;. Therefore, for
p € fioq, zi(p,U) is single-valued. _ |

By definition, a MCP quasiequilibrium requires that in equilibrium, output is
chosen to equate marginal cost to price, so that p = D f(y). Using this observation
and the expenditure and Hicksian demand functions, MCP quasiequilibria can be
characterized as the tuples (y,Us, ..., Un) € £ X R™ such that

S =D, U -y +) = 0,
fly) =0,
Df(y) - {z2(Df(y),Us) = baly +w)) = 0,

indirectly for mappings into a proper subspace, as any such mapping must have degree 0 at every
point {Detmling p.92).
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Df(y) - (zm(Pf (), Un) — buly +w)) = 0.

As usual, Walras’ law is invoked to eliminate the redundant budget equation of
the first agent. Note that the budget equation for agent i can be rewritten as

E{Df(y),U:) - 0:Df(y) - (y+w) = 0.

Furthermore, if we define

£ (D) U) ~ (v + )
' fly)
Fly.Un- s Un) = | Df(y) - (2 DI(y) V) = aly + )] |

DF(y) - [l DI (), Un) — Omly + )]

then F is a map from fo X R™ to £ X R™, and F can be written in the form
F =1—C, where C is also a map from £o, Xx R™ t0 o x R™. To see this, note that
F can be rewritten as

y— (£ 2(DI(), V) — )

, , Uy — (U = f(y))
FlyUs,..o Un) = Uy — (Ua—= Df(y) - [z2( Df(y), Ua) = b2y + w)])

Uv = (Un = D) - [2m(DF (), Un) — 0nly +@)])

Also, a tuple (7, U1, ..., Un) € £oo x R™ will satisfy the equation F(g, Uy Un) =0
if and only if the tuple (Z1,...,%m.7,7) 18 a MCP quasiequilibrium, where Z; =
zi( Df(§), Ui) and p = DJ(3).

The properties of the expenditure function and the Hicksian demand function in
this setting will then be crucial to establishing that F is a compact perturbation
of the identity, which is the first step in showing that MCP quasiequilibria exist,
and in examining the qualitative features of the set of MCP quasiequilibria. Berge’s
Theorem (Berge, p. 115) will be used to establish that the expenditure and Hicksian

demand functions are continuous.?

Theorem 2.2. Assume that Hl and H2 hold. Forp € ¢ and U; € {0, U:(d)}, Ei(p,U;)

is norm continuous, and z;(p,U;) is norm - weak™ u.s.c. fori=1,...,m.

Proof: Since (p,z) = p -z is norm X weak* continuous, by Berge’s theorem it
suffices to show that B(U) = {z € fo : Ui(z) 2 U, 0 < z < b} is a continuous

To be precise here, 1 should say that E;(p,U;) is norm xrg — rR continuous, and z;(p, Ui) is
norm x7r — 0(fes,£y) u.s.c.; however, this notation becomes cumbersome, and thus T will omit
reference to the topology on the finite- dimensional factors, as the standard Euclidian topology will
always be lmposed on these factors.
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correspondence, as by Alaoglu’s theorem and assumption Al, 5;(U) is convex- and
weak™ compact-vajued. Since £ is separable, o(fe,£;) is metrizable on bounded
sets {Aliprantis and Burkinshaw (1985), Theorem 10.7), so in particular o(£x, £1) 1s
metrizable on [0, 8). To show B;(U) is u.s.c., suppress the dependence on 7, and suppose

U, = U and z, ot} z, where , € B(U,). We must show that z € B(U}. Clearly

z €[0,8), and z,, € B(U,) = U{z,) > U, for every n. But z, olleorft) ) o T, ) o

since 0(f0,£1) and 7(£e,4;} agree on norm-bounded sets (Rubel and Ryff 1970),
hence the Mackey continuity of U;{-) implies that

li,lan(In) =U(z) 2 U =limU,.

That is, € S(U).
To show that 8is Lh.c.,let U, — U, and z € S{U). We must show that there exists

o{los, .
a sequence {x,} such that =, € #{U,) and z, o) o, First, suppose U(z) > U.

Then 3 € > 0 such that U(z) — U > ¢, but 3N such that forn > N, [U — Uyl < ¢/2,
= U(z) > U, forn > N = z € {&|U(&) > U,} for n > N. So the sequence z, = b
forn < N, and z,, = x for n > N will suffice. -

Suppose U(x) = U. Without loss of generality, z # b, else setting z,, = z for every
n produces the required sequence. Since U, — U, 3N such that forn > N, [U,—-U| <
U(B) — U; ie., such that Uy, < U(B). Set B(U) = b for U > U(b) and set z,, = & for
n<N. Forn>N,iflU, <U, set z, = z. Since z # b and z € [0, d], there exists j
such that z; < b,. For n such that U, > U, consider {(1 — a)z + ab: a € [0,1]}; for
every suchn, 31 > &, > 0such that U((l—&,l)x+&n5) > U,. Using the intermediate

value theorem, choose a, such that U{(1 — an)z + anb) = Uyn, so (1 —ap)z + anb €

B(U,). Then (1 — ay)z + axdb olle 1) x, since if not, by the (£, £1) compactness of

- . T Lt -
[0.B]. there exists a convergent subsequence (1 — an, )z + an,b U=it) 5 # z. Hence

7= (1 —a)z+ ab for some & > 0. But U((1 - ank_):: + an b)) =U,, = Uand U() is
(£, £1) continuous on [0, ], so U ({1 —am, )z +am, b) — U(z), ie., U(Z) = U = U(z).
This is a contradiction, since Z = (1 — &)z + @b > z for @ > 0 and U(-) is strictly

= 3 (Eoo.l
monotone. Thus (1 - ay)z + a,b 7o) z, and the sequence

b, if n < N;
I, =4z if U, <U;

(1—an)z+asd U, >U
satisfies the requirement. Thus F(U) is Lh.c.. |

Since z;(p,U/) is a function for p € £144 by Theorem 2.1, this theorem shows that
z:(p,U) is a norm - weak™ continuous function on £;4;.7 To prove the existence of
MCP quasiequilibria, and to determine whether the set of MCP quasiequilibria 1s

"This is a weaker conclusion than one might like; if F is continuously Fréchet differentiable
and has 0 as a regular value, both existence and local uniqueness of MCP quasiequilibria can be
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essential, we can utilize Theorem 2.2 together with the extension of Leray-Schauder
degree thieory to locally convex spaces. The difficulty presented by using the extension
of Leray-Schauder degree theory to locally convex spaces lies in the choice of domain
Q. All of the equilibrium quantities lie in the interval [0,d]: equilibrium preduction
plans y + w must lie both in [0, 3}, and on the hypersurface {y + w : f{y) = 0}; not
only must agents’ individual consumption bundles lie in [0,b], but the sum of their-
consumption bundles in equilibrium must lie in [0, 5] as well. However, [0, 8] is not a
weak™ open set, in fact it has empty weak* interior, whereas the domain must be an
open set in order to define degree in general locally convex spaces. Hence we choose
to work with production plans in a weak® open set containing [0,5]. Let 2, = {y:
fly) < f(b—w)}, where b > mb (see Figures 1 and 2). Since f(-) is weak” continuous,
Q, is weak” open. Moreover, since D f(y) > 0 for all 3, Y C[0,8] C (9 + w).

In a finite dimensional model, assumptions guaranteeing compactness of the set of
attainable allocations, together with continuity of preferences or demand functions,
would essentially be sufficient to guarantee existence of equilibria. However, in infi-
nite dimensional models with production, compactness of feasible production sets is
not sufficient in general to guarantee existence of equilibria, and the work on infinite
dimensional econoniies with production has stressed the need for extra restrictions
on production sets such as uniform properness (see MasColell (1986) or Alipran-
tis, Brown and Burkinshaw (1987b)) or bounded marginal efficiencies of production
(Zame (1987)). Both of these assumptions essentially place bounds on the marginal
rates of transformation across all goods in the model. The analogous assumption
required to guarantee the existence of marginal cost pricing equilibria in this model
is the following.

Assumption K. Df : Q, — {44 is a weak™ - norm compact operator; that is
Df:Q, — {, is weak™ - norm continuous and D f(§},) is norm compact in £;.

Since the firm’s production set is described by the transformation function f, the
derivative Df(y) gives the sequence of marginal rates of transformation, and this
assumption requires that all such sequences of marginal rates of transformation lie
in some norm compact subset of £;. In particular, as is discussed in more detail in
section 3, order intervals in £, are norm compact, so a sufficient condition to guarantee

established by showing that D(F,,0) # 0. In order for F to be Fréchet differentiable, it must
of course be norm continuous, and to use Leray-Schauder degree theory it would have to be a
norm compact perturbation of the identity as well. Because the constraint correspondence S(U) is
not in general norm compact, the argument of Theorem 2.2 cannot be used to show that 2;(-) is
norm - norm continuous. Furthermore, although versions of the Implicit Function Theorem hold for
Banach spaces, they are of no use here when trying to show that Ei(p, U} or z; (p, U} are Fréchet
differentiable, since to apply those theorems, one must show that the agent’s bordered Hessian is a
continuous bijection, which would in this case be a continuous bijection between the nonseparable
space £, and the separable space £; which is impossible. I will return to a discussion of this point
in the concluding section.
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that this restriction on marginal rates of transformation is satisfied is the existence
of upper and lower bounds m and m € ¢, such that m < Df(y) < 7n for each y in
Q,.

It is also important to note the fundamental role played by the assumption that
Df : 1, — & is a weak™ - norm continuous operator. The structure of MCP equilib-
rium in this model, which requires that in equilibrium p = D f(y), together with the
assumption that Df is weak™ - norm continuous, mean that the map y — D f{y)-y is
always weak™ continuous, and thus that consumers’ incomes will be weak” continuous
as a function of the production plan y. Characterizing quasiequilibria in this way then
avoids the problem that the evaluation functional is not jointly o(£1,£x) x (€, 1)
continuous. Examples of production functions satisfying this compactness assump-
tion, together with all of the conditions in assumption P, are given in section 3,
together with sufficient conditions to guarantee that these various assumptions are
satisfied. Before continuing, the reader may wish to turn to section 3 for a discussion
of these examples.

Under this assumption then, consumer ¢’s income ;D f(y) - (y + w) is a weak™
continuous function. However, as the equilibrium equations must be defined over not
only the order interval [0, 5] which contains all of the potential equilibria, but also over
the entire unbounded set 2, this assumption will not guarantee that 6;D f(y)-(y+w)
is a weak™ compact operator, so a slight adjustment to the budget equations will be

necessary. Since [0, mb} is weak™ compact, 7 = m?x . Df(y)- (y+w) is defined and
y+we[0,mb

finite. Define
rdy +w) = 84D f(y) - (y + )| AF = 6imin({Df(y) - (¥ + w)l, 7).

By definition, for y +w € [0,0], ri(y + w) = 6:Df(y) - (y + w), the consumer’s actual
income, and as will become clearer below, we will essentially never need to consider
production plans y such that y +w ¢ [0,8]. Moreover, ri{y + w) is both bounded
and weak™ continuous. In order to ensure that quasiequilibria are defined by a weak”
compact perturbation of the identity, redefine F : 0 — £, x R™ as follows:

(D) U ~ (g + )

fly)
Fly,Un,....Un) = | Df(y)- 22 Df(y),U2) = r2(y + )

Df(y) - zum(Df(¥), Unm) = Tm(y + w)

Theorem 2.3. Lei {1 = 0, x [[%,(0,Ui(b)). Under assumptions P, BP, K, and H,
the equilibrium map F can be written as F = 1 - C, where C : Q — £y x R™ Is a
weak™ compact operator.

Proof: F can be written in the form I — C as shown above. As the sum of a finite
number of compact operators is a compact operator (see Appendix I), it suffices to
prove
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Loz(Df(y), Ui) - Qy x [0,U:(B)] — [0, 8] is weak*-weak™ compact operator;

o E{(Df(y), Ui) : Qy x [0,Us(b)] — R is a weak™ compact operator;

and
ii, ri{y +w): 0y — R is a weak® compact operator.

Statements (i) and (ii) follow from Proposition A3 (Appendix I) and Theorem
2.2, together with assumption K, which assumes that Df is a weak” - norm compact
operator, since by Theorem 2.2, E;(p,U;) is a weak” continuous function and z;(p, Ui)
is a norm - weak™ continuous function for p € #1;4. By assumption K, Df is a
weak® - norm compact operator, and by assumption P5, Df(y) € {144 for every y,
so that Ei(Df(y),U;) and z(Df(y), U:) are each the composition of a continuous
function with a compact operator, which by Proposition A3 (Appendix I} is compact.
Since Df is weak® - norm compact, and the function (p,y) v p -y is norm x weak”
continuous, Df(y) - {y + w) is weak® continuous, so ri(y + w) is a weak™ compact
operator as argued above. &

The equilibrium map F then constitutes a compact perturbation of the identity.
By the homotopy invariance principle, in order to show that MCP equilibria exist
and are essential, it suffices to find a compact perturbation of the identity G which is
homotopic to F, which has nonzero degree at 0, and for which the resulting homotopy
has no zeros on &€, Sucl an approach is the main idea of the proof, which is contained
in Appendix IL '

Theorem 2.4. Under assumptions P, BP, K and H, marginal cost pricing quasiequi-
libria exist. Moreover, the set of marginal cost pricing quasiequilibria is essential.

Proof: See Appendix II. &

Since the fixed structure of revenues assumption guarantees that each household
has positive income at the quasiequilibrium prices, the quasiequilibria are actually
equilibria, i.e., an immediate corollary of this theorem is the following.

Corollary 2.5. Under assumptions P, BP, K and H, marginal cost pricing equilibria
exist and are essential.

As discussed above, if the set of attainable allocations is to be bounded, either
the feasible production set must be bounded, the assumption just considered, or
consumers’ feasible consumption sets must be bounded, the case considered next.
In addition, to ensure that any equilibria exist, we must guarantee that the set of
attainable allocations at which the firm is producing an efficient production bundle is
nonempty. A sufficient condition to guarantee both that the boundedness condition
holds and that there are attainable allocations at which production is efficient is the
following:
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Assumption BC. Fach consumer’s consumption set X; C £t is a weak® closed,
convex set such that 0 € X; and such that X; has a maximal element b € int £ooy o
satisfying x < b for every z € X; and b & Y, that is, § is not feasible for the firm.

This assumption requires that consumers’ consumption sets contain an upper
bound which is sufficiently large, that is, which lies outside of the firm’s feasible
production set Y. Under this assumption X; C {0, 8], and hence X; is weak™ compact.

Since equilibrium requires that y +w = Z x;, the equilibrium production plans y +w
=1

must lie in the order interval [0, md]. Moreover, Theorems 2.1, 2.2, and 2.3 hold
after trivial modifications accounting for the fact that each consumer’s constrained
consumption set is X; rather than [0,3]. The marginal cost pricing equilibria can then
be characterized as above as vectors (y, Uy, ..., Un) € oo x R™ such that

(y +w) — 5 z(Df(y), Us)
Flu,Us,.. Un) = | Df(y) - =o(DF(y),Us) = raly +w) | =0

DS () - 2m(Df(y), Un) = rmly + )

Moreover, an identical argument using homotopy invariance and path following
techniques can be used to establish existence and essentiality of marginal cost pricing
equilibria in this model.

Theorem 2.6. Under assumptions P, H, BC, aud K, marginal cost pricing quasiequi-
libria exist and are essential.

Proof: The proof is exactly the same as the proof of Theorem 2.4. 2

Approaching equilibria in infinite horizon economies using this methodology re-
veals an interesting feature of production sets in infinite dimensional models. In
a finite dimensional model, most “reasonable” specifications of technology will give
rise to a transformation function and corresponding production set for which the
feasible production set Y is bounded. In fact, as long as the marginal rates of trans-
formation are bounded, the feasible production set will be bounded. In an infinite
dimensional setting, this need not be true, an anomaly which arises not as a result
of increasing returns or nonconvexities, but rather as a result of the infinite dimen-
sionality of the model. For example, suppose the production technology exhibits
constant returns to scale, so that in a finite dimensional setting the transformation
function is f(y) =a -y, where a € R1, is a fixed vector. Under this specification,
the feasible production set Y is convex and also bounded. The natural general-
ization of constant returns to scale to the setting of this paper is the technology
which is given by the transformation function f(y) = a -y, where a € £144. In
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this infinite dimensional setting with constant returns to scale, the feasible produc-
tion set Y will certainly still be convex, but will no longer be bounded in {, as
V={y+w:a-y=0y+w>20}={2€0lot a2 = a - w}.®? Moreover, given
this production set, it is straightforward to construct economuies in which no MCP
equilibria exist, even with a representative agent.

In such cases in which the feasible production set Y is not bounded, the previous
result shows that for all sufficiently large bounds on consumption, equilibria exist as
long as consumers are constrained to consume less than this upper bound. If the
set of equilibria is bounded, then there exists an upper bound large enough so that
this constraint on consumption is never binding for any consumer in equilibrium, and
unless the set of equilibria is bounded, these artificial upper bounds will always bind
some consumer and will hence create new, artificial distortions in the economy. This
restriction is analogous to short sales restrictions in financial markets models such
as Radner (1968), in which the possibility of unlimited short sales means that con-
sumers’ consumption sets are unbounded below. In order to guarantee the existence
of equilibria in such 2 model, one must either impose an artificial short sales restric-
tion on consumers as in Radner (1968), or rule out arbitrage opportunities, that is,
impose joint restrictions across consumers which essentially rule out the possibility
that there are prices at which some agent wants to go arbitrarily short and some other
agent arbitrarily long in the same asset (see, e.g., Werner (1987) or Brown-Werner
(1991)).

Similarly, to weaken the assumption of an arbitrary bound on consumption in this
model. it will be necessary 1o impose joint restrictions on consumers’ preferences and
production that rule out similar “arbitrage opportunities” and guarantee that the set
of possible equilibrium allocations is bounded. Note first that by assumption K, for
each date T there exists a number My such that for each feasible production plan y,
lyd < My for each ¢ <T. Thus the feasible production set is only unbounded if there
exist production plans {y"} in Y such that y3 — oo as T,n — oco. Consumption of
an unbounded amount is possible, but consumers will have to wait arbitrarily long to
consume it. If consumers are sufficiently impatient, they will not be willing to forgo
the amount of current consumption necessary to obtain arbitrarily large consumption
arbitrarily far in the future. To formalize these ideas, we will need an additional as-
sumption and some additional notation. Assume that each consumer’s utility function
satisfies the partial differentiability condition that D,Ui(z) = 0U;/Bz:(x) exists for
each period t and for each nonzero z € £y Foreacht, let : = (0,...,0, ¥, Yea1s- - -),
and let §, = (y1,...,y:). Then for each consumer and each ¢, define

DtU((En)
t) = et Sl A
B(t) ”r?s%i U(z")

8For every 1, e, € Y, where e, is the n'® standard basis vector, and since a € £, a, — 0,

hence {Z%¢,} is an unbounded subset of ¥.
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The vector (3(1),3(2),...) is the consumer’s vector of asymptotic discount factors.
Similarly, define the firm’s vector of asymptotic transformation factors by

- D f(y™)
v{t)= inf ———F.
veay Dy f(y)
fiapll—eo
Then we will say that the consumer is myopic with respect to feasible production
if there exists a T such that fort > T,

At)

7@ <"
If each consumer is myopic with respect to feasible production, then no one is willing
to give up the consumption necessary in current periods in order to purchase arbitrar-
ilv large amounts of consumption arbitrarily far in the future when prices are equal
t0 the marginal costs of the firm, and hence the set of equilibrium allocations will be
bounded.

Theorem 2.7. Under assumptions P, H, and K, if each consumer is myopic with
respect 1o feasible production, then the set of equilibrium allocations is bounded.
Moreover, marginal cost pricing equilibria exist and are essential.

Proof: As argued above, it suffices to establish the first claim. Suppose by way of
contradiction that the set of equilibrium allocations is unbounded. Then there exists
a sequence of equilibrium allocations (},z3,...,2h,y") such that lg%|] — oo and
|27}l — oo for some 7. Since (z7,z},...,2%,y") is an equilibrium allocation for
every 1, the prices p* = D f(y") must support the bundle z} for each 7 and each n.
However. there exists T such that if ¢ > T, then for all z,

D) _ e <y < D)

DiUi(z}) — T Difly)
for all n sufficiently large. Moreover, since ||y} — oo and ||2},|| — oo for some 7,
for all n there exists ¢ > n such that z7, > 0. Thus there exists N such that p" does
not support .L?I This contradiction implies that the set of equilibrium allocations is
hounded by some number M. The existence and essentiality of marginal cost pricing
equilibria then follows from Theorem 2.6 by taking the bound on consumption b to
be some vector greater than (M, M, M,...). =

3 Compact Technologies

The results of the previous section made use of several main assumptions about the
nature of the firm’s production technology. This section details sufficient conditions to
ensure that these assumptions are satisfied in turn, and discusses a class of examples
which satisfy all of these assumptions.
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There are several different ways to describe the production possibility set of a
firm. By using a transformation function f to characterize the firm’s production set
Y as {y : f(y) < 0} and the firm’s efficiency frontier as {y : f(y) = 0}, the equilib-
rium conditions that prices be set equal to marginal cost and that the equilibrium
production plan be efficient can be easily translated into the equations p = Df(y)
and f(y) = 0. In infinite horizon models, the production possibility set of the firm is
often expressed in terms of production functions g; in each time period rather than
in terms of a transformation function. There is a natural and straightforward way
to convert production functions into a transformation function in finite dimensional
fixed factor supply models which can be adapted to an infinite dimensional setting.
Suppose that there is a single input good, which is inelasticly supplied at a fixed level
#. For a finite dimensional model, given (y2,...,y») define

yi(yz, oo ye) = max gi(z)
5.1, g:(ﬂ?t) 2 Ui t = 2,...,7’&;

n
ZI: S I.
t=1

The transformation function f(y) is then given by f(y1,-..,%n) = va—v1{¥2,- - -5 ¥n)-
Similarly, one can define the transformation function for an infinite horizon model by
fy) =i —y(y2.ys,...} fory € £y, where y1(y2,¥s, . . .) is the optimal value function
of the analogous infinite horizon optimization problem. If each g, is strictly increas-
ing and continuous, it is easy to see what y;(-) must be. If each g, is increasing, the
constraints become

gt(xt) = I t=2,3,...
=<5

Z:ﬂg = I

=1

Since each ¢, : ® — R is continuous and strictly increasing, each function g¢; is
invertible. The constraints then require that z, = g7 ' (y;) for t = 2,3,..., and z; =

T - § g7 (), provided this sum exists. Then y1(y2,¥3,---) = g1(Z — T2 61 ' (3e))-
ja=2

For example, suppose that ¢ : R — R is continuous and strictly increasing, g~*

is continuous, 0 < 4 < 1, and that gi{z:) = g(5t). Then z, = Btg~(y,) for
each t = 2,3,..., and f(y) = 11 — q1(& — 52, 8¢~ y:)). Since y € £, and g!
is continuous, {g~Y(y:)} € £, and thus under this specification of g;, the sum is
well-defined.

As the results of the rest of this section will show, a class of examples which
satisfy the main assumptions of the previous section can be developed by considering

transformation functions of the form f(y) = f Btg(y:), where € (0,1),g: R—=R
=1
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is C', g and ¢' are bounded, and ¢’{r) > 0 for every 7 € R.® That such functions do
indeed satis{y these assumptions will be demonstrated below, as each assumption is
discussed in turn.

The four main assumptions concerning the transformation function f describing
the production set required to show that MCP equilibria exist and are essential are
the following:

1. [ is weak™ continuous;
2. f is continuously Fréchet differentiable and Df : £, — €144
3. Df(f,) is relatively norm compact;

4. Df(:) is weak™-norm continuous.

Assumptions 3 and 4 together comprise assumption K, that Df(-) is a weak™norm
compact operator.

The first main assumption, that f is weak* continuous, will simply have to be
verified for any given example, as it is for this class of examples at the end of this
section. The second main assumption employed here concerning the transformation
function f is that Df : o, — £144. The heart of this assumption is that Df(y) € 4
for every y € {. Given that f is Fréchet differentiable, Df{y) in general would be
an element of ba, the norm dual of £. The requirement that Df(y) € {;, C ba
reflects the standard requirement that prices be economically meaningful, that is, be
representable as a vector of prices for each good. If f is strictly concave, so that the
technology exhibits generalized increasing returns to scale, this will essentially follow
from weak* continuity, as shown by the following theorem.

Theorem 3.1. If f : £, — R Is strictly concave, strictly monotone, continuously
Fréchet differentiable, and weak™ continuous, then Df(y) € £; for every y € {x.

Proof: See Appendix 11 =
If the transformation function f is not strictly concave, it may be possible to

verify directly that Df(y) € £; for every y, as is the case with the class of functions
fly) = ¥ B'g(y:), as the following result demonstrates.
t=1

Theorem 3.2. Suppose f(y) = S Blg(y:), where g : R — R is C1, |g'(r)| < M
=0

for some M < oo, and 0 < 8 < 1. Then f is Fréchet differentiable and Df(y) =
{89 (1)} € & for every y € {.

Proof: See Appendix I1.

¥ An example of such a function is the principal branch of the function g(r) = arc tanr. For this
function, Jy{»}} < n/2 for every » € R, and g¢'(r} = 1/(1 + r2), which is both bounded and always
positive.
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To understand the third main assumption, that Df((Q,) is relatively norm com-
pact, it is important to know which subsets of #; are norm compact. The space £
has many nice properties which are useful in this regard; the most important for our
purposes is the Schur property (see, e.g., Diestel, 1984, p.85).

Proposition 3.1 (Schur). In 4, o{f1,£s) and norm convergence of sequences coin-

. . Cf{f],f ) n
cide; i.e., T, — I & Ip — I.

The Schur property is fundamental to identifying norm compact subsets of ¢, as
the following lemma demonstrates.

Lemma 3.1. A subset A of £, is norm compact if and only if it is o(41, £ ) compact.
In particular, if ay,ay € £, and a1 < as, then [a1, ay} is norm compact.

Proof: By the Eberlein-Smulian theorem, a subset A of £y is 0(¢1,{) compact if
and only if every sequence {z,} C A has a o(f;,£) convergent subsequence {z,, }.
Schur’s theorem implies that {z,, } is also norm convergent, i.e., every sequence in A
has a norm convergent subsequence, so A is norm compact. The converse is imme-
diate. That the order interval [a;, a;] is norm compact follows immediately from the
fact that {; is Dedekind complete and (4, £, ) is order continuous, so order intervals

in £y are o(f1,{y) compact {Aliprantis and Burkinshaw {1985}, p. 168). B

In order to show that Df{f,) is norm compact, it then suffices to show that it
o(éy, €y) compact, or that Df{Q,) C [a1,a;] for some a;,a; € £;. For example,

if fly) = El 3t9(y:), as in Theovem 3.2, Df(y) = {A'¢'(y:)}, and by assumption

for every r € R, ¢'(r) € [0, M] for some M > 0. Hence Df(),) C [0,a], where
a= {M3'}.

The fourth main assumption on technology employed in the previous section is that
Df: Q, — { is weak” - norm continuous. If f is continuously Fréchet differentiable,
Df will be norm - norm continuous by definition. Since the weak” topology is coarser
than the norm topology on ., satisfying this assumption requires more than just
continuous differentiability; that is, the coarser is the topology on the domain, the
more restrictive is the requirement that the function be continuous in that topology.
The following theorem shows that the class of examples we are considering do have
weak™ - norm continuous differential.

Theorem 3.3. Suppose f(y) = Z Btg(y.), where g : R — R is C1, |¢'(r)] < M for
some M < oo,and 0 < < 1. Then Df : £, — { is weak® -norm continuous.

Proof: Recall from Theorem 4.7 that Df(y) = {B¢'(y:)}. To show Df is weak” -

norm continuous, suppose % a Lol o for some net {z* : @ € A}. We must show
Z By’ (z¢)~g'(z,)| = 0in R. Let € > 0 be given. Choose T such that }:/3lt < ef2M,

and using the continuity of ¢’, choose 8, > 0,1 =1,...,T such that for ]y — x4 < by,
l9'(y) — §'(z}| <€/(1 = B).
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For every t, z* — x, in R, so for t = 1,...,T, by the definition of convergence of
nets, 3ay,, such that for @ > au,, 2% — 2| < §;. Let o, > max{a,, : t = 1,...,T},
which exists as 7" is finite and A4 is a directed set. Then for a 2 a.,

o0 T-1 o
S° 84 (22) — g} = Zﬁ‘lg’(x?)—g’(-rt)l+;6‘Ig’(m?)—g'(zz)l

t==0

~3

€
1—-87

Thus Df 1s weak™norm continuous. B

ﬁt+2M--6—<26.

< oM

0

The same argument can be used to show that if g : R — R is also bounded, then
fly) = %, Bloly:) is weak™ continuous. The class of examples f(y) = 124 B9(y1),
where ¢ +: R — R is C', g,¢' are bounded, and ¢'(r) > 0 for every » € R then
satisfies all of the main assumptions of the previous section. It should be noted that
this class of examples will not in general satisfy the assumption that Y = (Y+w)Nloos
is bounded. However, if consumers are myopic with respect to feasible production,
then marginal cost pricing equilibria exist and are essential. For example, if each
consumer’s utility function is additively separable with discount factor 5; < f, and
if marginal utilities and rates of transformation are bounded, so that there exists
b B > 0 and k. N > 0 such that & < ul(¢) < B for each ¢ and for all ¢ > 0 and
k< ¢'{r) < K for all v, then each consumer will be myopic with respect to feasibie
production.

4 Discussion

The results of the previous sections show that marginal cost pricing equilibria exist
and are essential in a broad class of infinite horizon economies with nonconvexities
in production. These results indicate that, in contrast with most prior approaches
to equilibrium analysis in economies with an infinite dimensional commodity space,
no added difficulties arise in a degree-theoretic approach to existence when the un-
derlying technology is not convex or more generally when equilibria are not Pareto
optimal. Moreover, unlike Bewley-type limiting arguments, this approach to equilib-
rium analysis in infinite economies based on homotopy or path-following techniques
immediately yields conclusions regarding qualitative properties of equilibria, the con-
clusion that equilibria are essential and thus stable with respect to sufficiently small
perturbations in the economy, as well as providing a framework for studying issues
like determinacy, and for the computation of equilibria, at least in theory.

Although a detailed exploration of these ideas is beyond the scope of this paper
and is left for future work, the basic framework for studying marginal cost pricing
equilibria developed in this paper could easily be adapted to study issues of deter-
minacy or computation of equilibria in infinite horizon economies, provided one can
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show that the equilibrium equations satisfy stronger continuity or differentiability
conditions. For example, note that if each consumer’s Hicksian demand function
z(p, U} is norm continuous rather than just weak® continuous and if the marginal
cost pricing function Df(y) is 2 norm compact operator,’® then the composition
z(y,U') = z{Df(y),U) will be a norm compact operator, and minor modifications of
the arguments of section 2 show that D(F,Q,0) = 1, so that marginal cost pricing
equilibria exist and are norm essential in such economies. Furthermore, note that for
this result to hold, the Hicksian demand z{p,U) need be norm continuous only on
the set P = {p € & : p = Df(y) for some y € ¥ — w} rather than for all possible
prices p.

If in addition the composite Hicksian demand function z(y,U) is C? on Y, then
questions about local uniqueness and determinacy can be meaningfully discussed us-
ing the same methodology developed in this paper. Of course the difficulty in applying
such results is determining reasonable conditions on the primitives of the economy,
preferences and technologies, which guarantee that the Hicksian demand will have
these properties (for example, see Araujo (1987) and the discussion in footnote 7).
As a simiple example, consider an economy in which each consumer’s utility function
is of the form U;(x) = inf, aiz, for some sequence o' € int foo44, 2 generalization of
Leontief preferences. Hicksian demand functions will then be independent of prices
and linear in utility levels, and thus trivially C? on the feasible production set Y re-
gardless of the firm’s technology. Finding more general and less trivial conditions on
preferences and technology under which these continuity and smoothness conditions
hold would thus be the heart of a study of determinacy in such models, and is left
for future work. However, as soon as such resulis are developed, the methodology
and results of this paper should also provide a framework for establishing the generic
determinacy of equilibria in sucl infinite horizon economies with increasing returns
to scale.

0Ngte that this latter assumption is weaker than the corresponding assumption K used in the
paper, since by assumption Df(y) is norm continuous, and thus will be a norm compact operator
if for each norm bounded set B, the image Df(B} has norm compact closure. Sufficient conditions
for this were given in section 3.
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5 Appendix I-Finite and Infinite Dimensional De-
gree Theory

This appendix discusses the basic properties of compact operators and Leray-Schauder
degree theory which are used in the paper, after first giving a brief review of finite-
dimensional degree theory.

As noted in the paper, the basic idea behind the degree of a function f on a
domain § at a point y € f(Q) is to “count” the number of solutions to the equation
f(z) = y in the domain £l. As such it can be used to answer questions concerning
the existence, local uniqueness, or indeterminacy of solutions to such a system of
equations. There are several minimal properties which are required of any reasonable
definition of degree, if it is to provide a meaningful answer to these questions. If
f=1:R"— R" the identity map, the equation f(z) =y has the unique solution
y € 0, so the first axiom of degree serves as a normalization.

(d1). {(normalization) d(J,Q,y)=1ify € {1
Furthermore, if degree is to express some idea of the number and location of

solutions to the equation f(z) = y in {2, it should essentially be additive across
domains.

(d2). (domain decomposition) d(f,y) = d(f,{h,y) +d(/f, Qg,y) for 4,0, dis-
joint open sets such that y ¢ f(Q\ (1 UQy))

Finally, degree should be a homotopy invariant, so that if a function f can be con-
tinuously deformed into another function g in such a manner so as to avoid solutions
on the boundary at every step, then the degree of f and g should be the same at y.

(d3). (homotopy invariance) d(A(t,-),,y(t)) is independent of ¢ € {0,1] if A :
[0,1] x 0 — R is continuous, y : [0,1] = R™* is continuous, and y(t) ¢ h(t,09) for
every t € [0.1].

There is a unigue function
d:{(f,y}: @ C R'open, bounded, f : ) — R" is continuous,y ¢ (1)} = Z

satisfying these three conditions, which is called Brouwer’s degree, and is denoted
d(f,9,y). For a construction of this function and a more detailed discussion of
Brouwer's degree, see Deimling (1985) or Lloyd (1978). It is important to notice that
Brouwer’s degree is defined in theory for all continuous functions f : @ — R* and at
all points y ¢ f(99), and not just for continuously differentiable functions for which
y is a regular value, that is, a value such that for every preimage z € f~'(y), the
derivative D f(z) is surjective. However, if f is continuously differentiable on 1, and
y & f(8%) is a regular value of f, then d(f,Q,y) can be computed by the convenient
formula

d(f,Q,y)= > sgndet Df(z).

z€f~ v}
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The axioms of degree can be used to show that the degree has a number of useful
properties: in particular, the degree does convey information about the existence of
solutions to the equation f(z) =y, as

(d4). d(f,Q,y) # 0 implies that f~'(y) # 0.

Moreover, if [ is actually continuously differentiable on Q and y is a regular value
of f, much stronger conclusions can be drawn from the result that d(f,Q,y) # 0.
Indeed, if d(f,Q,y) # 0, then not only is f~'(y) nonempty as it is in the case when f
is merely continuous, but f~*(y) is then a finite nonempty set of points. Knowing that
the degree at a particular point y is nonzero will then lead directly to the determinacy
conclusion that there are a finite nonzero number of solutions to the equation f(z) =y
in the case that f € CY(Ql) and y is a regular value of f.

Also as discussed in section 2, extending the notion of degree to infinite dimen-
sional spaces is not trivial. The degree should still provide a useful and meaningful
answer to questions concerning the existence and number of solutions to a system of
equations. so it should still satisfy the degree axioms {d1)-(d3). In infinite dimensional
spaces huwever, degree cannot be defined for all continuous functions and still satisfy
the axioms (d1)- (d3). There are many tounterexamples, see e.g., Krasnosel’skii and
Zabreiko {1980), but perhaps the clearest way to see the necessity of working with a
more restrictive class of maps than continuous maps is to recall that Brouwer’s fixed
point theorem, which states that a continuous function mapping a closed, bounded,
convex subset of R” into itself must have a fixed point, can be proven using only the
axioms (d1)-{d3). If it were possible to define degree for all continuous functions in an
infinite dimensional space which still satisfied (d1)-(d3), the same proof of Brouwer’s
theorem could be used to show that every continuous function from a closed bounded
convex subset of some infinite dimensional space into itself must have a fixed point,
which clearly is not true. For example, consider the domain ¢,, the space of sequences
which converge to 0, where for = € ¢,, ||z|| = sup |za|, and let F': ¢, — ¢, be defined

n

by Flz) = (1 +|z)/2,21,22,...). Then F : B{(0) — B1(0) but F has no fixed
points (see Deimling p. 37). As is often the case in infinite dimensional spaces, what
is lacking is compactness, since arbitrary closed bounded sets certainly need not be
compact in an infinite dimensional space.

As noted iu the paper, the key idea which leads to an appropriate class of functions
for which degree satisfying axioms (d1)-(d3) can be defined is that of a compact oper-
ator. Compact operators have a number of important and useful properties, perhaps
the most important of which is that compact operators can always be approximated
by maps with finite dimensional range. With the above notation, F is called finite
dimensional if F(}) C X where X“ is a finite dimensional subspace of X. The
following theorem is central to the development of degree for Banach spaces, and can
be found in Deimling (1985, Proposition 8.1). Recall that a function f: X — Y is
proper if for every compact set ' CY, f~}{(K} is compact.

Proposition Al. Let X be a Banach space, 8 C X closed and bounded, and let
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£l = X be a compact operator. For every e > 0 there exists a finite- dimensional
operator F, : 1 — X such that

sup | F(z) - Fi(2)] < e.
Q

Moreover, I — F' is proper.

An analogous version of Proposition Al holds for compact operators in locally
convex spaces, with the appropriate changes in notation, and can again be found in
Deimling (1985, Proposition 10.1).

Proposition A2. Let X be locally convex, 8 C X, and F :  — X compact, ie.,

continuous and such that F{{1) is compact. Then we have

i. For {7 € U(0), the set of neighborhoods of 0, there exists a finite dimensional
map Fu such that Fy(z) — F(z) e U for z € (1.

H. [ — F maps closed subsets of §} onto closed sets.

Furthermore, linear combinations of compact operators are compact, as are com-
positions of continuous functions with compact operators { Krasnosel’skii and Zabreiko,

D.73).
Proposition A3. Let (X, 7)) and (Y, ;) be locally convex linear topological vector

spaces, and QR C X. If G :  — Y are 7y — 1, compact operators, so is F+ G. If
H:Y — X is 7, — 7 continuous, H o F':{} = X is amy compact operator.

Using these properties of compact operators, the appropriate extension of Brouwer's
degree to infinite dimensional spaces, called Leray-Schauder degree, can be defined
for the class of compact perturbations of the identity, which are maps of the form
[ — F where F': {1 — X is a compact operator. That is, there exists a unique function

D:{{I-FQy): QC X open,bounded, F : @ — X a compact operator,
yg (I - F)oQ)} -2

satisfying (D1)- (D3):

(D1). {normalization) D(I,},y)=1ify € ;

{(D2). (domain decomposition) D{I — F,Q,y) = D(I = F,Qy,y) + D(I - F,Qs,y)
for 14, {1, disjoint open sets such that y € (7 — F)(Q2\ (£, U QL));

(D3). (homotopy invariance) D(I — H{t,-),1,y(t)) is independent of t € [0,1]
if H:[0,11 x 1 — X is compact, y : [0,1] — X is continuous, and y(¢) ¢ (I —
H{t,-))(00) for every t € [0,1].
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As in the finite dimensional case, it is a relatively straightforward consequence of
(D1)-{D3) that

(D4). D(I - F,Q,y) # 0 implies that (I — F)~!(y) # 0.

Also as in the finite dimensional case, the distinction remains between the inter-
pretation of the degree for compact perturbations of the identity which are in addition
continuously differentiable and for which y is a regular value, and those which are
merely continuous. If F is continuously Fréchet diflerentiable on {2 and y is a regular
value of / — F, that is, a value for which D({ — F){z) is surjective for every point z
satisfying the equation (J — F)(z) = y, then (I — F)~(y) is a finite set. Moreover,
as with nonsingular 2 x n matrices, there are exactly two homotopy classes H* and
H~ of linear isomorphisms of a Banach space, and D{(I — F, {1 y) can be computed
by the formula:

D(J-—F,Q,y)z Z j(D(]—F)(.’L"))
ze(I-F)~1{y)
where £ DU - F)(e) € A
: 1, 1 - z)€ H™;
HDU = Fl(z)) = {1, if D(I — F)(z) € H*.

The function j(-) is the natural generalization of sgn det(-}, since for n x n matrices,
H- is the set of matrices with negative determinant and H* is the set of matrices
with positive determinant. Again if i is a regular value of the continuously Fréchet
differentiable function I — F and D(I — F,Q,y) # 0, one can conclude directly that
the equation (I — F')(z) = y has a finite nonzero number of solutions in the set (1.
Moreover, under these regularity conditions, if D{J — F,§,y) > 1, then the equation
(I = F){a) = y has multiple solutions, an important implication for many economic
applications such as macroeconomic models of coordination failure.

If F is only continuous or if y is not a regular value of I — F, one can still ask
as in the finite dimensional case whether a solution or set of solutions is essential.
Again by homotopy invariance, if D(I — F,{l,y) # 0, the set of solutions to the
equation (/ — F)(2) = y is essential, and hence given any neighborhood U of the set
of solutions, arbitrarily small perturbations of the system of equations I — F must
still have solutions in this neighborheod U.

Leray-Schauder degree can be extended to locally convex spaces, again with the
requisite changes in notation and terminology. The major change from the Banach
space formulation is that in locally convex spaces open sets are not generally bounded,
and the degree is defined for triples (/ —~ F, Q, y) where (1 is open, F(f2) is compact and
F' is continuous with respect to the given topology. For a more detailed discussion of
Leray-Schauder degree theory, see Deimling (1985), Lloyd (1978), or Krasnosel’skii
and Zabretko (1980).
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6 Appendix II

The first part of this appendix is concerned with proving the main result of the paper,
that MCP equilibria exist and are essential; the remainder of this section is devoted
to several other lengthy proofs.

In order to show that MCP equilibria exist and are essential, the idea of the proof
is to apply a homotopy to reduce the problem to a simple starting problem whose
solutions are known. To define the starting equations, choose (y,Ul, o Un) €0
such that § + w > 0, f(7) < 0 (see Figure 2), and such that U; € (0, U;(w)) for
each 7. Set

G(yvljla"'aUm) = (y - gsUl - Ula---aUm - Um)
Certainly G is a compact perturbation of the identity, and by (D1), D(G,0,0) =1

The map G will serve as the candidate starting equations.

Theorem 2.4. Under assumptions P, BP, K and H, marginal cost pricing quasiequi-
libria exist. Moreover, the set of marginal cost pricing quasiequilibria is essential.

Proof: Recall that @ = Q, x [J7,(0, Ui(mb)), where Q, = {y : f(y) < f(b—w)},
where i > mb. First, make a modification to . For each i = 1,...,m, choose U;

such that U;(b) < U; < Ui(md), and let vy, : [0, U{mb)] — [0,1] be a smooth function
such that

xu, ([0, U
XU, IUH L

()
N = 0

U:()))
mb)])
Define

FADS(yh Us) = xu (Us)z:(Df(y), Ui AU(D)) + (1 — xu, (Us))mb.

Then 2;(-) is a o({ 53) compact operator, and note that for all values U; such that
U S UL, 5(Df(y),U) = z{Df(y),Us). Now define

(v +w) = 2 Df(y), U A Ui(B))

) fly)
Fly,Ur,...,Un) = | Dfly)- #:(Df( )Uz)—rz(y+w)

Df(y)- i’m(Df(y), Un) = rm(y + w)

Then F is still a (e, {1} compact perturbation of the identity. Moreover, F'I(O) =
F=10), as if U; > Uy(b) for some z, z:(Df(y), Ui A Ui(b b)) = =:(Df(y), Ui(b)) = b,

hence T, a:( D f(y), Ui A Ui(D)) = b By choice of b, if f(y) =0, y +w # b, so

y+w # S0 5 Df(y), Ui AULB)). That is, F(-) # 0 if Ui > Ui(8) for any i, and
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hence £-1(0) = F~*(0). Thus the equation F(-) = 0 defines the MCP quasiequilibria.
Then let

H(y, Uiy U, 1) = (1 = )Gy, Ury .., Un) + tF(y, Ur, .., Un).
So H=1- Cl(y,U,...,Un,t), where

= (DI (W), Ui AU(B) ~w ;
Uy = fly) U,
Cly:Unsoo Unst) =1 Uy = [Df(y) - 22 DI (1), Un) = maly + )] |F(1=1)

: 7,
Un = [Df{y) - 2m(Df(y), Un) = ro(y + )]

and C: Q2 x {0.1] = Lo x R™ is a a(€eo, £1) X Trm X TR — 0{{eo,£1) X TRm compact

operator. Using homotopy invariance, it suffices to show that H{J,t) # 0 for all

te 0,1l ) i
By choice of (§,U/1,...,Un), this is true for ¢t = 0, since

00 = {1l Un): fy) = f(b—w)}
(

U {('y,Ul,...,Um):U{G {O,U,(ml_))}}

I

nC_s

This is also true for ¢ = 1. By feasibility, there can be no equilibria with y € 90,
since f{y) # 0 for such y by definition, or such that y +w # 0 since f: z;(Df{y), Ui A
=1

L0y = 0 for all y, and quasiequilibrium requires that Tzn: zi(Df(y), U: A Ui(B)) =
=1

y +w. Since quasiequilibrium requires that f: zi(Df(y), U: AUi(B)) = y+w, y+w €
1=1

[0,mb], and hence ri(y + w) = 6;Df(y) - (y + w) for every z. If U; = 0 for some 1,

then by definition, z;(Df(y),0) = 0 for all y, and Df(y)- (z:(Df(y),0)~bi(y +w)) =

~0;:Df(y) -y +w) < 0 for all y such that f(y) =0 and y +w > 0. If U; = Ui(md),

again by definition z;{Df(y), Us(mb) A Ui(b)) = b, which would violate feasibility.
Now for 0 < ¢ < 1, note that H(y,U1,...,Un,t) =0 =

(1), [T, 2 D), UAV(B) — (g+w)] = (1=1) (=) = (1=8)[{y+w) = (F+w))-

Then first note that (1) will not hold if y + w # 0, since if for some component n
(y+w).. < 0, then for the corresponding component of equation (1), the left hand side
is nonnegative, while the right hand side is strictly negative, so equality in equation
(1) cannot hold unless y+w > 0. Then assume y+w > 0. Equation (1) is also violated
if y € 89, since then there is some component n such that (y + w), > (mb)y,, and
for the corresponding component of equation (1), the left hand side is nonpositive
while the right hand side is strictly positive by choice of . So if {1) is to hold,
y +w € [0,mb]. For the remainder of the proof, assume y + w € {0,m4]. Then note
that H{y,Uy.....Un,t) =0 &
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(1). {2, 2 DS (y), Us AUB)Y) = (y +w)) = (1 — )y — s
12 D) (DI U) = iy + ) = 1= O =T for i =2
an
(3). tf(y) = (L= t)(Uy — Uh)
Moreover, (D f(y),0) = z:(Df(y),0) = 0 for all y, so if U; = 0 for some : =
2,...,m, for y + w > 0 equation (2) becomes :

0 < 9:Df(y) - (v +w) =—(1 - 1)U: <0,

which is a contradiction. Similarly, Z;,{Df(y), Ui{mb)) = mb for all y, so for y + w €
(0, mb], equation (2) will be violated if U; = U;(rnb) for some i = 2,...,m, as it
becomes :

0> —tDfly)- (mb—8i(y +w))=(1— tY(U(mbd) — U;) > 0,

which is again a contradiction.

Now consider equation (3). The strategy for the remainder of the proof is to show
that there exist values 1/ and t” such that ft <t ort 2", H,t) #F0iHH Uy =0 or
{73 = [/{(mb), and then to slightly change equation (3) so that the resulting homotopy
will Lave no zeros for ¢ € [t/,2"] as well if Uy € {0, U3 (mb)}.

Since f is bounded, there exists M > 0 such that |f(y)] £ M for all y +w €
10,mb]. Choose 4 > 0 such that v < min(Uy, Us{mb) — Uy). For ¢ < 1, the function
h(t) = %M is continuous, and A(0) = 0, so there exists ¢' > 0 such that if ¢ < ¢/,
=M < 5. Then if ¢t < ¢, (3) fails if either Uy =0 or Uy = Uy(mb), as (3} requires

¢ -
-/ =0-h
or .
T Wl= Uy = Uhl.
If {7y = 0, this becomes
¢ -
T MW=t
but by the choice of #* and the definition of M and =,
t

i _
M > =
7> M2 S WI= 0>y

which is a contradiction. Similarly, if Uy = Ui(mb), (3) requires
t - _
T Wl = Ui(mb) — U

which by choice of ¢ and definition of M and v implies that

t
1—

t o
7> M 2 /)l = Ui(mb) = Uh > 7,
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which is again a contradiction. So for t < ¢/, (3) fails if Uz = 0 or Uy = Uy(mb).

Now we want to show that there exists a ¢” < 1 such that if ¢ > ¢”, equations (1),
(2) and (3) cannot all hold if either U, = 0 or U; = Uy(mb). For simplicity, define
flz2) = flz —w), sothatf(’y-i—w)z fly). Since f(B) = f(b—w) >0, let 7 > 0 be
such that n < f(D)/4. Since f is (e, £1) continuous it is norm continuous, so there
exists § > 0 such that if |z — 3] < &, |f(z ) — f(®)] < 5. Choose € > 0 such that

e < f(B) = . Thenif fly+w) = f(y) <& f(0) = f(y+w) >n, 50 [y +w) - b > &.
Also. as [ is strictly monotone, if f(y+w) = f(y) < ¢, |[(y+w) —s|| > s for all s > &;
that is (see Figure 3)

[r:||r— sl < 6forsomes>b}N{r:f(r)<e}=0.
Now there exists ¢; < I such that if ¢ > ¢y,

1—1 . 1 -1
*T|U1 — Uil <€ and THEJ“?H <6/2

for all y such that y + w € [0,ml] and for all U; € [0,U;(mb)]. Then in particular,
for ¢ > t;, if (3} is to hold we must have

F@)l = =10 = Bl < e

Then if t > ;. f(y) < ¢, and (1) holds, we have

TiL

13 2 DIw), U AUD) = (g + )l = =y - gll < /2.4

By definitior: of &, if ¢ > #; and f(y) < e, (1) will then fail unless U; < U;(b) for
1= 1l..... m, since if U; > U;(D) for any 1, ] . Sz Df(y), Us AU(D)) > b, s0 (=) =

t'-i
|y +w)—s|| <6/2 wheres>b.

But this is a contradiction, since f(y) < e. Then in particular, for t 2> ¢, (1) and (3)
cannot both hold if U/; = U;(mb). )
Now suppose [/} = 0. Without loss of generality assume U/; have been chosen such

that U;(b) — U; > T U; for each 1, so that if U; > U;(b) for some i, S (U: = T3) > 0.
J¥1 =1

Since b € int {0y, we can choose & such that b— e = (by — 8,b,—6,...) € int £ooy.
Let 3 € (0,1). Thenif |z —(y +w)|| < § and z > b, y +w > B(b — be) (see figure
3). Moreover, without loss of generality we can assume § has been chosen so that
7+ w < '3(5 — §e),11 so that for every y, Df(y) - (§ + w) < Df(y) - B(b — be), or
Df(y) - (3(b— 6¢) = (§ +w)) > 0.

WPk = —w + a(b — be), where using the Intermediate Value Theorem, we choose o > 0 such
that o < 3 and f(a(b—6e}) < 0, noting that at & = 1, f(§—6e) > Dandat a = 0, f(0) = f(—w) < 0.
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Now we claim that if /; = 0 and ¢ > t1, (1) and (2) cannot both hold if U; > Ui (d)
for some 7 = 2,...,m, regardless of f(y). To see this, note that (D f(y),0) =0, so
(1) becomes

"

t>z:(Df(y), Ui A Ui®)) = (y+w)] = (1 - t)(y — 7)

t=2

and by summing (2) overi = 2, .. .,

m _t m

2 D16).U) ~ (1= )+ )] = =1L SN0~ 1),

Suppose some U 2 Ui(5). Then 3 zi( Df(y), U A Ux()) > b and & 7(D f@),U:) >
=2

=2
m

2 (D f{y), Ui AU(D)). Moreover, —%

=2 i

[\13

(Ui = U) < 0. Since 8, > 0, we have

I
by

Zr (D) U AU(B)) — (y +w) € S E(DF(), V) — (1 — )(y + ),

1=2
and thus applying Df(y) to both sides yields

m

D e Df(y), U AU(E) - (y +w)] < Df(y)[ii(Df(y)U) (1=61)(y +w)]
i=2

=2
-t &

= ""TZ( :'—Ui)<0

=

L

Z:c (Df( (¥), Us AU(D)) = (y +w)] < 0.

However, since t > t,, by (1)

m

l gmi(Df(y),U,- AUi(B)) = (y + w)]| < 6/2. _

Applying D f(y) to both sides of (1) implies that

T

tDf(y Z:cz (Dfy), Ui AU(B) ~ (y+w)] = (1-8)Df(y)- (y - §)
= (1=-)Df(y) [y +w) ~ (F +w)].

Since }: zi{ D f(y}, Ui A U(B)) > B, by choice of S, y+w > pb- ée), and then by

choice ofy
Diy) ly +w) = (g +w)] 2 Df(y) - [8( - 6e) - (7 + w)] > 0
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that 1s
m

_Z (Df(y), Ui NU(B)) — (y +w)] > 0

which is a contradiction.
Hence when ¢ > 1, if f(y) < € or Uy = 0, equations (1) and (2) cannot hold unless
U; < Ui(b) for all = 1,...,m. Then assuming U; < Ui(b) for all ¢, equations (1), (2)

and (3) become

(
(1), (Zm, @l Df (), U) = (y+wh)y = A =t)y—7)  _
(2). —tDf{y) ((DflyhU) —bily +w)) =1 -t} Ui - Uy) fori =2,...,m

and )
(3). t/(y) = (1 = )(th = Uy).
By applying Df(y) to both sides of (1) we get

n

tDf(y Zl Df(y), U —(y+w)l=1-)Df(y) - (y - 9)
so that after summing (2) over 7 = 2,...,m and subiracting we have
(4)- DS 1) (DS () ) =y +w) = (1 =D[DFE) - (v = 9) + L(Ui = D))
Now since f{0 ) {—w) < 0, without loss of generality choose € > 0 so that

¢ < |f(~w)]/2 as well. Then by choice of ¢, D = {y : f(y} > —¢, y +w € [0, mb}}
is a ol £1) compact set, and —w € D, so that Df(y)-{(y+w) > 0forall y € D.
Since Df{-) is 0(£e, £1)-norm continuous, D f(y) - (y +w) is o(£w, &) continuous, and
thus (= 1;&&3 Df(y) - (y +w} is attained and hence positive. Then there exists

" < 1 such that t” > t; and such that if ¢ > ¢/,

1—t Lo _
——Df) -y -9+ 2 (U= L) < 6:C
=2
Hence if ¢ > t” and f(y) > —¢, (4) will fail if U; = 0, as it becomes

6 Df(y) - (y +) = DI} - (v — 7) + L (U = )
=2
which implies that
6C < |6 Df(y) - (y +w)| = l{ilDf(y) (y—-9)+ 21U - )| < 6:C

=2

by choice of t”, which is a contradiction. So if ¢ > ¢, (1), (2), and (3) cannot all hold
if either Uy = 0 or or U} = Ur{mb).
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Now choose t.,t" such that 0 <t, < ¢/ <" <#* < 1 and let x,: [0,1] = [0, 1] be
a smootl function such that

([t 1) = 1
Xt({os t*]) = 0
x([t1) = 0o

Also, choose Uy, Ul such that 0 < Uy, < Uy < Uy(mb) and let xu, : [0,Uh(mb)] —
[0, 1] be a smooth function such that

XU:([O’UL]) = 1;
XUJ([U;sUI(mB)]) = 0.

Note that [ = f(—w) <0 and L = f(b—w) > 0. Define

gly 1. ) = (1 = x®y + x:(BH (1 = x0, (V1))(b— @) + xur, (U1 )(—w),

and replace (3) by

F) —tf(g(ty, Un)) = (1 = t)(Uy = T0).

Now we claim that we have constructed equation(3') such that (1), (2), and (3')
cannot all Lold if either Uy = 0 or Uy = Uy(mb) for any ¢t € [0,1). To see this,
consicler the cases. If ¢ < ¢, (3') will fail by construction if Uy = 0 or U; = Ur(mb},
as by definition of ¢/, for ¢ < ¥, |/ (g(y, ¢, 1)) < v < min(Ty, Ui (mb) — U4). So if
Uy e {0, (mb)}, (3) requires

t -
7> I/ gly t, U))l = U ~ Th] 2 4

which is a contradiction as argued before. _
ift et t"], (') also fails for Uy € {0,U;(mbd)} by construction. If U/; = 0 and
tet'.t"], g{y.t,0) = —w, so (3') becomes

0 < —tf(-w)=(1-t)(~0h) <0,

a contradiction. Similarly, if Uy = Uy(mb) and t € [t',#"], g(y, ¢, Uy{mb)) = b — w, so
(3"} becomes

0> —tf(b—w)=—tL = (1 ~t)(Ur(mb) = ;) > 0

also a contradiction.

If t 2%, then g(y,,U1) = y, so equation (3') is equivalent to equation (3), and
since t* > ¢, if t > ¢*, then by choice of t” equations (1), (2), and (3) cannot all hold
fly=00rl, = Ui(mB).

Finally, suppose t € [t”,"]. Since t > ¢”, if (3') holds then

flaly,t, Ul = =10~ Dl < e
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Note that for ¢ € [t”,¢7], if Uy =0, ¢(y,t,0) <y, so flg(y,?,0)) £ f(y), and hence
since f(g{y,1,0)) > —¢, fly) > —e. We chose t”” so that if ¢t > ¢, U} = 0 and
fly) > —¢, equations (1) and (2) cannot both hold. Similarly, if U; = Uy (mb)
and ¢ € [t”,t"], g(y,t, Ui(mb)) > y, so f(g(y,t,Ui(mb))) > fly), and hence since
flgly,t, Ur{mb))) < ¢, f(y) < e. But we chose t” such that if t > ¢" and f(y) <, (1)
and (2) cannot both hold if U; = U, (mb). _

Replace the original homotopy H by H', where H' is identical to H but has
(3'} in place of ( ). Then H' is a o({e, 1) compact perturbation of the identity,
H'(-,0) = G(-); H'(-,1) = F'(), and by construction 0 ¢ H'(8%,1) for every t € [0,1].
Then by homotopy invariance, D(F,Q,y} = D(G,2,y) = 1. Since D(F,0,0) # 0,
F=1(0) # ¢, so that marginal cost pricing quasiequilibria exist. Moreover, as discussed
in section 2, the set of marginal cost pricing quasiequilibria must also be essential. &

Theorem 3.1. If f: ¢, — R is strictly concave, strictly monotone, continuously
Fréchet differentiable. and weak* continuous, then Df(y) € ¢; for every y € £..

Proof: Since f{y) is 0{lw, 1) continuous, the hypograph of f, which is the set
bypo f = {{y,2) : z < f(y)}

has nonempty o (€, {1} interior. To see this, let € > 0 and consider (y, f(y)—e). Since
S is o{€,,£) continuous, there exists a neighborhood U of y such that for ' € U,
F') € {f{y) —¢€/2, f(y)} + €/2). So for instance U x (f(y) — 5¢/4, f(y) — 3¢/4) is a
neighborhood of (y, f{y)—¢)} which is contained in hypo f, sinceif (y',z) € Ux{f(y)—
34 14) e/, < Jly) = fd < J0) = /2 < [y} i, (0',2) € bypo /. Hon
{{y.z): 2 < f(y)} is a 6(£w, 1) open, convex set which is dxs;omt from graph f. For
every ( 7, (7)) € graph f, by the Hahn-Banach theorem for locally convex spaces (see,
e.g., Aliprantis and Burkinshaw (1985), Theorem 9.10), there exists (p,r) € {1 x R
such that (p.7) # 0 and such that for every (y,z) €{(y,2) : z < f{y)},
(pﬂ)(gaf(g)) S(pﬂ)(yaz) (})

Consider {§,z) € hypo f such that z < f(7), or 0 < f(7) — z. Then (1) implies
that 0 < —»(f{§) — z), or » £ 0. Furthermore, (1) implies that (p,r) - (g, f(7)) <
(p,r) - {y, f(y) — €) for every € > 0. Letting ¢ — 0 yields

(p,r) - (3, J(@)) < (p.7) - (y, f(w))

for every y € £,.. So -

p-(7—y) £ —r(f{y) - fy) Vyé€ le. (2)

Now » # 0. To see this, suppose not, that is, suppose r = 0. By (2),p- g <p-y for
every y € {o. Since (p,7) # 0, 37 such that p; # 0. Let ¢; be the j*# standard basis

vector in £, and set )
z={—2P;y€j ifp-g#0,
—pje;  ifp-y=0.

37




Certainly & € £, and p-r < p- §, & contradiction. Thus r # 0. Let p = —Ip. By
(2).

prly—9)2fly) - 7)) Vy€lo,
or p € df(y), the set of subgradients of f at §. As f is continuously Fréchet differen-
tiable, 3f{y) = {Df(§)},s0o Df(y)=p € £. =2

Theorem 3.2. Suppose f(y) = Z: Btg(y:), where g : R — R is Cl, |g'(r)] € M
i=0

for some M < o0, and 0 < § < 1. Then f is Fréchet differentiable and D f(y) =
{89 (y)} € & foreveryy € £o.

Proof: We claim that f is Fréchet differentiable and that D f(y) = {£'g'(y:)}. Clearly
{3%'(y:)} € £ for every y € €5 as ¢’ is continuous on R, so it suffices to prove that
this is actually the derivative of f at 3. This can be proven using the definition, since
it suffices to show that

|5 Btglae+ h) — Blglz) — Big(z)he]

. =0 .
iy A =0
But
S Byt h) - Boled — Feokd E Flolect b Bole) ~ Bo(zhd
= < =
B s T
) Z gt i =z =5 oty

by definition of ||}, Then given ¢ > 0, choose T such that fﬁ‘ < ¢/2M. Since for
T

every t,

glze + hy) = g(z) — g'{z:) R
| - |

for t = 1,...7 there exists & > 0 such that for {4;] < &,

(z1 4+ k) = glz1) — g'(20) R €
L it g |<1—ﬁ'

— 0,

Set 6 =min{é,:t=1,...T} > 0. For ||| <6,

E 18gle + b) - Bglz) = B9 ()h

< iﬁtlg (ze+ he) — g(2s )—9’($t)ht|

124 = by
' ¢+ he) — g(zy) — g (z0) e
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ot o+ b)) — glz) — g'(2) by
+zt‘g(+)g() 9()l

t=T ht

Ry
1+ el = e
=T

< TZ_':‘ ﬁt|g($i + hi) — glze) — g'(xs)htI

¥

for some 7, € {z¢, ¢ + M),

€
< E-l-QM'W—Zﬁ-

Thus Df(y) = {B'¢'(v:)}. _ =
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