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Abstract

Seeing in the Dark: Weak Lensing from the Sloan Digital Sky Survey

by

Eric Michael Huff
Doctor of Philosophy in Astrophysics

University of California, Berkeley

Professor Uros Seljak, Chair

Statistical weak lensing by large-scale structure – cosmic shear – is a promising cosmological
tool, which has motivated the design of several large upcoming astronomical surveys. This
Thesis presents a measurement of cosmic shear using coadded Sloan Digital Sky Survey
(SDSS) imaging in 168 square degrees of the equatorial region, with r < 23.5 and i < 22.5,
a source number density of 2.2 per arcmin2 and median redshift of zmed = 0.52. These
coadds were generated using a new rounding kernel method that was intended to minimize
systematic errors in the lensing measurement due to coherent PSF anisotropies that are
otherwise prevalent in the SDSS imaging data. Measurements of cosmic shear out to angular
separations of 2 degrees are presented, along with systematics tests of the catalog generation
and shear measurement steps that demonstrate that these results are dominated by statistical
rather than systematic errors. Assuming a cosmological model corresponding to WMAP7
(Komatsu et al., 2011) and allowing only the amplitude of matter fluctuations σ8 to vary,
the best-fit value of the amplitude of matter fluctuations is σ8 = 0.636+0.109

−0.154 (1σ); without
systematic errors this would be σ8 = 0.636+0.099

−0.137 (1σ). Assuming a flat ΛCDM model,
the combined constraints with WMAP7 are σ8 = 0.784+0.028

−0.026(1σ)+0.055
−0.054(2σ) and Ωmh

2 =
0.1303+0.0047

−0.0048(1σ)+0.009
−0.009(2σ); the 2σ error ranges are respectively 14 and 17 per cent smaller

than WMAP7 alone. Aside from the intrinsic value of such cosmological constraints from
the growth of structure, some important lessons are identified for upcoming surveys that
may face similar issues when combining multi-epoch data to measure cosmic shear.

Motivated by the challenges faced in the cosmic shear measurement, two new lensing
probes are suggested for increasing the available weak lensing signal. Both use galaxy scaling
relations to control for scatter in lensing observables.

The first employs a version of the well-known fundamental plane relation for early type
galaxies. This modified “photometric fundamental plane” replaces velocity dispersions with
photometric galaxy properties, thus obviating the need for spectroscopic data. We present
the first detection of magnification using this method by applying it to photometric catalogs
from the Sloan Digital Sky Survey. This analysis shows that the derived magnification signal
is comparable to that available from conventional methods using gravitational shear. We
suppress the dominant sources of systematic error and discuss modest improvements that
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may allow this method to equal or even surpass the signal-to-noise achievable with shear.
Moreover, some of the dominant sources of systematic error are substantially different from
those of shear-based techniques.

The second outlines an idea for using the optical Tully-Fisher relation to dramatically
improve the signal-to-noise and systematic error control for shear measurements. The ex-
pected error properties and potential advantages of such a measurement are proposed, and
a pilot study is suggested in order to test the viability of Tully-Fisher weak lensing in the
context of the forthcoming generation of large spectroscopic surveys.
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Chapter 1

Motivation

Modern cosmologists can simulate the invisible implications of modern cosmological
models (e.g., those that can explain the cosmic microwave background, including Komatsu
et al. 2011) to what is generally agreed to be a high level of precision (and probably ac-
curacy, c.f. Lawrence et al. 2010). The easily observable consequences of these models for
observations of galaxies are not so easy to calculate (e.g., Rudd et al., 2008; Conroy &
Wechsler, 2009; Simha et al., 2010), involving as they do the physics of the familiar but
nevertheless stubbornly complicated baryons. Most of the precisely calculable components
of these models – namely, the properties of the distribution of dark matter on large scales in
relatively linear structures – are not readily observable.

For the foreseeable future, the least indirect observation of these dark components is the
measurement of the gravitational effects of dark structures on the images of distant back-
ground galaxies. These measurements are made almost exclusively via statistical estimation
of the distortions in the ellipticities of background galaxies. This takes advantage of the fact
that galaxies have no preferred orientation in a homogenous, isotropic universe 1.

Lensing measurements have played a significant role in observational astrophysics in the
last two decades, over a range of scales and physical regimes. Studies of galaxy evolution
benefit from the ability to understand the dark matter halos that host galaxies (e.g. Hoekstra
et al., 2004, 2005; Heymans et al., 2006; Mandelbaum et al., 2006; Mandelbaum et al.,
2006c, 2009; Leauthaud et al., 2012). Cosmologists have no other way to directly map the
large-scale matter distribution, which is crucial for constraining models of dark energy and
modified gravity (Zhang et al., 2007; Reyes et al., 2010). On small scales, maps of the matter
distribution can be tied directly to tests of the cold dark matter paradigm and simulations
of the formation and evolution of dark matter halos.

Much has been made of the scientific potential of this technique. Six years ago, weak
lensing was identified by the Dark Energy Task Force (Albrecht et al., 2006) as the most
promising tool for constraining cosmological models. Several large ground-based and space-

1For a finite field, this assumption is not strictly true – physically proximate galaxies ‘know’ about nearby
large-scale matter fluctuations, and as a result the covariance between galaxy ellipticities even at large scales
does not vanish.
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based survey proposals place a weak lensing measurement among their primary science
drivers, including the Panoramic Survey Telescope and Rapid Response System (Pan-STARRS)2,
the Dark Energy Survey (DES)3, the Hyper Suprime-Cam (HSC, Miyazaki et al. 2006) sur-
vey, the Large Synoptic Survey Telescope (LSST)4, Euclid5, and the Wide-Field Infrared
Survey Telescope (WFIRST)6.

For all the promise, the technical challenges for these future experiments remain formidable.
An order-unity distortion to background galaxy images is produced by a physical, projected
matter overdensity of

Σcrit =
c2

4πG

dS
dLdLS

, (1.1)

where dL, dS, and dLS are the angular-diameter distance from the observer to the lens
and source, and from the lens to the source, respectively. For characteristic distances of
approximately a Gpc, the critical surface density is 0.1 g cm−2. Typical fluctuations in the
matter density field projected over cosmological distances are a thousand times smaller than
this, so order 10 Mpc-scale density fluctuations in the universe will typically produce changes
in galaxy ellipticities of order e ≈ 10−3 to 10−2 in magnitude. In the shot-noise dominated
regime, the leading-order contribution to the variance in the correlation function of the
ellipticity distortions is

Var (ξε) =
σ4
ε

N2
pair

. (1.2)

For a shallow (〈z〉 = 0.5) galaxy survey with shape noise σε ≈ 0.3 and 100 deg2 of
sky coverage, reducing the shot noise contribution below the expected cosmological signal
requires a surface density of usable source galaxies of at least ∼ 4/arcmin2.

Worse, for ground-based imaging surveys, the observed shape distortions arising from
atmospheric turbulence and optical distortions from the telescope are typically of order
several percent, with coherence over angular scales comparable to that of the lensing shape
distortions. A competitive measurement of the amplitude of matter fluctuations requires
suppressing or modeling these coherent spurious distortions to better than one part in 103.

Achieving both the statistical precision and control of systematic errors that is required
for such a measurement has proved to be a challenge.

Cosmic shear measurements were attempted as early as 1967 (Kristian, 1967), but until
the turn of the millennium (Bacon et al., 2000; Kaiser et al., 2000; Van Waerbeke et al.,
2000; Wittman et al., 2000), no astronomical survey had the statistical power to detect it.
The successful early detections (Bacon et al., 2000; Van Waerbeke et al., 2000; Rhodes et al.,
2001; Hoekstra et al., 2002; Brown et al., 2003; Jarvis et al., 2003) showed the promise of
the method and confirmed the existence of lensing by large-scale structure at roughly the

2http://pan-starrs.ifa.hawaii.edu/public/
3http://www.darkenergysurvey.org/
4http://www.lsst.org/
5http://sci.esa.int/euclid/
6http://wfirst.gsfc.nasa.gov/
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expected level. However, they also highlighted some of the systematic errors: in particular,
B-mode shear (which cannot be produced by lensing at linear order and is thus indicative
of systematic effects) was present at a subdominant but non-negligible level. Since then,
the weak lensing community has moved in the direction of both deep/narrow surveys with
the Hubble Space Telescope (HST) and wide/shallow surveys on the ground. The Cosmo-
logical Evolution Survey (COSMOS) is the premier example of the former: in addition to
2-point statistics (Massey et al., 2007b; Schrabback et al., 2010), it has also produced three-
dimensional maps of the matter distribution (Massey et al., 2007b) and the lensing 3-point
correlation function (Semboloni et al., 2011). Excellent control of lensing systematics in
COSMOS was also achieved thanks to the small number of degrees of freedom controlling
the PSF (mostly focus variation; Rhodes et al. 2007) and detailed modeling of charge transfer
inefficiency (Massey et al., 2010). However, COSMOS covers only 1.6 deg2, and the small
field of view of HST instruments makes significantly larger surveys impractical. The principal
recent ground-based cosmic shear program has been the Canada-France-Hawaii Telescope
Legacy Survey (CFHTLS). There are now several cosmic shear results from different subsets
of the CFHTLS data (Semboloni et al., 2006; Hoekstra et al., 2006; Benjamin et al., 2007; Fu
et al., 2008), and the CFHT lensing team is completing a reanalysis using recent advances
in PSF determination and galaxy shape measurement.

In light of the efforts shortly to be made by large, expensive surveys to measure cos-
mic shear, we consider it imperative to show that such a measurement can be performed
accurately, without significant contaminating systematic errors, from a ground-based obser-
vatory. This goal includes doing a cosmic shear measurement with each of the wide-angle
optical surveys that presently exist.

This work combines several methods discussed in the literature as viable techniques for
measuring cosmic shear while removing common systematic errors. It begins with the PSF
model generated by the Sloan Digital Sky Survey (SDSS) pipeline over a ∼ 250 deg2 stripe
of sky that had been imaged many times, and employs a rounding kernel method similar
to that proposed in Bernstein & Jarvis (2002). The result, after appropriate masking of
problematic regions, is 168 square degrees of deep coadded imaging with a well controlled,
homogeneous PSF and sufficient galaxy surface density to measure a cosmic shear signal.

The catalog constructed from this imaging is then used to produce a cosmic shear mea-
surement that is dominated by statistical errors. Chapter 7 enumerates the primary sources
of systematic error when measuring cosmic shear using our catalog (the properties of which
are summarized briefly in Chap. 5), and describes the approaches to constraining each of
them. Chapter 8 outlines the correlation function estimator and several transformations of
it that are used for systematics tests. Our methods for estimating covariance matrices for
the observable quantities (both due to statistical and systematic errors) are described in
Chap. 7. Finally, chapter 9 presents the constraining power of this measurement alone for
a fiducial cosmology, and in combination with the 7-year Wilkinson Microwave Anisotropy
Probe (WMAP7, Komatsu et al., 2011) parameter constraints to produce a posterior proba-
bility distribution over Ωmh

2, Ωbh
2, σ8, ns, and w. In addition to its value as an independent

measurement of the late-time matter power spectrum, this measurement provides some ad-
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ditional constraining power over WMAP7 within the context of ΛCDM.
While this work was underway, my collaborators and I learned of a parallel effort by

Lin et al. (2011). These two efforts use different methods of coaddition, different shape
measurement codes, different sets of cuts for the selection of input images and galaxies,
and analyze their final results in different ways; what they have in common is their use
of SDSS data (not necessarily the same sets of input imaging) and their use of the SDSS
Photo pipeline for the initial reduction of the single epoch data and the final reduction of the
coadded data (however, they use different versions of Photo). Using these different methods,
both groups have extracted the cosmic shear signal and its cosmological interpretations.
We have coordinated submission with them but did not consulted their results prior to
conducting our own analysis, so these two efforts are independent, representing versions of
two independent pipelines.
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Chapter 2

Shape measurement and Shear
estimation.

The term of art for shear estimation from galaxy surface-brightness profiles is shape
measurement, where ‘shape’ is defined as any one of several ellipticity definitions, each of
which is a linear combination of weighted second moments of the galaxy surface brightness
profile. This follows from a physical intuition – shear primarily affects the ellipticity of a
galaxy image, so for analysis the focus should be on making unbiased measurements of galaxy
ellipticities.

It is well understood that the relationship between measured ellipticity and the grav-
itational lensing shear is not trivial. Galaxies have a large diversity of surface-brightness
profiles, and designing an estimator that has an expectation value of the shear requires us-
ing information about the full distribution function of galaxy image properties. Standard
shape measurement methods apply corrections for PSF1 ellipticity and dilution as well as
higher-frequency structure in the galaxy and PSF surface-brightness profiles. Accuracy at
the demanding standard (shear errors of order 10−3) required for the next generation of
experiments has not yet been conclusively demonstrated in realistic simulations or actual
experiments.

The approach taken here is to use the maximum-likelihood procedure, recommended
(at least as an initial approach) by every statistician who is confronted by a scientist in need
of an estimator. What follows does not pretend to be a solution to the shear estimation
problem, but rather a useful schema for making sense of the various existing techniques.

1Note here the effects of the finite size of CCD pixels is incorporated into the definition of PSF.
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2.1 The Maximum Likelihood Estimator: Measuring

Shear in a Perfect World

The weak lensing formalism is, by definition, only valid in the regime where the lensing
distortion is a linear tranformation2 of the unlensed image. At this order, the image distortion
can be represented by a linear coordinate mapping between the unlensed and observed source
planes x 7→ Ax where the linear mapping:

A =

(
1 + κ+ γ1 γ2

γ2 1 + κ− γ1

)
(2.1)

The shear (γ1, γ2) and convergence κ components are related to the matter distribution
projected along the line of sight to the lensed galaxy as:

(γ1, γ2) = ∂−2

∫ ∞
0

W (χ, χs)
(
∂2
x − ∂2

y , 2∂x∂y
)
δ (χn̂s) dχ. (2.2)

κ =

∫ ∞
0

W (χ, χs) δ (χn̂s) dχ. (2.3)

where x = (x, y) is the coordinate vector in the observed image plane.
Here the integral is along the comoving line-of-sight distance χ (where χs is the distance

to the source), and the matter over-density δ = (ρ−ρ)/ρ. The lensing kernel in a flat universe
is

W (χ, χs) =
3

2
ΩmH

2
0 (1 + z)χ2

(
1

χ
− 1

χs

)
. (2.4)

It is conventional to describe the shear components as mapping circular isophotes to ellipses,
and the convergence as producing a change in radius of the same. This is a true but incom-
plete description of the effects of these distortion components; what follows is an elaboration
of the effects of the shear distortion on a general galaxy surface-brightness profile.

The unlensed I (x) and lensed Ĩ (x) galaxy images can be related to leading order by
expanding the distorted image profile to linear order in the shear around the unsheared
image.

Ĩ (x) = I (Ax) = I (x) + γ1∂γ1I (x) + γ2∂γ2I (x) + κ∂κI (x) +O
(
γ2
)

(2.5)

where A here is the lensing distortion transform from equation 2.1 above and O (γ2) is short-
hand for terms that are second order in any product of the lensing distortion components.

The derivatives can be written in terms of two of the Pauli matrices, σ1 and σ3:

∂γ1I (x) =− xTσ3 · ∇I (x)

∂γ2I (x) =xTσ1 · ∇I (x) . (2.6)

2Higher-order corrections can be significant in some cases, but for the wide-angle cosmological applications
being considered here, the linear treatment is sufficient
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Next, I suppose the existence of a pixelized image of a galaxy with surface-brightness
profile Iobs (x) and a fully accurate model of that profile Im (x|γ) which is a function only
of the lensing distortion. For simplicity, I assume that the observed image is detected as a
vector of pixel intensities Iobs

i , and that the pixel intensity noise covariance is Ci,j = σ2
nδi,j.

In this case, the log-likelihood as a function of shear is:

logL =

Npix∑
i

(
Iobjs
i − Imi
σn

)2

− Npix

2
log
(
2πσ2

n

)
(2.7)

Assuming for the sake of simplicity only a single component of nonzero shear γ1 (and no
convergence), the derivative is:

∂γ1 logL =

Npix∑
i

2

σ2
n

[
Iobs
i −

(
Imi − γ1x

T
i σ3 · ∇Imi

)]
xTi σ3 · ∇Imi (2.8)

Optimizing for γ1 produces the linear Maximum Likelihood estimator (MLE)3:

γ̂1 =

Npix∑
i=0

(
Iobs
i − Imi

)
xTi σ3 · ∇Imi

Npix∑
i=0

(xTi σ3 · ∇Imi )
2

=

Npix∑
i=0

(
Iobs
i − Imi

)
w (xi)

Npix∑
i=0

w (xi)
2

(2.9)

I will show below that this expression is equivalent in certain limits to shape measurement
methods commonly used or advocated for use in modern shear analyses. Thus far, the MLE
is valid only for a single galaxy surface-brightness profile. Applying the same MLE to the
great diversity of real galaxies necessitates the use of a model Im which is in some sense the
‘average’ galaxy surface brightness; the correct choice of ‘average’ model depends on on the
exact weighting scheme used in the lensing analysis, as well as the precise mixture of galaxy
types represented in the survey4. For what follows, I will deal only with the MLE for a single
galaxy, but the reader should bear in mind the fact that this choice elides one of the major
sources of bias in shear estimation.

2.1.1 Multipole moments

If all unlensed galaxy images were perfectly round (that is, made up of cocentric circular
isophotes), then equation (2.9) simplifies dramatically. The derivative of the light profile I

3As a practical matter, ‘∇’ is meant to be applied to the continuous model before its representation as a
vector of pixel intensities.

4This can be a strong function of redshift.



Section 2.1. The Maximum Likelihood Estimator: Measuring Shear in a
Perfect World 8

with respect to γ1 becomes:

∂γ1I (x) = −x∂xI + y∂yI = r cos (2θ) ∂rI (2.10)

A small shear applied to a round galaxy induces a small quadrupole proportional to the shear,
and so for initially round objects the optimal estimator is only sensitive to the ellipticity of
the galaxy. Even in this case, however, the amount of ellipticity generated by a given shear
depends explicitly on the radial profile of the galaxy surface brightness profile.

Real galaxies are not perfectly round in the absence of shear, and so the MLE depends
on more than just the quadrupole of the light profile. If I and Im are expanded in multipole
moments:

I =
n=∞∑
n=−∞

Ine
inθ

In =

∫ 2π

0

dθI (r, θ) e−inθ (2.11)

then it can be shown (Bernstein & Jarvis, 2002) that the effect of a small shear γ on the nth

moment depends on the n+ 2 and n− 2 moments as:

∆In = −γ
2

[(n− 2) In−2 (r)− r∂rIn−2 (r)− (n+ 2) In+2 (r)− r∂rIn+2 (r)] (2.12)

When this expression is inserted into equation (2.9), the n − 2 and n + 2 moments do not
in general vanish or cancel; naive use of a pure n = 2 shape estimator would produce a
bias equal to the sum of the remaining MLE multipole terms. It is possible in principle to
design a scheme that nulls all contribution from the higher multipole moments if the full
unsheared surface-brightness profile is known in advance. Several current-generation shape
measurement methods adopt such a strategy, which I discuss below.

2.1.2 Second Moments in ensemble

Matters simplify when the estimator is averaged over a large ensemble of galaxies,
where the real symmetries of the universe allow the neglect of certain terms. Rotational
symmetries ensure that the true ensemble average of underlying galaxy shapes, in the absence
of coherent shear, should be zero; for the ensemble, then, the second term in the numerator
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of equation (2.9) vanishes5, leaving

〈
γ1 =

Npix∑
i=0

(Imi )w(xi)

Npix∑
i=0

w(xi)2

〉
= 0 (2.13)

γ̂1 =

Npix∑
i=0

Iobs
i w(xi)

Npix∑
i=0

w (xi)
2

(2.14)

What remains is a linear operator on the observed galaxy profile, incorporating a ‘represen-
tative model’ Im for how the observed galaxy should respond to an applied shear.

Expanding − log Im in a power series yields:

− log Im =
∑
m,n

am,n
m!n!

xmyn (2.15)

Inserting this expression into equation (2.14), keeping only terms up to second order (m+n =
2), and for the moment assuming that the Im and Iobs are both centered (i.e., setting
a10 = a01 = 0) and normalized (a00 = 0), the ensemble-averaged estimator becomes:

γ̂1 =

Npix∑
i=0

Iobs
i (a2,0x

2 − a0,2y
2)w (x, y)

Npix∑
i=0

[(a2,0x2 − a0,2y2)w (x, y)]2
(2.16)

where the weight function is the gaussian that best fits the unsheared model galaxy:

w(x, y) = e−
1
2(a2,0x2+a0,2y2+2a1,1xy) (2.17)

When averaged over the entire galaxy population, symmetry requires ai,j = aj,i, and so
setting the coefficients a2,0 = a0,2 = a2 in the prefactor (though not in the weight function)
should not change the expectation value of the shear estimator. The MLE is then an adaptive
gaussian-weighted second moment of the galaxy light profile:

γ̂1 =

Npix∑
i=0

Iobs
i (x2 − y2)w (x, y)

Npix∑
i=0

a2
2 [(x2 − y2)w (x, y)]2

(2.18)

5Though this term has nonzero variance, and is the source of the shape noise.
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This is identical to the second-moment shape estimators proposed by several authors; see
for example Bernstein & Jarvis (2002).

For axisymmetric galaxies, the third moments should vanish, and so the next-to-leading
order contribution to the optimal shear measurement depends on fourth moments of the
light profile with a more complex weight function. As has been pointed out by Hirata &
Seljak (2003) and Zhang & Komatsu (2011), neglecting the higher-order moments here can
be a substantial source of bias. Worse, for actual galaxies there is no guarantee that this
approximation scheme will converge in a manageably small number of terms.

2.2 The Maximum Likelihood Estimator for Shear with

PSF Smearing

Real galaxies are smeared by the effects of atmospheric turbulence and telescope optics,
and so the estimator must needs be modified to deal with PSF convolution.

The form of the MLE is modified somewhat in the presence of an anisotropic PSF. The
model light profile Im must be convolved with the PSF, and equation 2.13 no longer holds.
Defining IP = Im ⊗K, where K is the functional form of the PSF and making use of the
fact that ∂γ1K ⊗ Im = K ⊗ ∂γ1Im produces the following expression for the shear estimator:

γ̂1 =

Npix∑
i=0

(
Iobs
i

)
w (xi)

Npix∑
i=0

w (xi)
2

−

Npix∑
i=0

(
IPi − IPi

)
w (xi)

Npix∑
i=0

w (xi)
2

= W obs −W P (2.19)

which defines the shear moments W obs and W P of the observed light profile and the PSF-
convolved model galaxy, respectively. A similar approach was taken in Kuijken (1999), the
main difference here being the explicit linearity of the shear estimator.

As was independently pointed out by Bernstein & Jarvis (2002) and Refregier & Bacon
(2003), much insight can be gained from using Hermite-Laguerre polynomials to analyze the
effects of shear on psf-convolved galaxy light profiles. The Hermite-Laguerre polynomials
are eigenfunctions of the Fourier transform, so a convolution of two such polynomials is a
product of the same.

The Hermite-Laguerre functions are:

ψσp,q =
−1q√
πσ2

√
q!

p!

( r
σ

)m
eimθe−

1
2( rσ )

2

L(m)
q

[( r
σ

)]
(2.20)

These are recognizable to the connoiseur as eigenfunctions of the quantized simple harmonic
oscillator. The Laguerre polynomials L

(m)
q (x) can be calculated from the following recurrence
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relation:

L
(m)
0 = 1

L
(m)
1 = (m+ 1)− x

L(m)
q =

1

q + 1
[(2q +m+ 1)− x]L(m)

q (x)− (q +m)L
(m)
q−1 (x) (2.21)

The orthogonality of the ψσp,q at fixed σ:∫
∞
d2x ψσp,q (x) ψ̄σp′,q′ (x) =

1

σ2
δp,p′δq,q′ (2.22)

allows them to be used as a series approximation scheme for galaxy surface-brightness pro-
files:

I (r, θ) =
∞∑

p,q>0

bp,q (2.23)

bpq = σ2

∫
∞
d2x I (x) ψ̄σpq (x) (2.24)

This is a useful series approximation to for two reasons. First, the Laguerre coefficients
are manifestly combinations of gaussian-weighted moments of the surface-brightness profile,
and a gaussian seems at first not a bad approximation to a galaxy light profile in many
cases. Second, the Laguerre functions are their own Fourier transforms, so in this basis a
convolution can be written as a product. If k =

{
kσPpq
}

and g =
{
gσpq
}

are the vectors of
Laguerre function coefficients for the PSF K (x) and the pre-smeared galaxy image G (x),
respectively, then the result of the convolution I = K ⊗G is:

bp,q = kTCg

bp,q =
∑
p′q′

∑
p′′q′′

Cp′q′,p′′q′′

p,q kp′q′gp′′q′′ (2.25)

where the coefficients Cp′q′,p′′q′′
p,q can be made from the recursion relations set out in Bernstein

& Jarvis (2002):

Cp′q′,p′′q′′

p,q =2
√
π

[√
p′′!p′!

p!∆!
G (p, p′, p′′)

][√
q′′!q′!

q!∆!
G (q, q′, q′′)

]
∆ ≡p′′ + p′ − p = q′′ + q′ − q ≥ 0 (2.26)

Next, it is important to examine the effects of the shear on the coefficient vectors k and g.
Here one can make use of the textbook quantum p- and q-raising and -lowering operator
relations on these functions to show that the effect of a shear γ1 is:

G (Ax) = (1 +
1

2

[(
a†p
)2

+
(
a†q
)2 − (ap)

2 − (aq)
2
]
)G (x) (2.27)
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This can be written as a transformation on the vector g. The effect of shear on the Laguerre
coefficients is:

∂gpq
∂γ1

=
1

2

(√
p(p− 1)b(p−2)q +

√
q(q − 1)bp(q−2) −

√
(p+ 1)(p+ 2)b(p+2)q −

√
(q + 1)(q + 2)bp(q+2)

)
(2.28)

This is the essence of the Shapelets formalism (Refregier & Bacon, 2003). A direct compar-
ison with the MLE can be got by choosing modestly realistic surface-brightness profiles for
the galaxy and PSF, calculating the optimal weight function w(x), and finding the Laguerre-
Hermite coefficients of the latter.

Real ground-based PSFs have substantial wings due to atmospheric turbulence, for
which a Moffat function :

K(r) =

[
1 +

(
r

σPSF

)]−β
(2.29)

with β = 3 is a common choice (Kitching et al., 2010). Sérsic profiles:

Im(r) = I0e
−
(
r
σG

) 1
n

(2.30)

with n = 4 and n = 1 are good parameterizatons of elliptical and spiral galaxy light profiles,
respectively, in magnitude-limited surveys. The weight function for for a round PSF con-
volved with a Sérsic n = 4 profile is shown in Figure 2.1. The weight function for an elliptical
PSF is shown in Figure 2.2. A matrix of the Laguerre-Hermite polynomial coefficients for
these weight functions is shown in Figures 2.3 and 2.4; these coefficient matrices show the
multipole moments m = p− q and Laguerre polynomial orders p+ q that contribute to the
MLE in each case.

It is evident that the Shapelets expansion, while formally complete, converges far too
slowly to be useful for galaxies and PSFs with extended wings, especially as the higher-order
moments are very difficult to measure in the presence of noise.

The non-gaussian structure in the PSF mixes significant amounts of non-quadrupole
m > 2 power into the shear estimator. Ignoring this dependence and relying only on shape
measurement will tend to introduce additional bias that becomes more significant with in-
creasingly complex PSF structure.

This observation generalizes beyond the simple example shown here; in more careful
studies, Hirata & Seljak (2003) find substantial shear measurement bias for realistic profiles
even after including Hermite-Laguerre terms up to order p+ q = 24. This mixing is reduced
in the presence of a well-behaved PSF; in an experiment that relies on shape measurement
as a proxy for shear measurement, a round, gaussian PSF will suffer much less from ignoring
the m > 2 moments.

The tactic which will be pursued in the cosmic shear study described in this Thesisis
to suppress the parts of the galaxy and PSF surface-brightness profile which lead to these
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higher moment contributions, so that the gaussian-weighted second moments are a good
appoximation to the ensemble-averaged shear moments W defined above 6 .

6The suppression of undesirable terms in the light profile is pursued elsewhere as well; see Bernstein
(2010) for a different approach with a similar strategy.
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Figure 2.1 Left panels show an n = 4 Sérsic profile before (top) and after (bottom) convolu-
tion with a round Moffat PSF. Right panels show the corresponding weight functions w(x)
used in the linear γ̂1 shear estimator.
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Figure 2.2 Left panels show an n = 4 Sérsic profile before (top) and after (bottom) convo-
lution with an elliptical Moffat PSF. Right panels show the corresponding weight functions
w(x) used in the linear γ̂1 shear estimator.
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Figure 2.3 The matrix of the first nine Gauss-Laguerre coefficients of the weight function
shown in figure 2.1. Note the the corresponding multipole moment that each coefficient
contributes to is m = p− q. The intensity is linear, and even without scaling it is clear that
much power resides in the m+ n > 2 coefficients.
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Figure 2.4 The matrix of the first nine Gauss-Laguerre coefficients for the weight function
shown in figure 2.2. Note the the corresponding multipole moment that each coefficient
contributes to is m = p− q. The intensity is linear, and even without scaling it is clear that
much power resides in the m+ n > 2 and m− n > 2 coefficients.
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Chapter 3

Data

3.1 The Sloan Digital Sky Survey

The Sloan Digital Sky Survey (SDSS; York et al. 2000) and its successor SDSS-II (Frie-
man et al., 2008) mapped 10000 square degrees across the north galactic cap using a dedicated
wide-field 2.5 m telescope at Apache Point Observatory in Sunspot, New Mexico (Gunn et al.,
2006). The SDSS camera, described in Gunn et al. (1998), images the sky in five optical
bands (u,g,r,i,z; Fukugita et al. 1996; Smith et al. 2002) with the charge-coupled device
(CCD) detectors reading out at the sidereal rate. Each patch of sky passes in sequence
through the five filters (in the order r,i,u,g,z) along one of the six columns of mosaicked
CCDs, and is exposed once in each filter for 54.1 s. The site is monitored for photometricity
(Hogg et al., 2001; Tucker et al., 2006). Data undergo quality assessment (Ivezić et al., 2004),
and final calibration is done using the “ubercalibration” procedure based on photometry of
stars in run overlap regions (Padmanabhan et al., 2008). We use the data from the seventh
SDSS data release (Abazajian et al., 2009), with an updated calibration from the subsequent
data release.

The footprint of one night’s observing is six columns of imaging the width of one CCD
(13.52 arcmin) separated by slightly less than one CCD width (11.65 arcmin). Each night’s
imaging is collectively termed a run; each separate column of imaging is, sensibly, a camera
column (or “camcol”), and the imaging along each camera column is chopped for processing
purposes into 8.98 arcmin long frames or fields. Successive runs are interleaved, in order
to fill in the gaps between camera columns. Pairs of interleaved runs along the same great
circle are stripes (each of which has a north and a south strip).

3.2 Stripe 82

Most of the SDSS imaging data were acquired in the northern galactic cap, with galactic
latitude |b| < 30. For commissioning, and during sidereal times when the primary survey
region was unavailable, the telescope frequently imaged a 2.5 degree wide strip of sky along
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the celestial equator with right ascension in the interval [−50, 50]. In the survey nomen-
clature, this region is Stripe 82. At any given location on the Stripe, there are on average
120 contributing interleaved imaging runs, comprising in aggregate almost as much imaging
data as exist in the remainder of the combined SDSS-I and SDSS-II footprint. It is here that
significant gains can be made from image coaddition.

3.3 Single-epoch data processing

The raw imaging data is processed by the automated SDSS photometric pipeline,
Photo (Lupton et al., 2001). This pipeline has components to handle astrometric and
photometric calibration as well as catalog construction; it also generates an array of data
quality measurements describing the telescope point-spread function (PSF), the locations of
unreliable pixels, and measurements of the photometric quality of individual frames. Many
of these data quality indicators are used during the construction of the coadd imaging and
its associated catalog. Their use is described below. A detailed description of the image
processing pipeline and its outputs can be found in Stoughton et al. (2002). Outputs can be
found in locations specified by the SDSS data release papers (Abazajian et al., 2003, 2004,
2005; Adelman-McCarthy et al., 2006, 2007, 2008; Abazajian et al., 2009).

Photo produces a number of intermediate outputs for the single-epoch SDSS imaging
that we use in the coaddition process. Corrected Frames, or fpC files, are produced by the
pipeline from the raw CCD images of single frames; these are bias-subtracted, sky-subtracted
and flat-fielded, and a nonlinearity correction is applied where appropriate. These are the
images that are combined during the coaddition process below.

Photo also generates a bitmask (an fpM file) for each frame describing pixels that
are known to be defective. Pixels are marked in this bitmask as saturated, cosmic-ray
contaminated, interpolated (if a column or pixel is known to be saturated, or is a priori
marked as unreliable, Photo interpolates over that region). We use these bitmasks to
exclude bad pixels from the image coaddition.

Astrometric solutions (asTrans files) are produced by Photo for each SDSS frame.
Systematic errors in the astrometric positioning are reported to less than 50 mas, and the
relative astrometry between successive overlapping frames is approximately 10 mas (Pier
et al., 2003). The astrometric solution for each run (Pier et al., 2003) is determined by
matching against astrometric standard stars from the USNO CCD Astrograph Catalogue
(UCAC Zacharias et al., 2000) and Tycho-2 (Høg et al., 2000) catalogs. Since stars bright
enough to appear in Tycho-2 are saturated, a two-step calibration ladder is necessary: the
astrometric solution from the science CCDs is tied to a set of 22 “astrometric” CCDs ob-
serving through neutral density filters, and these can observe the Tycho-2 stars without
saturating. The coaddition algorithm relies on the astrometric solutions provided; we have
found it unnecessary to re-solve the astrometry.

For photometric calibration, we use the “ubercal” solutions derived by Padmanabhan
et al. (2008).
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The SDSS pipeline uses bright, isolated stars with apparent magnitudes brighter than
19.5 to construct a model of the PSF and its variation across each frame. For each frame,
the stellar images for the three neighboring frames along the scan in both directions are
used to produce a set of Karhunen-Loève (KL) eigenimages describing the PSF variation
(Lupton et al., 2001). A global PSF model for the frame is constructed by allowing the first
few KL components to vary up to second order in the image coordinates across the frame,
with the coefficients of the variation being tied to the aforementioned bright stars. The KL
eigenimages and coefficients of their spatial variation are stored by Photo for each band
in the psField files. These are taken as inputs to the coaddition process and used for PSF
correction. We will test the fidelity of this PSF model in the coadded images on stars that
were too faint to perform a reliable PSF determination in the single-epoch data.
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Chapter 4

Methods

4.1 Algorithms

Our general strategy for correcting for the effects of seeing is similar to that suggested in
Bernstein & Jarvis (2002). We will apply a rounding kernel to each single-epoch image prior
to stacking the ensemble. The large variation in SDSS PSF sizes (see Fig. 4.1) will require a
trade-off between rejection of a large fraction of the available imaging, and significant dilution
of the signal due to the rounding convolution. Stacking the images without a kernel, however,
will produce a PSF with large variations that will be difficult to model accurately.

4.1.1 Field smoothing

This section describes the operation of smoothing the map so as to make the effective
PSF equal to some target PSF. Here we will denote the intrinsic PSF of the telescope by
G(x), so that if the intrinsic intensity of an object on the sky is f(x), the actual image
observed is

I(x) =

∫
G(y)f(x− y)d2y ≡ [G⊗ f](x). (4.1)

Of course this image is only sampled at values of x corresponding to pixel centres. Our
principal objective here is to construct the kernel K such that

[I ⊗K](x) = [Γ⊗ f ](x) or [G⊗K](x) = Γ(x), (4.2)

where Γ is the target PSF. In order to do this, we need to first choose a target PSF Γ and
then determine the appropriate convolution kernel K, which will differ for every imaging run
contributing to the coadds at a given position depending on the full position-dependent PSF
model in each run. These are the subjects of Secs. 4.1.1 and 4.1.1 respectively.

The target PSF

Here we consider the target PSF Γ. It must be constant across different runs in order
for the co-add procedure to make sense, although it need not be the same in different filters.
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There is a large advantage in having Γ be circularly symmetric. Gaussians are convenient
since most galaxy shape measurement codes are based on Gaussian moments, but this is
not a requirement. In fact the PSF G delivered by most telescopes, including the SDSS, has
“tails” at large radius that are far above what one could expect from a Gaussian. These can
in principle be removed by a convolution kernel K that has negative tails at large radius, but
there are problems when these tails extend to the field boundaries or across bad columns in
the CCD. Therefore we have chosen the double-Gaussian form for Γ:

Γ(x) =
1− fw

2πσ2
1

e−x
2/2σ2

1 +
fw

2πσ2
2

e−x
2/2σ2

2 (4.3)

with σ2 > σ1. This functional form manifestly integrates to unity, and has a fraction fw of
the light in the “large” Gaussian. The two Gaussians have widths σ1 and σ2, respectively,
with σ1 < σ2.

The parameters of the double-Gaussian were adjusted by trial and error so that a com-
pactly supported kernel K (13 × 13 pixels) can achieve G ⊗ K ≈ Γ for a wide range of
real PSFs G delivered by the SDSS. The most critical parameter is the width of the central
Gaussian, σ1. This is the main parameter controlling the seeing of the final co-added image:
if it is set too high then many galaxies become unresolved, whereas if it is set too low then
a large number of fields with moderate seeing will have to be rejected because it will be
impossible to find a kernel K that achieves the target PSF without dramatically amplifying
the noise.

The PSF size distribution in the r band is shown in Fig. 4.1.
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Figure 4.1 The distribution of PSF FWHM in the r band for all frames on Stripe 82. The
half-width of the target PSF after rounding is indicated by the solid vertical line.
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The convolution kernel and its application

Equation (4.2) can formally be solved in Fourier space by taking the ratio, K̃(k) =
Γ̃(k)/G̃(k), where the tilde denotes the Fourier transform and k the wave vector. Unfortu-
nately, this simple idea comes with two well-known problems. One is that if the PSF has
power only up to a certain wave number kmax, then it is impossible to divide by G̃(k) = 0.
The other is that the PSF varies slowly across the field, i.e. G in Eq. (4.2) formally depends
on x as well as y.

The solution to the first problem is that instead of taking a simple ratio in Fourier space,
we minimize the L2 norm of the error,

E1 =

∫
|Γ(x)− [G⊗K](x)|2 d2x ≡ ‖Γ−G⊗K‖2, (4.4)

subject to a constraint on the L2 norm of the kernel:

E2 =

∫
|K(x)|2d2x ≡ ‖K‖2. (4.5)

If the input noise is white (which is a good approximation), then the noise variance on
an individual pixel in the convolved image is ”E2 times the noise variance in the input
image. Roughly speaking, for kernels that attempt to “deconvolve” the original PSF, and
consequently have large positive and negative contributions, E2 will come out to be very
large. We adopt a requirement that E2 ≤ 1. For kernels that poorly approximate the target
PSF Γ, E1 will be very large. The problem of minimizing E1 subject to a constraint on E2

is most easily solved by transforming to the Fourier domain and then using the method of
Lagrange multipliers:

K̃(k) =
G̃(k)Γ̃∗(k)

|G̃(k)|2 + Λ
. (4.6)

Here the positive real number Λ is the Lagrange multiplier and its value is adjusted until
E2 = 1. Λ plays the role of regulating the deconvolution; indeed one can see that for Fourier
modes present in the image, G̃(k) 6= 0, we have limΛ→0+ K̃(k) = Γ̃(k)/G̃(k).

To summarize, Eq. (4.6) finds the convolving kernel K that makes the final PSF G⊗K
as close as possible (in the least-squares sense) to Γ without amplifying the noise. The kernel
is truncated into a 13×13 pixel region centred at the origin in order to avoid boundary effects
and to prevent problems such as bad columns, saturated stars, or cosmic rays from “leaking”
all over the field. We also re-scale the resulting kernel to integrate to unity (K̃(0) = 1) but
since Λ is small, typically of order 10−5, this has no practical effect. Note that since G(x)
and Γ(x) are both real functions, it follows that in Fourier space they satisfy the conditions
G̃(k) = G̃∗(−k) and Γ̃(k) = Γ̃∗(−k), and then Eq. (4.6) guarantees that a similar condition
holds for K: the convolution kernel K(x) is real.

The second problem – the variation of the PSF across the field – is handled by taking
the reconstructed PSF on a grid of 8 × 6 points separated by 298 pixels (2 arcminutes) in
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each direction, and constructing a grid of 48 kernels K. The kernels are then interpolated
between neighboring points, and then the final image F (x) is constructed according to

F (x) =

∫
Kx(y)I(x− y) d2x, (4.7)

where Kx is the kernel reconstructed at position x in the field.
The convolution kernel will not capture PSF model fluctuations on scales below 2 ar-

cminutes. We show below that, even at 1 arcminute, the remaining PSF variations not
captured by the kernel are very small compared to the expected shot-noise errors in the
two-point statistics at those scales.

Obviously there will be instances, in which the kernel reconstruction is not good enough.
Therefore a set of cuts must be applied to the resulting kernels1. In order to construct these
cuts, we consider the Gaussian-weighted moments of the residual Γ−G⊗K, i.e.

Mαβ =
1

πσ2
1

∫
[Γ−G⊗K](x)

xα1x
β
2

σα+β
1

e−x
2/2σ2

1 d2x. (4.8)

The cuts are then:

1. We reject an entire field if psp failed to determine a good PSF model in the single-epoch
imaging, or was forced to use a low-order fit to the PSF (PSP STATUS!=0).

2. We reject cases where the PSF residual is too large regardless of the moments, i.e.

‖Γ−G⊗K‖2

‖Γ‖2
> CUT L2. (4.9)

Our shape measurement method relies on the presumption of the chosen form of the
PSF, and large deviations from this form may have unpredictable effects on catalog
construction or shape measurement; for example, the relative photometric calibration
in SDSS is known to be accurate to approximately 1%. The SDSS photometric mea-
surements used here for catalog definition rely on PSF-convolved model fits, so large
deviations between the outcome of the rounding kernel and the target model should
be kept much smaller than the desired photometric precision.

3. We reject cases where the Gaussian-weighted offset is more than CUT OFFSET σ1, i.e.√
M2

01 +M2
10 > CUT OFFSET. (4.10)

1It should be noted that residual anisotropies from the Lagrange multiplier Λ are affected by the quality
cuts described below.



Section 4.1. Algorithms 27

4. We reject cases where the ellipticity of the final PSF exceeds CUT ELLIP, i.e.√
(M02 −M20)2 + (2M11)2 > CUT ELLIP. (4.11)

In the limit of small PSF ellipticities, this corresponds to half the ellipticity (by the
measure we use for galaxy shapes) of the core of the PSF. If the PSF model used to
construct the kernel is correct, this cut operates as an effective ceiling on the spurious
ellipticity resulting from the PSF. The value is chosen so as to reduce the PSF ellipticity
for nearly unresolved objects just below the anticipated shear signal.

5. We reject cases where the PSF size error exceeds CUT SIZE, i.e.

|M02 +M20 −M00| > CUT SIZE. (4.12)

6. We reject cases where the radial profile of the PSF is severely in error as determined
by the fourth moment, i.e.

|M40 + 2M22 +M04 − 2M00| > CUT PROF4. (4.13)

The specific values of the parameters chosen for the cuts depend on the band and are
shown in Table 4.1. The tightest constraints on the quality of the PSF are in g, r, i, and z
bands (r and i are used to measure galaxy shapes). In the u band, where the average image
quality is much lower than in the other bands, more liberal cuts can be applied because we
are interested primarily in the total flux, not the shape. Also there is more to gain from
liberal cuts because the signal-to-noise ratio in u band is lower. Nevertheless, a serious error
in the size of the PSF will result in erroneous photometry, and spurious ellipticity could
introduce colour/photo-z or selection biases that depend on galaxy orientation, so some cuts
must be applied.

4.1.2 Noise symmetrization

It is a well-known fact in weak lensing that even if the PSF in an image has been
corrected to have perfectly circular concentric isophotes, it is possible to produce spurious
ellipticity if there is anisotropic correlated noise. For example, if the PSF is elongated in
the x1 direction and is “fixed” by smoothing in the x2-direction, the resulting map has more
correlations in the x2 direction than x1. This can lead to (1) centroiding biases, in which
the error on the galaxy centroid is larger in the x2 than the x1 direction, thus yielding
more galaxies that appear aligned in the x2 than x1 direction; and (2) biases in which noise
fluctuations tend to be elongated in the x2 direction, so that positive noise fluctuations
on top of a galaxy (which increase its likelihood of detection) tend to make it aligned in
the x2 direction whereas negative fluctuations (which decrease the likelihood of detection)
make the galaxy aligned in the x1 direction. For a detailed description of noise-induced
ellipticity biases, see Kaiser (2000) or Bernstein & Jarvis (2002). These phenomena can
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all mimic lensing signals and hence should be eliminated from the data. Our method of
doing this is to add synthetic noise to each field so as to give the noise properties 4-fold
rotational symmetry. To be precise, we want the power spectrum of the total noise (actual
plus synthetic) to satisfy:

PN(k) = PN(e3 × k), (4.14)

where e3 is a vector normal to the plane of the image; the cross product operation e3×
rotates a vector by 90 degrees. Even though it is not circularly symmetric, this is sufficient
to guarantee zero mean ellipticity for a population of randomly oriented galaxies because
ellipticity reverses sign under 90 degree rotations.2 In principle m-fold symmetry for any
integer m ≥ 3 would suffice, however 4-fold symmetry is the only practical possibility for a
camera with square pixels. For obvious reasons, we would like to achieve this by adding the
minimal amount of synthetic noise possible.

The simplest way to achieve Eq. (4.14) is to decompose the power spectrum into its
actual (“act”) and synthetic (“syn”) components:

PN(k) = P
(act)
N (k) + P

(syn)
N (k). (4.15)

The actual component is the white noise variance v in the input image, smoothed by the
convolving kernel:

P
(act)
N (k) = v|K̃(k)|2. (4.16)

Since K is real, this power spectrum has 2-fold rotational symmetry: P
(act)
N (k) = P

(act)
N (−k).

The minimal synthetic noise power spectrum that satisfies Eq. (4.14) is then

P
(syn)
N (k) = max

[
P

(act)
N (e3 × k)− P (act)

N (k), 0
]
. (4.17)

Gaussian noise with this spectrum can be obtained by taking its square root,

T̃ (k) =

√
P

(syn)
N (k), (4.18)

and transforming to configuration space T (x). Then one generates white noise with unit
variance and convolves it with T . Since the PSF and hence K varies across the field, T must
also vary; its value is interpolated from the same 8 × 6 grid of reference points as used for
K.

The Gaussian white noise was generated using Numerical Recipes gasdev modified to
use the ran2 uniform deviate generator (Press et al., 1992). The seed was chosen by a
formula based on the run, camcol, field number, and filter to guarantee that the same seed
was never used twice in the reductions, and that the same sequence will be generated if the
software is re-run. For each field, a sequence of 2048× 1361 Gaussian deviates is generated;

2In group theory language, the noise properties are symmetric under the 4-fold rotation group C4, which is
a subgroup of the full rotations SO(2). The condition for zero mean ellipticity due to noise is that ellipticity
fall into one of the non-trivial represenations of the noise symmetry group.
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since there are 128 rows of overlap between successive fields, we fill in the last 128 rows of
each field with the first 2048× 128 deviates from the next field. It is also essential that the
period of the generator be longer than the total number of pixels in the survey (of order
a few ×1012), a requirement which is not fulfilled by many generators, since otherwise the
same synthetic “noise” pattern will repeat itself throughout the survey.

The image F (x) after addition of the synthetic noise is a kImage.

4.1.3 Single-image masking

Once the kernel-convolved, noise-added image (kImage) is constructed for each run that
will contribute to the coadds at a given position, it is necessary to construct a mask before
co-addition. The mask must remove the usual image defects as well as diffraction spikes. It
is constructed as described in this section, and is termed the kMask.

We begin by masking out all pixels in F (x) for which the convolution (Eq. 4.7) integrates
over a bad pixel. Since K has compact support – it is nonzero only in a 13× 13 pixel region
– this means that for each bad pixel in I(x) we mask out a 13 × 13 block in F (x). Our
definition of a “bad pixel” is one that is out of the field; was interpolated by photo (usually
due to being in a bad column); is saturated; is potentially affected by ghosting; was not
checked for objects by photo; is determined by photo to be affected by a cosmic ray; or
had a model subtracted from it. Note that the first cut means that a 6-pixel region is rejected
around the edge of the field.

The second and more sophisticated mask is applied to remove diffraction spikes from
stars. The secondary support structure responsible for the diffraction spikes is on an altitude-
azimuth mount, so that the diffraction spikes appear at position angles of 45, 135, 225, and
315 degrees in the altitude-azimuth coordinate system. Therefore in the equatorial runs, the
orientation of the diffraction spikes relative to equatorial coordinates changes depending on
the hour angle of observation. If no correction for this is made, then after co-addition of
many runs, even moderately bright stars have a hedgehog-like pattern of diffraction spikes
at many position angles that can affect a significant fraction of the area.

Our procedure for removing diffraction spikes is as follows. We first identify objects with
a PSF flux (i.e. flux defined by a fit to the PSF) exceeding some threshold (corresponding
to 9.7× 105, 8.5× 105, 2.2× 105, 1.7× 105, and 1.1× 106 electrons in filters r, i, u, z, and g
respectively). Around these objects, we mask a circle of radius 20 pixels (8 arcsec) and four
rectangles of width 8 pixels (3 arcsec) and length 60 pixels (24 arcsec). The rectangles have
the object centroid at the center of their short side, and their long axis extends radially from
the centroid in the direction of the expected diffraction spike.

4.1.4 Resampling

In order to co-add images, we must first resample them into a common pixelization.
Ideally we would like this pixelization to be both conformal (no local shape distortion)
and equal-area (convenient for total flux measurements). Unfortunately because the sky is
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curved, it is impossible to achieve both of these conditions. However since our analysis uses
a narrow range of declinations around the equator (|δ| ≤ 1.3◦) we can come very close by
choosing a cylindrical projection; the obvious choices are Mercator (perfectly conformal) or
Lambert (perfectly equal-area). In our case the Mercator projection would result in the
pixel scale being different by ∆θ/θ = 2.6 × 10−4 at the Equator versus at δ = ±1.3◦. (The
area error is twice this, or 5.2 × 10−4.) The Lambert projection would preserve shapes at
the Equator but the coordinate system would have a shear of γ = 2.6× 10−4 at δ = ±1.3◦.
Neither of these problems is particularly serious, since either could if necessary be corrected
in the flux or shape measurements. We have chosen the Mercator projection because the
small cosmic shear signal means that we are much more sensitive to a given percentage error
in shear than in flux. Also, a flux error of 5.2×10−4 is insignificant compared to the error in
the flatfields, so there is no point in eliminating it at the expense of complicating the shear
analysis.

The scale of the resampled pixels must be smaller than the native pixel scale on the
CCD (∼ 0.396 arcsec) in order to preserve information. However it is desirable for it not to
be too small, since this increases the data volume with no increase in information content.
It should also not be nearly equal to the CCD scale in order to avoid production of a moiré
pattern with large-scale power. We have used 0.36 arcsec.

The actual resampling step requires us to interpolate the image from the native pixeliza-
tion onto the target Mercator pixelization. This is done by 36-point second-order polynomial
interpolation on the 6× 6 grid of native pixels surrounding the target pixel3. A target pixel
is considered masked if any of the 36 surrounding pixels are masked.

4.1.5 Addition of images

After resampling the images, the next step is to combine them to produce the co-add.
The combination proceeds in three steps: comparison of images to reject “bad” regions that
were not masked in earlier stages of the analysis; relative sky estimation; and stacking. Note
that bad regions must be explicitly rejected: “robust” algorithms such as the median are
nonlinear and result in a final co-added PSF that depends on object flux and morphology,
which is not acceptable for lensing studies.

Rejection of bad regions is critical because it is possible for some serious defects such as
satellite trails to “leak through” earlier stages of the analysis and not be kMasked. Rejection
at this stage is also the best way to eliminate solar system objects, which are not easily
identified in the single-epoch fpCs but of course will not show up at the same coordinates
in successive runs. We first bin each input image into 4 × 4 resampled pixels. We then
compare the binned images and reject the brightest or faintest image if it differs by more
than DELTA SKY MAX1 from the mean. When this rejection is done, we actually mask a 20×20
resampled pixel region around the affected area. (We found that without this padding region,

3Polynomial interpolation on an equally-spaced grid of points converges to sinc interpolation in the limit
that the number of gridpoints is taken to infinity.
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satellite trails were often incompletely masked because they passed through the corners of
some 4× 4 regions and did not sufficiently affect the mean flux.)

Next we compute the difference in sky level among all of the N images4. This difference
must be determined and removed because otherwise a masked pixel in an image with below-
average sky will appear as a bright spot in the co-added image. We compute the relative sky
level as follows. For each pair (i, j) of co-added images, we compute the difference map Fi−Fj
and take the median in 125×125 resampled pixel blocks. This is taken as an estimate of the
sky difference Si−Sj. From these differences we obtain the unweighted least-squares solution
for the sky levels {Si}, up to an additive offset (the absolute sky level cannot be determined
by this procedure). The mean of these levels is denoted by S̄ =

∑N
i=1 Si/N . We add to the

ith image the quantity S̄ − Si interpolated to a particular point x by 4-point interpolation
from the nearest block centres. An entire block is masked out if |S̄ − Si| >DELTA SKY MAX2

and if it is an extremal value (either the highest or lowest sky value).
The stacking of the images works by the usual formula

Ftot(x) =

∑N
i=1wi(x)Fi(x)

wtot(x)
, (4.19)

where wtot(x) =
∑N

i=1wi(x) and wi are the weights. Because the noise is correlated, the
optimal weights are scale-dependent; we have chosen the optimal weights in the limit of
small k, i.e. large scales. That is, wi = v−1 where v is the noise variance in image i. For
photometry of large objects, wtot can be thought of as an inverse white noise variance, i.e.
the mean square noise flux in a region of area Ω is 1/wtotΩ. However for small objects (which
are always our concern) this is not the case and the error bars must be computed from the
measured noise properties of the co-add.

4.1.6 Additional masking

Before constructing the photometric catalogs, we zero all pixels contaminated by bright
stars in the Tycho catalogs (Høg et al., 2000), replacing them with random noise of appro-
priate amplitude. Pixels masked in this manner have the ‘INTERP’ bit set in the input fpM
files, so that the downstream analysis can exclude objects that incorporate pixels from a
masked region. Regions of the coadd images that incorporate fewer than seven single-epoch
images, or which are otherwise kMasked, also have ‘INTERP’ bits set, as the coadd image
quality in these regions (which often include very bright stars or galaxies which saturate in
some, but not all, of the single-epoch exposures) is typically poor. This final step results in
a catalog with a complex geometry, which will be demonstrated explicitly in Sec. 5.3.

4While the fpC images generated from single-epoch data by PHOTO are sky-subtracted, in practice this
initial sky subtraction was not sufficiently smooth to avoid the appearance of large background brightness
variation in the coadd images. This should not be surprising, as PHOTO has known sky-subtraction
problems (Aihara et al., 2011a)
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Chapter 5

Catalogs

5.1 Photometric catalogs

Once each coadded image is constructed, we detect objects using the catalog-construction
portion of the SDSS photometric pipeline, photo-frames. The details of frames’s catalog
construction and object measurement process are described more fully elsewhere (Stoughton
et al. 2002; Lupton et al., in prep.). It is nevertheless useful to review the important parts
of the frames algorithms.

Photo-frames requires as input a set of long integer images, and a considerable array
of inputs describing the properties of the telescope and the observing conditions. Principal
among these is a description of the telescope point-spread function. For single-epoch data,
frames uses a principal-component decomposition of the variation of the PSF across five
adjacent fields. The components of this decomposition are allowed to vary as a polynomial
(typically quadratic) in the image coordinates across each frame. As the coadded images
have the same target PSF in every image, this target PSF is stored as the first principal
component. For fast computation of object properties, the pipeline uses a double-Gaussian
fit to the PSF; as this is the exact form of the target PSF resulting from the rounding kernel
applied above, we simply use the target PSF parameters.

Frames first smooths the image with the narrower of the two gaussian widths describing
the PSF. Collections of connected pixels greater than seven times the standard deviation of
the sky noise are marked as objects. Each object is grown by six pixels in each direction.
For each object, the list of connected pixels is then culled of peaks less than three times the
local standard deviation of the sky.

In order to avoid including objects that represent random noise fluctuations, catalog
galaxies are required to have statistically significant (> 7σ) detections in both the r and
i bands. Note that this is a higher threshold than the > 5σ cut used at this stage in the
standard single-epoch SDSS processing. This was necessitated by the fact that the pixel
noise in the kImages is correlated by the convolution process.

In the standard SDSS pipeline, frames then re-bins the image and repeats the search.
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We choose not to use objects found in this manner, as the shape measurements of these very
low surface brightness galaxies would not be reliable.

This detection algorithm is repeated in each filter separately. Objects detected in mul-
tiple bands are merged to contain the union of the pixels in each band if they overlap on
the sky. The list of peak positions in each band is preserved. The center of the resulting
single object is determined by the location of the highest peak in the r -band. Objects with
multiple peaks are deblended: the deblending algorithm assigns image flux to each peak in
the parent object.1

Once a complete list of deblended peaks (hereafter objects) has been constructed, the
properties of each peak are measured. For the purposes of this paper, the most important
outputs are the MODELFLUX and MODELFLUX IVAR parameters2, which are determined from
the total flux in the best-fit (PSF-convolved) galaxy profile in the r band (comparing the
likelihoods for an exponential and a de Vaucouleurs model), with the amplitude re-fit sep-
arately to each of the other bands. This flux measure approximates the true, total flux in
the r -band, and provides a robust colour measurement, which is crucial for photometric
estimates of the object redshift distribution.

The final crucial output of photo-frames, for lensing purposes, is a postage stamp
image for every unique object detected in the catalog, except for those objects for which the
deblender algorithm failed.

1Short descriptions of the SDSS deblending can be found in Stoughton et al. (2002, Sec. 4.4.3) and on
the SDSS website at http://www.sdss.org/dr7/algorithms/deblend.html. A detailed paper describing
the deblender is forthcoming (Lupton et al., in prep).

2http://www.sdss3.org/dr8/algorithms/magnitudes.php
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Figure 5.1 The distribution of u-band galaxy apparent magnitudes. The solid line shows the
apparent magnitudes for all unique extended objects; dotted and dashed show the r- and
i-band lensing catalogs, respectively.
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Figure 5.2 The distribution of g-band galaxy apparent magnitudes. The solid line shows the
apparent magnitudes for all unique extended objects; dotted and dashed show the r- and
i-band lensing catalogs, respectively.
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Figure 5.3 The distribution of r-band galaxy apparent magnitudes. The solid line shows the
apparent magnitudes for all unique extended objects; dotted and dashed show the r- and
i-band lensing catalogs, respectively.
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Figure 5.4 The distribution of i-band galaxy apparent magnitudes. The solid line shows the
apparent magnitudes for all unique extended objects; dotted and dashed show the r- and
i-band lensing catalogs, respectively.
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Figure 5.5 The distribution of z-band galaxy apparent magnitudes. The solid line shows the
apparent magnitudes for all unique extended objects; dotted and dashed show the r- and
i-band lensing catalogs, respectively.
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5.2 Lensing Catalog Construction

After photo-frames has constructed an object catalog from the coadded images, we
attempt to eliminate spurious detections, stars, and galaxies that are unsuitable for shape
measurement. Information from the input mask (fpM) files is propagated through to the
catalog, so that objects that incorporate bad pixels identified earlier in the pipeline can be
excluded as needed. Due to the nature of the kImages produced by the image coaddition,
many of the standard SDSS flags will not be used (e.g, by construction, there are no saturated
pixels). As we describe above, masked regions of the kImages are marked as interpolated;
objects in the photometric catalog outputs with these bits set are removed from the catalog
at this stage. Any galaxies on which the deblending algorithm failed are also excluded, as
photo-frames will not generate unique postage stamps for these objects.

photo-frames also attempts to classify objects as “stars” or “galaxies” on the basis
of the relative fluxes in the point spread function and galaxy model fits (Lupton et al., in
prep). Objects that are well-described by a PSF are classified as stars; we do not include
these objects in the shape catalog, but set them aside as aids for detecting systematic errors.

To minimize these effects, we also match against a list of all objects classified as stars
in the single-epoch SDSS catalogs3 with apparent magnitudes in i or r band brighter than
15. We remove objects from the catalog within an angular separation of these bright stars
that depends on the latter’s apparent magnitude as described in Table (5.1).

3As our sky coverage is less complete than the single-epoch data, we use the single-epoch catalogs in
masking so as to remove objects that are in close proximity to a star that is in one of our masked regions.
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Table 5.1 Masking radius as a function of apparent stellar magnitude.

Magnitude range Masking radius (arcsec)
r, i < 12 100
12 < r, i < 13 70
13 < r, i < 14 50
14 < r, i < 15 40
15 < r, i < 16 30

In addition to these basic cuts, we cull objects from the lensing catalog if any of the
following criteria are satisfied:

1. All objects where the model flux or ellipticity moment measurement failed;

2. All objects within 62 pixels of the beginning or end of a frame;

3. All objects detected only in the rebinned images (BINNED2 or BINNED4);

4. All objects where a bad pixel was was close to the object center (INTERP CENTER)
in either of the r or i bands;

5. All objects that are parents of blends (i.e., not unique)

6. All objects for which the apparent r-band magnitude is fainter than 23.5, and for which
the apparent i-band magnitude is fainter than 22.5.

Many of these cuts are applied in only one band. The result of this process is to produce
two separate shape catalogs, one for each of the two shape-measurement bands, so there are
a small number of galaxies which appear in only one of the two catalogs.

The SDSS photometric pipeline is known to produce significant sky proximity effects,
wherein the photometric properties of objects detected near a bright star are systematically
biased. The effect of bright stars on the measured tangential shear of nearby galaxies in
single-epoch SDSS data is shown in figure 5.8. Motivated by the scales of the effects seen
there, we mask the regions around bright stars with a masking radius that depends on the
apparent r-band (model) magnitude of the stars as given in table 5.1.
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Figure 5.6 The angular distribution (in J2000 right ascension and declination) of the i -band
galaxy catalog. A subsample of every 250th galaxy is shown. The r -band sample is identical
except for the missing range of −00◦48′ <Dec< −00◦24′. Note the complex survey geometry.
Coverage gaps at Dec > 0.8 are primarily due to the severe PSF quality cuts made during
the image coaddition step.
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5.3 Shape measurement

Once the final shape catalog has been constructed, we use the re-Gaussianization shape
measurement method of Hirata & Seljak (2003) to generate an ellipticity measure for each
object. The processing code and script are a modification of those used in Mandelbaum
et al. (2005). Re-Gaussianization is not an especially modern shape measurement technique,
but we have used it previously on SDSS data, it meets our requirements for shear calibration
given the expected statistical power, and we had well-tested code that interfaced to photo-
frames outputs at the time of initiating the cosmic shear project. Therefore we chose to
continue using it for this analysis.

5.3.1 Overview of re-Gaussianization

The re-Gaussianization method was an outgrowth of previous work by Bernstein &
Jarvis (2002). They defined the adaptive moments M I of an image I by finding the Gaussian
G[I] that minimizes the L2 norm ‖I − G[I]‖. A Gaussian has 6 parameters – an amplitude,
2 centroids x̄I , and 3 components of the symmetric covariance matrix – and the last of these
is by definition the 2 × 2 adaptive moment matrix. The ellipticity of the galaxy is defined
via its components

e
(f)
+ =

Mf,xx −Mf,yy

Mf,xx +Mf,yy

(5.1)

and

e
(f)
× =

2Mf,xy

Mf,xx +Mf,yy

. (5.2)

For Gaussian PSFs and galaxies, it is easily seen that the adaptive moment of the intrinsic
galaxy image f can be extracted from that of the observed image via M f = M I − MG.
If the PSF is both circular and Gaussian (a situation that does not arise in practice) then
one can relate the ellipticity of the observed image to that of the true galaxy image via the
resolution factor R2:

e(f) =
e(I)

R2

and R2 = 1− TG
TI
, (5.3)

where we have used T to denote the trace of the adaptive moment matrix: e.g., TG ≡
MG,xx +MG,yy. Re-Gaussianization seeks to apply corrections to Eq. (5.3) to correct for the
non-Gaussianity of the PSF and the galaxy.4

5.3.2 Non-Gaussian galaxies

First is the non-Gaussian galaxy correction – i.e. we consider the case of a Gaussian
PSF and non-Gaussian galaxy. Appendix C of Bernstein & Jarvis (2002) used a Taylor

4There are also steps in the Hirata & Seljak (2003) code that correct for non-circularity of the PSF.
However since the co-add code has already circularized the PSF, these portions of the code are vestigial and
we do not describe them here.
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expansion method to show that if the galaxy is well-resolved, then in this case Eq. (5.3)
could be corrected by using a different formula for the resolution factor,

R2 = 1− (1 + β
(I)
22 )TG

(1− β(I)
22 )TI

, (5.4)

where β
(I)
22 is the radial fourth moment,

β
(I)
22 =

∫
(ρ4 − 4ρ2 + 2)I(x)G[I](x) d2x

2
∫
I(x)G[I](x) d2x

, (5.5)

where G[I] is the adaptive Gaussian and the rescaled radius ρ is given by

ρ ≡
√

(x− x̄I) ·M−1
I (x− x̄I). (5.6)

This is equivalent to an elliptical version of the n = 4,m = 0 polar shapelet (Refregier, 2003;

Refregier & Bacon, 2003), and we have β
(I)
22 = 0 for a Gaussian galaxy (in practice usually

β
(I)
22 > 0).

5.3.3 Non-Gaussian PSF

The shape measurement procedure described in the previous section is only valid where
the PSF itself is gaussian. One additional step is required to account for the fact that our
rounding kernel was chosen so as to produce a PSF that is the sum of two gaussians. We
start by constructing a Gaussian approximation G1 to the PSF G,

G(x) ≈ G1(x) =
1

2π
√

detMG1

exp

(
−1

2
xTM−1

G1
x

)
. (5.7)

The choice G1 is chosen according to the adaptive moments of G. The function G1 is
determined from the centroid and covariance, but the amplitude in Eq. (5.7) is chosen to
normalize the Gaussian G1 to integrate to unity.5

We may then define the residual function ε(x) = G(x) − G1(x). It follows that the
measured image intensity will satisfy I = G ⊗ f = G1 ⊗ f + ε ⊗ f , where ⊗ represents
convolution. This can be rearranged to yield:

G1 ⊗ f = I − ε⊗ f. (5.8)

This equation thus allows us to determine the Gaussian-convolved intrinsic galaxy image I ′,
if we know f . At first glance this does not appear helpful, since if we knew f it would be

5The reason for doing this is that while this increases the overall power
∫

(ε2) of the residual function, it
yields

∫
ε = 0, which ensures that for well-resolved objects (i.e. objects for which the PSF is essentially a

δ-function), the “correction” ε⊗ f0 applied by equation (5.10) does not corrupt the image I.
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trivial to determine G⊗ f . However, f appears in this equation multiplied by (technically,
convolved with) a small correction ε, so equation (5.8) may be reasonably accurate even if
we use an approximate form for f . The simplest approach is to approximate f as a Gaussian
with covariance:

f0 =
1

2π
√

detM
(0)
f

exp

(
−1

2
xT [M

(0)
f ]−1x

)
, with

M
(0)
f = M I −MG, (5.9)

whereM I andMG are the adaptive covariances of the measured object and PSF, respectively.
Then we can define:

I ′ ≡ I − ε⊗ f0(≈ G⊗ f). (5.10)

The adaptive moments of I ′ can then be computed, and the PSF correction of Eq. (5.6) can
then be applied to recover the intrinsic ellipticity e(f).

Simple simulations with (noise-free) toy galaxy profiles indicate that this method has
shear calibration errors at the level of a few percent depending on the galaxy profile, with
the worst performance for de Vaucouleurs profiles at low resolution and high ellipticity
(Mandelbaum et al., 2005, fig. 5). Moreover, simulations of SDSS data based on real
galaxy profiles from COSMOS, single-epoch SDSS PSFs, and realistic noise levels show
that the shear calibration biases are not markedly different under more realistic conditions
(Mandelbaum et al., 2012). An investigation of the shear calibration bias for the SDSS
cosmic shear sample is presented in Chapter 7.

To select the galaxy sample used for the final analysis, we impose a resolution factor cut
at R2 > 0.333 in both r and i (we will justify this choice in Sec. 6.2.3 based on our desire to
minimize additive PSF systematics). The parameters of the final shape catalog are shown
in Table 5.2, and the survey geometry can be found in Fig. 5.6.
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Figure 5.7 The mean ellipticities of stars in the r band as a function of declination for
different ranges of right ascension. The top panels show the r band and the bottom panels
show the i band, while the left and right panels show different ellipticity components. This
was computed using a version of the star catalog prior to final cuts. Note the spurious
effect in camcol 2 r band in the e1 component (declinations −0.8 to −0.4◦). The apparent
magnitude range for this plot was 19.5 < r < 21.5.
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Figure 5.8 Tangential shear γt as a function of separation θ from stars, as measured in the
single epoch SDSS imaging using the shape catalog from Reyes et al. (2011a). The different
lines with points show different bins in r-band stellar apparent magnitude, as labeled on the
plot. The ideal expected value of zero is shown as a dotted horizontal line.



Section 5.3. Shape measurement 47

Table 5.2 Parameters of the final shape catalog.

Parameter Value Units
r -band i -band

Total number of source galaxies 1 328 885
Number of sources per band 1 067 031 1 251 285

Effective number of sources downweighted by noise, Neff =
∑

i$i 882 345 1 065 807
Median magnitude 21.5 20.9 mag AB

Median resolution factor R2 0.55 0.53
RMS measured ellipticity per component (noise not subtracted) 0.48 0.47
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Chapter 6

Catalog Systematics Tests

6.1 Correlation function estimation

As stated previously, the primary systematic error of concern in this paper are additive
shear systematics, due to PSF ellipticity leaking into the galaxy shapes even after the PSF
correction is carried out. This concern will drive our choice of diagnostics to use on the
shape catalogs. There are several possible choices for diagnostics that we could use:

1. 1-point statistics of the star and galaxy shapes: For example, we calculate the mean
stellar and galaxy ellipticities in bins of some chosen size and look for deviations from
zero, including coherent patterns. We use this diagnostic in Sec. 6.2.1.

2. The tangential shear as a function of scale around random points (e.g., Mandelbaum
et al., 2005): If there is some additive systematic shear, then on scales that are such
that we start losing lens-source pairs off the survey edge, it will show up as a nonzero
tangential shear. However, this test alone does not tell us much about the correlations
between systematic shears at different points, and therefore we ignore it in favour of
more informative tests.

3. Cross-correlations between the stellar shapes and galaxy shapes, as a function of sep-
aration θ: These correlation functions tell us not only about the amplitude of any
systematic shear, but also about the characteristic scales that are affected by it. This
section will describe our methodology for calculating these correlation functions.

4. The B mode shear, which should be zero due to gravitational lensing: While this test
is an important one as it can signal a variety of problems with PSF correction, it is
not strictly a measure of additive shear systematics. Thus, we neglect this test for this
(which focuses on additive shear systematics) until Chapter 8.
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6.1.1 The estimator and weighting

In order to compute the star-galaxy cross-correlations, we employ a direct pair-count
correlation function code. It is slow (∼ 3 hours for 2× 106 galaxies on a modern laptop) but
robust and well-adapted to the Stripe 82 survey geometry. The code sorts the galaxies in
order of increasing right ascension α; stars and galaxies galaxies are assigned to the range
−60◦ < α < +60◦ to avoid unphysical edge effects near α = 0. It then loops over all
pairs with |α1 − α2| < θmax. The usual ellipticity correlation functions can be computed via
summation over galaxies i and stars j, e.g.,

ξ11,psf(θ) =

∑
αβ wieα1M E1β∑

αβ wα
(6.1)

and similarly for ξ22,psf . Here ei1 is the PSF-corrected galaxy e1 for galaxy index i, and M E1j
is the stellar e1 derived from the adaptive moments described in Sec. 5.3. The sum is over
pairs with separation in the relevant θ bin, and we weight each pair according only to the
weight associated with the galaxy in each pair:

wi =
1

0.372 + σ2
e

, (6.2)

Following Reyes et al. (2011a), we have for weighting purposes adopted an intrinsic shape
noise erms per component of 0.37. The weight of a galaxy relative to a galaxy with perfectly
measured shape is

$i =
wi

w(σe = 0)
=

1

1 + σ2
e/0.372

. (6.3)

Since the imaging is taken in drift-scan mode, which introduces a potential preferred di-
rection for PSF distortions, we compute our diagnostic correlations between the components
aligned along (−e1 and −M E1) and at 45 degrees to (e2 and M e2) the scan direction.

The code works on a flat sky, i.e. equatorial coordinates (α, δ) are approximated as
Cartesian coordinates. This is appropriate in the range considered, |δ| < 1.274◦, where the
maximum distance distortions are 1

2
δ2

max = 2.5× 10−4.
All of our shape correlations are computed over the range 1 < θ < 120 arcminutes,

evenly spaced in log θ.

6.1.2 Statistical errors

The direct pair-count correlation function code can directly compute the Poisson error
bars, i.e. the error bars neglecting the correlations in eiαM Eαj between different pairs. This
estimate of the error bar is

σ2[ξ++(θ)] =

∑
iw

2
i |ei|2|M Ej|2

2 (
∑

iwi)
2 . (6.4)
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Equivalently this is the variance in the correlation function that one would estimate if one
randomly re-oriented all of the galaxies. As the star-galaxy correlations described here
are approximate indicators of the amplitude of the additive PSF shear, and not precision
estimates for use in a cosmic shear analysis, we will not attempt to infer the covariance
matrix for the full diagonal star-galaxy cross-correlation functions.

6.2 Diagnostics

Here we present our two main systematics tests described in Sec. 6.1, namely the 1-point
statistics of the stellar and galaxy ellipticities, and the star-galaxy shape cross-correlations.

6.2.1 Average shapes

We first estimate the influence of residual PSF ellipticities on the galaxy shapes by
mapping the stellar shape field.

We computed a set of star shapes binned by right ascension and declination. The stars
were chosen to be moderately faint, 19.5 < r < 21.5, such that they were not used to
estimate the PSF model in the single-epoch images that was used to construct the rounding
kernel applied to each single epoch image. Figure 5.7 shows the results: the mean stellar
ellipticities are usually small, of order 10−3, but in the r band in a particular declination
range covered by camcol 2, the shapes are systematically elongated in the scan direction
by −e1 = 0.005. We find no significant changes in the amplitude of this artifact when
splitting the stellar populations by colour (r− i < or > 0.3) or by apparent magnitude (r <
or > 20.5). We did not definitively determine the source of this elongation, but we have
confirmed that it appears in the single-epoch SDSS imaging (including the galaxy shape
catalogs from Mandelbaum et al. 2005 and Reyes et al. 2011a), so is not merely an artifact
of the coaddition and catalog-making process of this work1. There is no counterpart feature
in the i-band. We exclude all r-band galaxy data in camera column 2 from the r-band shape
autocorrelation used for science.

6.2.2 Star-galaxy cross-correlation

Our primary tasks in producing a shear measurement are to demonstrate that the addi-
tive systematic shear is below the target threshold set above (Chap. 1), and that our shape
measurement method allows us to correctly translate the measured shapes into shears with
sufficient accuracy.

1One possible explanation (Robert Lupton and Jim Gunn, priv. comm.) is incorrect nonlinearity cor-
rections for the r-band camcol 2 CCD. The stars used to construct the PSF model are sufficiently bright
that they require non-linearity corrections, but the stars used for our tests here do not. Therefore if the
non-linearity correction is wrong for that CCD, it could affect the PSF model for that CCD alone.
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In order to test for residual additive shear systematics, we calculate the cross-correlation
between the measured shapes of the stars and those of the galaxies in our sample. Any
remaining contribution to the inferred shear field of the galaxies that is sourced by the
point-spread function will produce a non-zero cross-correlation. It is important to note
that this measurement is performed using measurements of the images of stars not used to
construct the model PSF; the shape measurements of these objects are not in any sense
corrected, and do not incorporate knowledge of the PSF model. As a result, the star-galaxy
shape correlations are diagnostic of any spatially-varying PSF modeling errors. Constant
multiplicative errors due, for example, to finite-pixel effects, noise bias, or similar problems
will be handled in the shear calibration step.

We estimate the star-star and star-galaxy cross correlations as in Eq. (6.1) for all star-
galaxy pairs within and between the r and i bands. The results are shown in figures 6.3-6.6.

For the systematic error diagnostics considered here, we are primarily interested in
computing the cross-correlation between resolved galaxies and unresolved point sources.

6.2.3 Resolution cuts

Due to the PSF dilution correction applied to all galaxy shapes in Sec. 5.3, noisy mea-
surements of poorly resolved galaxies can significantly amplify any residual additive shear
systematics not corrected for in the rounding kernel process. To assess the effects of a resolu-
tion cut, we compute the star-galaxy cross-correlations in each band for R2 > 0.25, > 0.333,
and > 0.4. Adopting the first of these cuts leads to unacceptably large star-galaxy correla-
tions, indicative of residual systematics. Adopting the second of these of these thresholds
appears to be sufficient to minimize the amplitude of the star-galaxy shape correlation sig-
nal. As a result, we adopt a cut of R2 > 0.333 for both the i and r -band galaxy catalogs.
This resolution cut corresponds to galaxies with a typical half-light radius (as determined
from the SDSS model fits) of 0.7 arcseconds. Any potential selection bias resulting from
resolution cuts will be dealt with when we derive the empirical shear calibration.

6.2.4 Star-galaxy separation

A nonzero amplitude of ξsg can also be produced by imperfect star-galaxy separation.
Poorly-resolved galaxes masquerading as stars sample both the PSF- and cosmic shear-
sourced shape fields. If the fraction of stars that are actually mistakenly classified as galaxies
is fgal, then the measured ξsg will include a contribution proportional to fgalξγ. As the
ellipticity of nearly-unresolved galaxies will be diluted by PSF convolution, this represents
an upper limit to the level of star-galaxy correlation that can be introduced via imperfect
star-galaxy separation.

The photo-frames pipeline classifies an object as a star or a galaxy on the basis of
the relative fluxes of PSF and galaxy model fits to the object’s surface brightness profile. As
an independent check on this scheme, we have defined a sample of stars for which aperture-
matched UKIRT Infrared Deep Sky Survey (UKIDDS) colours are available. The UKIDSS
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project is defined in Lawrence et al. (2007). UKIDSS uses the UKIRT Wide Field Camera
(WFCAM; Casali et al. 2007). The photometric system is described in Hewett et al. (2006),
and the calibration is described in Hodgkin et al. (2009). The pipeline processing and science
archive are described in Hambly et al. (2008). Stars and galaxies separate fairly cleanly in
J −K, r − i colour space, so we attempt to use this matched catalog to put some limits on
galactic contamination of the stellar sample. This constraint on fgal will give us our upper
limit fgalξγ on the ξsg due to contamination of the star sample by galaxies.

We match the objects classified as stars in both bands from our coadd to UKIDDS
objects with valid J −K colours; objects with angular separations between the two catalogs
less than one arcsecond are identified. We find 93 753 such stars. Of these, 11 331, or 12
per cent, have J −K, r − i colours inconsistent with the stellar population. The UKIDDS
matches are shallower than the rest of the catalog in the i band, but of comparable depth in
the r band. Only 16 per cent of our stars have UKIDDS matches in either band, however,
so the contamination fraction is not well-constrained in the entire star sample.

If, however, this fraction is representative of the galaxy contamination in the entire
stellar catalog, then (for an unresolved population with a typical resolution just below our
resolution cut), then it would explain a substantial fraction of the residual PSF systematic
amplitude that we see.

As a test for this, we compute the star-galaxy shape correlation using only those objects
identified as stars in the manner described above. For this population, the amplitude of the
star-galaxy correlation is not significantly reduced below the star-galaxy correlations for the
full sample, so we conclude that imperfect star-galaxy separation is not a primary source of
the systematics signal present in the catalog.

After all of the above cuts have been applied, the final shape catalog consists of 1 067 031
r -band and 1 251 285 i -band shape measurements, over an effective area of 140 and 168
square degrees, respectively.

6.3 Discussion

We have constructed deep, lensing-optimized coadd imaging of the SDSS equatorial
stripe. The procedure is designed to enable the construction of a catalog suitable for weak
lensing measurements by suppressing the effects of PSF anisotropy on the measured galaxy
shapes below the level of statistical error achievable with a cosmic shear survey on this Stripe.

We have measured the star-galaxy and star-star cross-correlations in order to constrain
the amplitude of spurious, PSF-induced shape correlations in the catalogs we have obtained
from coadding Stripe 82 imaging.

This procedure is successful if and only if it renders the PSF shape distortions sufficiently
small that they are negligible compared to the statistical errors expected for a cosmic shear
signal in this survey. To estimate the amplitude and scale-dependence of the residual PSF
systematics, we fit a power law of the form:

ξsg = Aθ−p (6.5)
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to the average of the four measured star-galaxy cross-correlations, using the Poisson errors
output by the correlation function code. The best-fit power law and average star-galaxy
correlations are shown in figure 6.11.

We compare the ratio of this best fit to the shot-noise errors expected for a shape-shape
correlation function for this survey. To estimate the shot noise, we follow Schneider et al.
(2002a) to calculate the statistical errors expected due to shot noise for a 168 square degree
lensing survey with an effective source surface density of 2 galaxies per arcmin2:

Var (ξ) =
(
3.979× 10−9

) ( σe
0.3

)4
(

Area

1 deg2

)−1

(6.6)

×
( neff

30 arcmin−2

)−2
(

θ

1 arcmin

)−2

The ratio of the systematics amplitude to the shot noise is shown as a function of scale in
figure 6.12. From this, we can see that PSF systematics for these data should be, on average,
50 per cent of the size of the statistical error budget for a cosmic shear measurement with
this catalog; on degree scales, this becomes comparable to the shot-noise errors.

As discussed above, this is an upper limit; imperfect star-galaxy separation at the level
of a few per cent can produce a star-galaxy correlation signal in the absence of uncorrected
PSF effect, the response of a galaxy shape to a PSF anisotropy is typically less than unity,
and the Poisson error estimate will underestimate the true variance on larger scales.

In addition, masks defined as sets of pixels can introduce a shape selection bias. We
tested the effects of masking on the spurious shear statistics during the catalog-making step
by applying a strict cut to eliminate those regions of the coadd imaging with fewer than
seven contributing single-epoch images. Introducing this cut actually increased the spurious
shear amplitude; the star-galaxy correlations in the presence of this more aggressive masking
step reach an amplitude at degree scales of 10−5. In later chapters, we use detailed image
simulations to estimate the fraction of galaxies that are rejected only due to proximity to
mask boundaries at ∼ 1 per cent, and we will discuss in detail whether that level of rejection
due to mask boundaries is enough to explain the observed star-galaxy correlations.

The relative contributions of mask selection and PSF anisotropy biases can be ascer-
tained from the relative amplitudes of the star-star and star-galaxy correlation functions. A
PSF anisotropy will produce a similar signal in both metrics. The stellar shape dispersion
is much smaller than that of the galaxies, so a selection bias will produce a much larger
systematics signal in the star-galaxy correlation function than in the star-star correlation
functions. This is indeed the case, as shown in Figs.6.13-6.16 – substantial evidence that
mask selection bias will be a significant fraction of the systematic error budget. Excluding
objects near the boundaries of masked regions on the basis of their centroid positions could
remove this effect; however, as Fig. 6.12 shows, the statistical errors should dominate for
this catalog, so reducing the catalog further at this stage would not improve the quality of
a final cosmic shear measurement.
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These results suggest that a cosmic shear analysis that is statistics-limited is possible
with these data. We have shown that the effects of the point-spread function are small
compared to the statistical errors. The mask selection bias is larger, but still on average
significantly smaller than the expected statistical errors.

The systematics floor for the rounding kernel method we have employed here is set by
the SDSS PSF model. Inaccuracies in this PSF model are documented both here (fig. 5.7)
and in other work (Reyes et al., 2011a). Coherent variations in the PSF model errors in
both components across the camera columns are visible with a characteristic amplitude of
2×10−3. Aside from the very striking and atypical effect seen in the r band in camcol 2, it is
likely that the shortcomings of the polynomial interpolation method employed in PHOTO
play an important role here, as documented in Bergé et al. (2012) for more general simulated
ground-based data. As this is close to the level of residual PSF systematics seen in our final
lensing catalog, it is very likely that an improvement in the underlying model construction
would allow the rounding kernel method deployed here to achieve a much greater level of
sytematics control.

The masking problem is not extensively treated in the literature; to the knowledge of
the authors, it has not been taken into account in existing studies. It is standard in modern
photometric pipelines to define the survey mask and object rejection algorithms in terms
of sets of pixels, rather than (for example) galaxy centroids, which is the ultimate source
of the masking bias we see here. This effect will be important to take into account in the
photometric pipeline construction in the next generation of lensing measurements.

The PSF correction method described here is suitable for deployment in the next gen-
eration of weak lensing surveys. All of these surveys will include multi-epoch data over their
full footprint; where the image quality (as measured by PSF isotropy and size) distribution
is fairly narrow, the rounding kernel method will result in little loss of information.
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Figure 6.1 r − i vs i − z colours for objects identified as stars using Photo’s star-galaxy
separation based on the concentration of the light profile; the contours containing 68 and
95 per cent of the density are shown. The stellar locus is shown as a solid line through the
center of the contours.
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Figure 6.2 g − r vs r − i colours for objects identified as stars using Photo’s star-galaxy
separation based on the concentration of the light profile; the contours containing 68 and
95 per cent of the density are shown. The stellar locus is shown as a solid line through the
center of the contours.
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Figure 6.3 The cross-correlation of i-band star shape moments and i-band galaxy shapes.
The 〈e1 e1〉 correlation is the solid line, while the 〈e2 e2〉 correlation is the dashed line. The
dot-dashed line shows the expected cosmic shear 〈e+ e+〉 shape-shape correlation for a survey
of this depth and size, with shot-noise errors.
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Figure 6.4 The cross-correlation of r-band star shape moments and r-band galaxy shapes.
The 〈e1 e1〉 correlation is the solid line, while the 〈e2 e2〉 correlation is the dashed line. The
dot-dashed line shows the expected cosmic shear 〈e+ e+〉 shape-shape correlation for a survey
of this depth and size, with shot-noise errors.
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Figure 6.5 The cross-correlation of r-band star shape moments and i-band galaxy shapes.
The 〈e1 e1〉 correlation is the solid line, while the 〈e2 e2〉 correlation is the dashed line. The
dot-dashed line shows the expected cosmic shear 〈e+ e+〉 shape-shape correlation for a survey
of this depth and size, with shot-noise errors.



Section 6.3. Discussion 60

Figure 6.6 The cross-correlation of i-band star shape moments and r-band galaxy shapes.
The 〈e1 e1〉 correlation is the solid line, while the 〈e2 e2〉 correlation is the dashed line. The
dot-dashed line shows the expected cosmic shear 〈e+ e+〉 shape-shape correlation for a survey
of this depth and size, with shot-noise errors.
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Figure 6.7 The cross-correlation of r-band, UKIDDS-selected star shape moments and r-
band galaxy shapes. The 〈e1 e1〉 correlation is the solid line, while the 〈e2 e2〉 correlation is
the dashed line. The dot-dashed line shows the expected cosmic shear 〈e+ e+〉 shape-shape
correlation for a survey of this depth and size, with shot-noise errors.
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Figure 6.8 The cross-correlation of i-band, UKIDDS-selected star shape moments and i-
band galaxy shapes. The 〈e1 e1〉 correlation is the solid line, while the 〈e2 e2〉 correlation is
the dashed line. The dot-dashed line shows the expected cosmic shear 〈e+ e+〉 shape-shape
correlation for a survey of this depth and size, with shot-noise errors.
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Figure 6.9 The cross-correlation of r-band, UKIDDS-selected star shape moments and i-
band galaxy shapes. The 〈e1 e1〉 correlation is the solid line, while the 〈e2 e2〉 correlation is
the dashed line. The dot-dashed line shows the expected cosmic shear 〈e+ e+〉 shape-shape
correlation for a survey of this depth and size, with shot-noise errors.



Section 6.3. Discussion 64

Figure 6.10 The cross-correlation of i-band, UKIDDS-selected star shape moments and r-
band galaxy shapes. The 〈e1 e1〉 correlation is the solid line, while the 〈e2 e2〉 correlation is
the dashed line. The dot-dashed line shows the expected cosmic shear 〈e+ e+〉 shape-shape
correlation for a survey of this depth and size, with shot-noise errors.
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Figure 6.11 Average of the r− i, i−r, r−r, and i− i star-galaxy cross-correlation functions.
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Figure 6.12 Ratio of the best-fit star-galaxy cross-correlation power law to the expected
shot-noise errors for a cosmic shear measurement using the catalogs described here. As the
star-galaxy amplitude is only poorly constrained, this should be taken as a rough indication
of the level of significance of the systematics.
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Figure 6.13 The autocorrelation of r-band star shapes. The 〈e1 e1〉 correlation is the solid
line, while the 〈e2 e2〉 correlation is the dashed line. The dot-dashed line shows the expected
cosmic shear 〈e+ e+〉 shape-shape correlation for a survey of this depth and size, with shot-
noise errors.
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Figure 6.14 The autocorrelation of i-band star shapes. The 〈e1 e1〉 correlation is the solid
line, while the 〈e2 e2〉 correlation is the dashed line. The dot-dashed line shows the expected
cosmic shear 〈e+ e+〉 shape-shape correlation for a survey of this depth and size, with shot-
noise errors.
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Figure 6.15 The cross-correlation of i-band star shapes with i-band star shapes. The 〈e1 e1〉
correlation is the solid line, while the 〈e2 e2〉 correlation is the dashed line. The dot-dashed
line shows the expected cosmic shear 〈e+ e+〉 shape-shape correlation for a survey of this
depth and size, with shot-noise errors.
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Figure 6.16 The mean stellar cross-correlation signal as a fraction of the expected Poisson
error.
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Chapter 7

The Model

We model the observed galaxy shape field as the sum of a cosmic shear component,
an independent systematics field produced by anisotropies in the effective PSF epsf , and a
systematics field produced by the intrinsic spatial correlations of galaxy shapes eint (intrinsic
alignments; e.g., Hirata & Seljak 2004). For this work, we follow (Bernstein & Jarvis, 2002)
and define shapes as ‘distortions’, which are related to the axis ratio q of an ellipse as:

|e| = 1− q2

1 + q2
(7.1)

and to the adaptive second moment matrix of a surface brightness profile I (x) as:

e1 =
Mxx −Myy

Mxx +Myy

e2 =
2Mxy

Mxx +Myy

(7.2)

where the adaptive moments themselves are:

Mxi,xj =

∫
∞
d2x xixjw (x) I (x) (7.3)

and w is an elliptical Gaussian weight function that has been matched in shape to the galaxy
light profile.

We allow for a shear calibration factor that depends on the shear responsivity R (Bern-
stein & Jarvis, 2002) of the ensemble of galaxy surface brightness profiles to the underlying
gravitationally-induced shear γ. We consider R to be a general factor that includes the
standard response (see below) as well as any biases due to effects such as uncorrected PSF
dilution, noise-related biases, or selection biases. We assume that the galaxy shape response
to PSF anisotropies Rpsf is not a priori known, but rather suffers from a similar set of
‘calibration’ uncertainties as the response of the ensemble of galaxy images to gravitational
lensing shear. Thus we define our model for the two ellipticity components e = (e1, e2) as

e = Rγ +Rpsfepsf + eint. (7.4)
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We assume that the two-point statistics of the underlying (cosmological) shear field 〈γγ〉
consist entirely of E-modes, eγ,E (which is a good enough approximation given the size of
our errors; Crittenden et al. 2002; Schneider et al. 2002b), and are statistically independent
of the PSF when averaged over large regions. We also assume that the PSF and the intrinsic
alignments are independent – but not that the lensing shear and intrinsic alignments are
independent (Hirata & Seljak, 2004). The two-point correlation of the galaxy shapes contains
terms resulting from gravitational lensing and from systematic errors:

〈ee〉 = R2ξγ,E +R2
psfξpsf + ξint + 〈Γeint〉. (7.5)

Here, ξpsf is the auto-correlation of the PSF ellipticity field. Errors in the determination of
the galaxy redshift distribution will enter as a bias in the predicted ξγ,E.

Our goal is to carry out a statistics-limited measurement of ξγ,E. This will entail showing
that the combined amplitudes of R2

psfξpsf , ξint, 〈Γ eint〉, the uncertainty in the theoretically-
predicted ξγ,E arising from redshift errors, and the uncertainty in the shear calibration (via
the responsivity R) contribute less than 20 per cent to the statistical errors in 〈ee〉.

Our approach to handling of systematic error is as follows: we attempt to reduce each
systematic to a term that can be robustly and believably estimated from real data (either the
data here or in other, related work), and we then explicitly correct for it. These corrections
naturally have some uncertainty associated with them, which we use to derive a systematic
error component to the covariance matrix. The exception to the rule given here is if there is a
systematic error for which there is no clear path to estimating its magnitude, then we do not
attempt any correction, and simply marginalize over it by include an associated uncertainty
in the covariance matrix.

7.1 Cosmic shear

Foreground anisotropies in the matter distribution along the line of sight to a galaxy will
generically distort the galaxy image. For weak lensing, the leading order lensing contribution
to galaxy shapes can be thought of as arising from a linear transformation of the image
coordinates Axtrue = xobs, where

A =

(
1 + κ+ γ1 γ2

γ2 1 + κ− γ1

)
. (7.6)

The convergence κ causes magnification, whereas the shear components γ1 and γ2 map
circles to ellipses. The shear is related to the projected line-of-sight matter distribution,
weighted by the lensing efficiency:

(γ1, γ2) = ∂−2

∫ ∞
0

W (χ, χi)
(
∂2
x − ∂2

y , 2∂x∂y
)
δ (χn̂i) dχ. (7.7)

Here we integrate along the comoving line-of-sight distance χ (where χi is the distance to the
source), and the matter over-density δ = (ρ− ρ)/ρ. The window function in a flat universe
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is

W (χ, χi) =
3

2
ΩmH

2
0 (1 + z)χ2

(
1

χ
− 1

χi

)
. (7.8)

The two-point correlation function of the shear can be calculated by identifying pairs of
source galaxies, and defining shear components (γt, γx) for each one to be the shear in the
coordinate system defined by the vector connecting them, and in the π/4 rotated system.
This two-point correlation function can be expressed as a linear transformation of the matter
power spectrum Pδ averaged over the line of sight to the sheared galaxies:

ξ± = 〈γtγt〉 ± 〈γ×γ×〉

=
1

2π

∫ ∞
0

d` ` Pκ (`) J0,4 (`θ) (7.9)

and

Pκ =

(
3Ωm

2d2
H

)∫ ∞
0

dχ

a (χ)2Pδ

(
`

d (χ)

)
×
[∫ ∞

χ

dχ′n (χ′)
d (χ′ − χ)

d (χ′)

]2

, (7.10)

where the last expression makes use of Limber’s approximation and d(χ) is the distance func-
tion, i.e. χ in a flat universe, K−1/2 sinK1/2χ in a closed universe, and (−K)−1/2 sinh(−K)1/2χ
in an open universe. In the expression in brackets, n(χ′) represents the source distribution
as a function of line-of-sight distance (normalised to integrate to 1). This statistic (Pκ) is
sensitive both to the distribution of matter δ and to the background cosmology, via both the
explicit Ωm dependence and the distance-redshift relations.

7.2 Intrinsic alignments

Many studies have discussed intrinsic alignments of galaxy shapes due to effects such
as angular momentum alignments or tidal torque due to the large-scale density field (for
pioneering studies, see Croft & Metzler, 2000; Heavens et al., 2000; Catelan et al., 2001;
Crittenden et al., 2001; Jing, 2002; Hopkins et al., 2005). While these effects can generate
coherent intrinsic alignment 2-point functions, Hirata & Seljak (2004) pointed out that the
large-scale tidal fields that can cause intrinsic alignments are sourced by the same large-scale
structure that is responsible for producing a cosmic shear signal. Thus, in this model, the
intrinsic alignments do not just have a nonzero auto-correlation, they also have a significant
anti-correlation with the lensing shear which can persist to very large transverse scales and
line-of-sight separations. If left uncorrected, this coherent alignment of intrinsic galaxy
shapes suppresses the lensing signal, since the response of the intrinsic shape to an applied
tidal field has the opposite sign from the response of the galaxy image to a shear with the same
magnitude and direction. We generally refer to the intrinsic alignment auto-correlation as the
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“II” contamination and its correlation with gravitational lensing as the “GI” contamination.
This can be compared to the pure gravitational lensing auto-correlation (“GG”).

To address the uncertainty related to intrinsic alignments, we rely on empirical mea-
surements that constrain the degree to which they might affect our measurement. Several
studies using SDSS imaging and spectroscopic data (e.g., Mandelbaum et al., 2006b; Hirata
et al., 2007; Okumura et al., 2009; Joachimi et al., 2011; Mandelbaum et al., 2011) have
demonstrated the existence of intrinsic alignments of galaxy shapes on cosmological distance
scales. Hirata et al. (2007) used the luminosity and colour-dependence of intrinsic alignments
for several SDSS galaxy samples to estimate the contamination of the cosmic shear signal due
intrinsic alignments for lensing surveys as a function of their depth. These estimates were
a function of the assumptions that were made, for example about evolution with redshift.
The “central” model given in that paper leads to a fractional contamination of

C`=500,GI

C`=500,GG

≈ −0.08 (7.11)

for a limiting magnitude of mR,lim = 23.5, which is close to the limiting magnitude of our
sample. Subsequent work (Joachimi et al., 2011; Mandelbaum et al., 2011) provided more
information about redshift evolution; primarily those results were in broad agreement with
the previous ones, and were sufficient to rule out both the “optimistic” and the “pessimistic”
models in Hirata et al. (2007).

We thus adopt the “central” model, and apply the correction given in Eq. (7.11) to our
theory predictions for the C` due to cosmic shear, multiplying the predicted cosmic shear
power spectrum by 0.92 before transforming into the statistics that are used for the actual
cosmological constraints1. We also assume this correction has a conservative systematic
uncertainty of 50 per cent, which amounts to an overall 4 per cent uncertainty in the theory
prediction (see Sec. 8.2 for a quantitative description of how we incorporate this and other
systematic uncertainties into the covariance matrix).

Since the GI correlation is first order in the intrinsic alignment amplitude, while the II
power is second order, we expect the first to be the dominant systematic. In principle, the
GI effect could be smaller than II if the correct alignment model is quadratic in the tidal
field rather than linear (Hirata & Seljak, 2004). However, in the aforementioned cases in
which intrinsic alignment signals are detected at high significance (i.e. for bright ellipticals)
the linear model for intrinsic alignments appears to be valid (Blazek et al., 2011). Therefore
we attempt no correction for II.

1While the intrinsic alignment contamination is in principle scale-dependent, the plots in Hirata et al.
(2007) suggest that this scale dependence is in fact quite weak for the scales used for our analysis, so we
ignore it here.
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7.3 Shear calibration

Another source of systematic error for weak lensing measurements is uncertainty in the
shear calibration factor. The galaxy ellipticity (e+, e×) observed after isotropizing the PSF
need not have unit response to shear: in general, averaged over a population of sheared
galaxies, we should have

〈(e+, e×)〉 = R(γ+, γ×), (7.12)

where R is the shear responsivity. It depends on both the shape measurement method and
the galaxy population (e.g. Massey et al., 2007a; Bernstein, 2010; Zhang & Komatsu, 2011).

For this work, we used the re-Gaussianization method (Hirata & Seljak, 2003), which is
based on second moments from fits to elliptical Gaussians, and has been previously applied
to SDSS single-epoch imaging (Mandelbaum et al., 2005; Reyes et al., 2011a). For this
class of methods, in the absence of selection biases and weighting of the galaxies, perfectly
homologous isophotes, and no noise, there is an analytic expectation (Bernstein & Jarvis,
2002):

R = 2(1− e2
rms), (7.13)

where erms is the root-mean-square ellipticity per component (+ or ×).
The calibration errors for re-Gaussianization and other adaptive-weighting methods are

well-studied in the literature (e.g., Hirata et al., 2004b; Mandelbaum et al., 2005, 2012;
Bergé et al., 2012). They arise from all of the deviations from the assumptions of Eq. (7.13).
Higher-order2 departures from non-Gaussianity in the galaxy light profile cause errors in the
PSF dilution correction. Errors in the measurement of the PSF model will cause a similar
error in the dilution correction. The resolution factor of an individual galaxy depends on
its ellipticity, so any resolution cut on the galaxy sample will introduce a shear bias in the
galaxy selection function. Due to the non-linearity of the shear inference procedure, noise in
the galaxy images causes a bias in the shears (rather than just making them noisier). The
estimation of the shear responsivity, or even of erms, is another potential source of error, as
the response of the galaxies to the shear depends on the true, intrinsic shapes, rather than
the gravitationally sheared, smeared (by the PSF), noisy ones that we observe.

Past approaches to this problem have included detailed accounting for these effects one
by one. In this paper, we instead use detailed simulations of the image processing and shape
measurement pipelines, including real galaxy images, to estimate both the shear calibration
and the redshift distribution of our catalogue. The advantage is that this includes all of
the above effects and avoids uncertainties associated with analytic estimates of errors. The
Shera (SHEar Reconvolution Analysis) simulation package3 has been previously described
(Mandelbaum et al., 2012) and applied to single-epoch SDSS data for galaxy-galaxy lensing
(Reyes et al., 2011a), but this is its first application to cosmic shear data.

2Nonzero higher-order terms in the elliptical Gauss-Laguerre expansion of the galaxy light profile; see
(Hirata & Seljak, 2003) for details.‘

3http://www.astro.princeton.edu/∼rmandelb/shera/shera.html
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To simulate our images, we require a fair, flux-limited sample of any galaxies that
could plausibly be resolved in our coadd imaging, including high-resolution images with
realistic morphologies4. For this purpose we use a sample of 56 662 galaxy images drawn
from the COSMOlogical evolution Survey (COSMOS: Koekemoer et al., 2007; Scoville et al.,
2007b,a) imaging catalogues. The deep Hubble Space Telescope (HST) Advanced Camera
for Surveys/Wide Field Camera (ACS/WFC) imaging in F814W (“broad I”) in this 1.6 deg2

field is an ideal source of a fairly-selected galaxy sample with high resolution, deep images5.
These images consist of two samples – a “bright” sample of 26 116 galaxies in the magnitude
range I < 22.5, and a “faint” sample consisting of the 22.5 < I < 23.5 galaxies. The
charge transfer inefficiency-corrected (Massey et al., 2010) and multi-drizzled (Koekemoer
et al., 2003; Rhodes et al., 2007, to a pixel scale of 0.03′′) galaxy postage stamp images have
been selected to avoid CCD edges and diffraction spikes from bright stars, and have been
cleaned of any other nearby galaxies, so they contain only single galaxy images without image
defects. The bright sample is used for ground-based image simulations in Mandelbaum et al.
(2012); the faint sample is selected and processed in an identical way6. Each postage stamp
is assigned a weight to account for the relative likelihoods of generating postage stamps
passing all cuts (avoidance of CCD edges and bright stars) for galaxies of different sizes in
the COSMOS field; this weight is calculated empirically, by comparing the size distribution
of galaxies with postage stamps to the size distribution of a purely flux-limited sample of
galaxies.

Each of these postage-stamp images has several properties associated with it that are of
interest for this analysis. The COSMOS photometric catalogues (Ilbert et al., 2009) contain
HST F814W magnitudes as well as photometric redshifts and Subaru r− i colours based on
PSF-matched aperture magnitudes.

In order to simulate our observations, we first select a coadd ‘run’ consisting of five
adjacent frames in the scan direction at random from the list of completed runs. We draw
1250 galaxies (exactly 250 per frame) at random from the list of COSMOS postage stamps
according to the weights described above, up-weighting the probability of drawing the faint
galaxies by a factor of 1.106 to account for the fact that we have sampled the faint population
at a lower rate than the bright one in constructing the image sample.

Once a list of postage-stamp images is selected, we assign r- and i-band magnitudes by
re-scaling each image; each galaxy image is inserted into the coadded imaging with the flux
it would have been observed to have in SDSS before the addition of pixel noise. The i-band
is chosen to be 0.03 magnitudes brighter than the COSMOS F814W (I) band MAG AUTO

values; this small offset is based on empirical comparison with SDSS magnitudes for brighter
galaxies, to account for slight differences in the F814W and i passbands (Mandelbaum et al.,
2012). The r-band is chosen so as to match the Subaru PSF-matched aperture colours for

4Simple models with analytic radial profiles and elliptical isophotes are not adequate to measure all
sources of systematic error such as under-fitting biases or those due to non-elliptical isophotes (Bernstein,
2010).

5Admittedly there may be some sampling variance that affects the morphological galaxy mix.
6We thank Alexie Leauthaud for kindly providing these processed images.
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each object. Each postage stamp is assigned a random, uniformly-sampled position in the
coadd run, with the postage stamps distributed equally among the frames.

We use the shera code to pseudo-deconvolve the HST point-spread function, apply (if
necessary; see below) a shear to each galaxy, reconvolve each image with the known coadd
point-spread function, renormalise the flux appropriately, and resample from the COSMOS
pixel scale to the coadd pixel scale before adding that postage stamp to the coadd image. This
procedure, suggested by Kaiser (2000) and implemented to high precision in Mandelbaum
et al. (2012), can be used to simulate ground-based images with a shear appropriately applied,
despite the space-based PSF in the original COSMOS images, and with a user-defined PSF.

The normal coadd masking algorithm is then applied, and shear catalogues are generated
by running the SDSS object detection and measurement pipeline, Photo-frames, followed
by the shape measurement code described in chapter 5. The output catalogues are matched
against the known input object positions, and a simulation catalogue of the matches is
created. We employ these simulations below to determine the shear calibration and as an
independent validation of our inferred redshift distribution.

For each suite of simulation realisations, we use the same random seed (i.e., we select the
same galaxies from our catalogue and place them at identical locations in the coadded image)
but with different applied shears per component ranging from −0.05 to +0.05. We measure
the mean weighted shape of the detected simulation galaxies produced by our pipeline, and
fit a line to the results. Since the same galaxies are used without rotation, only the slope
and not the intercept is meaningful. The shear response in each component for each applied
shear is shown in Fig. 7.1. The responsivities in the two components are consistent, which
is expected on oversampled data with a rounded PSF. (The unequal size of the error bars
reflects the number of runs that we were able to process by the time the shear calibration
solution was frozen.) The total number of galaxies in the final simulated catalogues was
130 063. The response appears to be linear for small applied shears. Based on these results,
we adopt a shear responsivity for this galaxy population of 1.776 ± 0.043. For the galaxy
population used in this measurement, the shape dispersion erms is 0.37; the corresponding
responsivity for an unbiased shape measurement method, by Eq. (7.13), is 1.72. Even in
the absence of any correction from the simulations above, this measurement would only
suffer a 2.8% shear calibration bias, which is already an unusually small bias given that
it includes many realistic effects such as selection bias, noise rectification bias, and effects
due to realistic galaxy morphologies. This bias is well below the statistical errors of our
measurement, but we correct for it in any case by using the simulation-based responsivity
rather than the “ideal” one based on the RMS ellipticity.

7.4 Redshift distribution

The explicit dependence of the shear signal in Eqs. (7.7) and (7.10) on the distribution
of lensed galaxy redshifts, combined with the practical impossibility of acquiring a spec-
troscopic redshift for the millions of faint galaxies statistically necessary for a cosmic shear
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Figure 7.1 The response of the mean ellipticities 〈e1〉 and 〈e2〉 to applied shear, as determined
in the shera-based simulations. Poisson error bars are shown. The additive offset to the
response curve is not shown in the fit; these simulations do not accurately measure an
additive shear bias.
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measurement, can be a troublesome source of bias and systematic uncertainty for cosmic
shear measurements.

An error in the estimated redshift distribution leads to an incorrect prediction for the
amplitude of the shear signal at a given cosmology. This is similar in principle to the bias
arising in the amplitude of the galaxy-galaxy lensing signal due to photometric redshift biases
explored in Nakajima et al. (2012); uncorrected, standard photometric redshift estimation
techniques can lead to biases in the predicted lensing signal at the ∼ 10 per cent level. For
cosmic shear measurements, an imperfect estimate of the redshift distribution leads to biases
in σ8 and Ωm that are comparable in amplitude to the errors in the estimated mean of the
redshift distribution (van Waerbeke et al., 2006).

As a fiducial reference, the redshift distribution of the single-epoch SDSS imaging cat-
alogue is established to approximately 1 per cent (Sheldon et al., 2011); for deeper surveys
over a smaller area, this becomes a more difficult problem, as the spectroscopic calibration
samples available for inferring the redshift distribution are limited in their redshift coverage
and widely dispersed across the sky. We employ a colour-matching technique similar to that
employed by Sheldon et al. (2011); in what follows, we describe the technique, our estimate
of its uncertainty, and several cross-checks on the results.

7.4.1 Fiducial redshift distribution

The source redshift distribution used in our analysis is derived following Lima et al.
(2008) and Cunha et al. (2009), and is similar in spirit to Sheldon et al. (2011); the principle
is that, for two galaxy samples that span broadly similar ranges in redshift, colour, and
limiting magnitude, matched colour samples correspond to matched redshift distributions.

Our spectroscopic calibration sample is composed of 12 360 galaxies, from the union of
the VIMOS VLT Deep Survey (Le Fèvre et al., 2005, VVDS) 22h field, the DEEP2 Galaxy
Redshift Survey (Davis et al., 2003; Madgwick et al., 2003), and portions of the PRism MUlti-
object Survey (PRIMUS; Coil et al. 2011, Cool et al. 2011 in prep.). We follow the procedures
outlined in Nakajima et al. (2012) for selecting good quality spectroscopic redshifts, and
avoiding duplicate galaxies in samples that overlap (such as DEEP2 and PRIMUS). Each of
these samples has a redshift distribution that is likely to differ substantially from the redshift
distribution of our lensing catalogue: the DEEP2 catalogue in the fields we use at 23h30m

and 02h30m is heavily colour-selected (in non-SDSS bands) towards objects at z > 0.7; the
PRIMUS catalogue includes several fields, some of which are selected from imaging with a
shallower limiting magnitude; and the VVDS catalogue is selected in the I band (I < 22.5)
with a relatively high redshift failure rate that exhibits some colour dependence.

We assign a redshift from a galaxy in the union calibration sample to the closest galaxy
in the lensing catalogue within 3 arcsec, finding 12 360 matches. To generate a representative
training sample of galaxies from the lens catalogue, we draw 4×105 galaxies with replacement
from the full area (not just in these regions), with sampling probability proportional to the
mean of the weights assigned in the r and i bands to that galaxy for the correlation analysis
(Eq. 8.1). Note that this procedure does not incorporate those galaxies in the excluded
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camcol 2 region.
We use the Lima et al. (2008) code7 to solve for a set of weights over the calibration

sample, such that the re-weighted 5-dimensional magnitude distributions of the calibration
sample match those of the representative random subset of the lensing catalogue.

All photometric redshift estimation methods assume (at least implicitly) that two galaxy
populations with similar distributions in color and magnitude have similar distributions in
redshift – otherwise. If that is the case, and if the spectroscopic sample spans the full range
of properties of the photometric sample, then the photometric distribution np(z) can be
written as a product of the true spectroscopic redshift distribution and a redshift-dependent
function:

np(z) = ns(z)w(z). (7.14)

The algorithm attempts to find a weight w(zi) for the ith galaxy such that the re-weighted
spectroscopic calibration sample has the same properties as a fair sample of the true red-
shift distribution of the photometric sample. It uses a nearest-neighbor method to define
volume elements in observable space such that for any given volume element, the galaxies
in that element can be assigned a weight w(z) = np(z)/ns(z) without the ratio introducing
unmanageable amounts of noise.

Because the COSMOS tests described below agree perfectly (within statistical errors,
of course) with the redshift histogram, major biases are extremely unlikely – such biases
would require a significant population of galaxies at z¡1 for which no spectroscopic redshifts
in PRIMUS, VVDS, or DEEP2 are successful, and which are also invisible to any checks on
the COSMOS photo-z’s. While not impossible, the existence of such a population in this
sample seems very unlikely.

The histogram of the calibration sample redshifts reweighted in this manner is shown
as a solid line in Fig. 7.2. The inferred mean redshift is 0.51; in contrast to the redshift
distribution for single-epoch imaging, there is a non-negligible fraction of the galaxy sample
above z > 0.7. We use the solid curve based on the colour-matching techniques to calculate
the shear covariance matrix, and to predict the shear correlation function for any given
cosmology.

7.4.2 Uncertainty

We expect that the primary source of error in the redshift distribution as estimated
from the combined calibration sample is sample variance, resulting from the finite volume of
the calibration sample. To estimate its magnitude, we use the public code of Moster et al.
(2011) for estimating the cosmic variance of number counts in small fields.

Our redshift binning scheme has 19 bins between 0 < z < 1.5. For a collection of
disparate calibration fields, we use the Moster et al. (2011) code to produce a fractional
error in the number counts σgg,i,j for the jth redshift bin in the i field (where fields are
distinguished by their coverage area) in bins of stellar mass.

7http://kobayashi.physics.lsa.umich.edu/∼ccunha/nearest/
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Figure 7.2 The redshift distribution inferred from matching the colours of the spectroscopic
calibration sample to those of the lensing catalogue (solid black line, Sec. 7.4.1) shown
alongside the noisier redshift distribution inferred from the shear calibration simulations
(dashed red line, Sec. 7.4.3). The best-fit distribution for the single-epoch SDSS lensing
catalogue from Nakajima et al. (2012) is shown for reference as the blue dot-dashed line.
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The redshift sampling rate of each distinct survey in the calibration sample differs, and
so the balance of contributions to the final redshift distribution will change as well. To
account for this, we sum over every calibration field’s contribution to the reweighted redshift
distribution in the j bin to estimate an absolute (not relative) overall error:

σ2
j =

∑
i

(σgg,i,jneff,i,j)
2 (7.15)

where the effective number of galaxies contributed in the j bin by the i survey is just the
sum over the nearest-neighbour derived weights assigned to calibration sample galaxies k in
that field i and bin j:

neff,i,j =
∑
k

wnn,i,j,k (7.16)

To propagate these errors into the covariance matrix for ξE, we first fit a smooth function
of the form

nz (z) ∝ zae−(z/z0)b (7.17)

to the nearest neighbour weighting-derived redshift distribution shown in Figure 7.2; the
best fit parameters are a = 0.5548, z0 = 0.7456, and b = 2.5374. We perturb this smooth
distribution by adding a random number drawn from a normal distribution with mean nz (zj)
(normalised to the weighted number of calibration galaxies in that bin) and standard devia-
tion σj at the location of the jth redshift bin. We then renormalise the perturbed distribution
to unity, and compute the predicted cosmic shear signal. The covariance matrix of 402 real-
isations of this procedure is added to the statistical covariance matrix.

7.4.3 Other tests

As an independent check on the redshift distribution, we also use the shear calibration
simulations (Sec. 7.3) to constrain the redshift distribution of our sources. The COSMOS
photometric redshifts, inferred as they are from many more imaging bands (typically with
deeper imaging) than for the SDSS data discussed here, are very accurate. For example,
Ilbert et al. (2009) finds a photo-z scatter of σz/(1 + z) ∼ 0.01 for a galaxy sample with the
flux limit of the SDSS coadds. In contrast, Nakajima et al. (2012) found that in the SDSS
single-epoch imaging, the scatter defined in the same way was ∼ 0.1 despite the brighter
flux limit of the single-epoch imaging (due in part to the more limited number of bands,
but primarily to the far lower signal-to-noise ratio). If we treat the COSMOS photometric
redshifts as we would spectroscopic data, then the redshift distribution of COSMOS galaxies
that pass successfully into the shear catalogue is the same as that of our source catalogue
– assuming, of course, that the COSMOS field is representative of the whole of Stripe 82.
It is not, of course; large-scale structure in the COSMOS field (which can be significant, as
COSMOS covers only 1.7 square degrees; Kovač et al., 2010) can bias a determination of the
redshift distribution in this manner. The n(z) inferred from the COSMOS-based simulations
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is also shown in Fig. 7.2, and agrees extremely well with the fiducial n(z) derived from colour-
matching.

A final (but obviously not independent) sanity check is to compare to the COSMOS
Mock Catalogue (Jouvel et al., 2009), which is being used extensively to plan future dark
energy programs, using the cuts reff > 0.47 arcsec, limiting magnitudes r < 23.5, and
i < 22.5. This test predicts 〈z〉 = 0.51, identical to that obtained via the re-weighting
procedure. Given the crudeness of the procedure for comparing the results, this is an excellent
validation of the COSMOS Mock Catalogue as a forecasting tool.

7.5 Stellar contamination

Stellar contamination of the galaxy catalogue reduces the apparent shear by diluting
the signal with round objects that are not sheared by gravitational lensing. Because the
image simulations described in Sec. 7.3 only included galaxies, the resulting shear responsiv-
ities do not include signal dilution due to accidental inclusion of stars in the galaxy sample.
In Chapter 6, we estimated the stellar contamination by comparison with the DEEP2 tar-
get selection photometry (which is deeper and was acquired at the Canada-France-Hawaii
Telescope under much better seeing conditions than typical for SDSS), and found a contam-
ination fraction of 0.017. We also argued that the mean stellar density in the stripe must
be larger than in the high-latitude DEEP2 fields, by a factor as large as 2.8. We therefore
conservatively take the stellar contamination fraction fstar to be

fstar = 0.017(1.9± 0.9) = 0.032± 0.015. (7.18)

The resulting suppression of the cosmic shear signal is treated in much the same way as for
intrinsic alignments: we reduce the theory signal by a factor of (1 − 0.032)2 = 0.936, and
add a contribution to the covariance of 0.030 times the theory signal.

7.6 Additive systematics

7.6.1 Shear Selection Bias from Masking

Among the most worrying systematics in the early detections of cosmic shear was addi-
tive power. This comes from any non-cosmological source of fluctuations in shapes such as
PSF anisotropy that add to the ellipticity correlation function of the galaxies. Such power is
clearly detected in the form of systematic variation of both star and galaxy e1 as a function
of declination. The sense of the effect – a negative contribution to e1 (in r band we have8

〈e1〉 = −0.0018 and 〈e2〉 = +0.0004, while in i band 〈e1〉 = −0.0022 and 〈e2〉 = −0.0002) –
is suggestive of masking bias, in which the selection of a galaxy depends on its orientation,
with galaxies aligned in the along-scan direction (e1 < 0) being favoured, and with no effect

8The 1σ Poisson uncertainty in these numbers is 0.0005 (0.0004) per component in r (i) band.
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on e2 (consistent with zero mean over the whole survey). In this appendix, we argue that the
selection bias due to pixel masking described above is a quantitatively plausible explanation
for the remaining spurious shear correlations. This calculation is motivated by the observa-
tion that the spurious star-galaxy correlations increase in amplitude when more galaxies are
rejected from the catalog using the pixel mask.

Consider an elliptical galaxy isophote centered at the origin, with an ellipticity e and a
major axis at some arbitrary position angle θ with respect to the x-axis. The ellipticity e is
defined in terms of the axis ratio q such that:

e =
1− q2

1 + q2

q =
b

a
, b ≤ a (7.19)

where b and a are the semi-minor and -major axes of the ellipse, respectively.
Define the two ellipticity components e+ and e× as:

e1 = e cos (2θ)

e2 = e sin (2θ) (7.20)

Naturally, the average ellipticity over all position angles θ is zero.
Now place a vertical barrier at position x = d, d > 0 and compute the expected value

of e over all θ again, this time removing the contribution from all position angles where the
ellipse crosses the barrier.

Because of the θ 7→ θ + π symmetry of ellipticity, the average value of e2 will be
unchanged. When the ellipse is far enough from the barrier such that d > a, the expectation
value will be zero; when the minor axis of the ellipse meets the barrier, d < b, isophotes at
any position angle will be rejected from the catalog.

The extremal point on the ellipse in the direction of the barrier is:

xmax =

√
T

2
(1 + e1) (7.21)

where T = a2 + b2, and the galaxy is masked if xmax ≥ d. To compute the mean shape over
the survey geometry, average over ellipticity weighting by the total survey area where it is
possible to measure each ellipticity:

〈e1) =

∫ 1

−1
de1 A (e1) e1∫ 1

−1
de1 A (e1)

. (7.22)

and A (e1), the total survey area where it is possible to measure an ellipticity e1, is:

A (e1) = (Atot − xmaxP ) (7.23)
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where Atot is the total unmasked survey area and P is the total length of the mask perimeter.
For |e| << 1, the mean e1 evaluates to:

< e1 >' −
P

Atot

√
T

2

〈
e2

1

2

〉
(7.24)

The prefactor P
Atot

√
T
2

is the fraction of the total survey area that lies nearer than the

characteristic radius of a galaxy to a mask boundary.
For the SDSS Stripe 82 data presented here, the variance in ellipticity-per-component

< e2
1 > is 0.1 and the characteristic limiting galaxy isophotal radius 9 is twice the median

half-light radius, or 2.5′′. Roughly one percent of the survey area lies within this distance of
a mask boundary. The shape measurement procedure described in section 5.3 will amplify
the masking selection bias by a factor of 1

R2
, a characteristic value of which is 1

R2
= 1.8.

This yields a masking bias of order-of-magnitude 10−3, which is potentially large enough to
dominate the systematic error budget for this measurement.

It is important to note that, while a square or round masking pattern will generally
eliminate a bias in the average catalog ellipticity, this selection bias produces a coherent
shape pattern along the boundary of a masked region of any size or shape. The exact effect on
the shear statistics can be calculated by convolving the mask with the amplitude of the mask
selection bias in each shape component, and calculating the two-point ellipticity correlation
function (or other shear statistic of interest) of the resulting map; for this measurement,
however, the bias is small enough that it does not contribute significantly to the shear
correlation function, so we content ourselves with the crude treatment (projection) described
below.

The reason for the prominent masking effect on the mean statistics can be seen in
Figure 5.7; as shown, bad columns along the scan direction tend to be repeated at the
same location in multiple images, resulting in significant (non-isotropic) masks with that
directionality. Direct evidence for masking bias comes from the change in mean ellipticity due
to increased masking: when we removed from the coadded image pixels that were observed in
fewer than 7 input runs and reran Photo-Frames, the 〈e1〉 signal became worse: −0.0051
in r band and −0.0044 in i band, whereas 〈e2〉 was essentially unchanged. This increase is
difficult to explain in terms of spurious PSF effects. Further, the large difference between
the amplitude of the star-star and star-galaxy cross-correlation signals is consistent with a

masking effect; the stars are nearly round, so
〈
e21
2

〉
is much smaller than for the galaxies.

We conclude that our galaxy catalogue likely contains a mixture of masking bias as well as
possible additive systematics from PSF ellipticity in the coadded image, though it is very
likely in light of the above that the dominant additive systematic signal is due to the masking.

The mean e1 signal as a function of declination is shown in Fig. 7.3 in bins of width
0.05 degrees. We take this as a template for mask-related selection biases (combined with

9For a 10σ circular gaussian galaxy light profile, the outermost detectable isophote is a factor of 1.78
larger than the half-light radius.
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any systematic uncorrected PSF variation as a function of declination, which in west-to-east
drift-scan observations is a highly plausible type of position dependence). Before computing
the correlation function, we subtracted this mean signal from the galaxy ellipticity catalogue.
10

One danger in this procedure to remove spurious 〈e1〉 is that some real power could be
removed – that is, even in the absence of any systematic error, some of the actual galaxy
shape correlation function signal could be suppressed since the method determines the mean
e1 of the real galaxies and by subtracting it introduces a slight artificial anti-correlation.
The best way to guard against this is with simulations. Using the Monte Carlo simulation
tool of Sec. 8.2.1, we generated simulated realisations of our ellipticity catalogue and either
implemented the 〈e1〉 projection or not. The difference in the correlation functions is a
measure of how much power was removed. The result is shown in Fig. 7.4, and shows that
the loss of real power is insignificant compared to our error bars.

7.6.2 PSF anisotropy

Convolution with an elliptical PSF will induce a spurious ellipticity in observed galaxy
surface-brightness profiles. While the effective PSF for these coadds is a circular double
Gaussian to quite high precision, the tests in Chapter 6 indicate a low level of residual
anisotropy that we must consider here.

Possible sources of this issue include: (i) inaccuracies in the single-epoch PSF model used
to determine the kernel to achieve the desired PSF; (ii) colour-dependence of the PSF that
means the single-epoch PSF model from the stars is not exactly the PSF for the galaxies;
or (iii) the fact that we determine the rounding kernel on a fixed grid, so that smaller-
scale variations in PSF anisotropy might remain uncorrected. All of these must be present
at some level, although the last two cannot be the full solution: (ii) does not explain the
residual stellar ellipticity11, and (iii) does not explain why there is structure in the declination
direction on the scale of an entire CCD (0.23 degrees).

For a galaxy and a PSF that are both well-approximated by a Gaussian, the PSF-
correction given above produces a measured ellipticity of:

eobs = Rpsfe
PSF =

1−R2

R2

ePSF; (7.25)

see e.g. Bernstein & Jarvis (2002). The weighted (by the same weights used for the correla-
tion function; see Eq. 8.1) average of the PSF anisotropy response defined in Eq. (7.25) over
the sample of galaxies considered in this work is Rpsf = 0.86 (r band) or 0.95 (i band); in
what follows we take a value of 0.9.

10We refer below to this step as projection, as the intent is to map the shape catalog onto a subspace of
itself that does not include the spurious masking-induced modes.

11We have searched for a g− i dependence in the stellar ellipticities in the coadded image. We only found
effects at the ∼ 0.002 level, and while they are statistically significant, we have not established whether they
correspond to true colour dependence versus e.g. variation of stellar colour distributions along the stripe.
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Figure 7.3 The mean ellipticity 〈e1〉 as a function of declination in the r and i bands.
This signal was removed from the galaxy catalogue prior to computing the final correlation
function. The r band data between declination −0.8◦ and −0.4◦ were rejected due to the
known problems with camcol 2. The error bars are Poisson errors only.
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Carlo simulation, we find the difference in post-projection ellipticity correlation function ξ(θ)
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are the ±1σ statistical error bars of our measurement. The reduction of actual power is
detectable by combining many simulations, but is very small compared to the error bars on
the measurement.
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Figure 7.5 The star-galaxy ellipticity correlation functions. Shown are the rr, ri (i.e. star r
× galaxy i), ir, and ii correlation functions, reduced to 10 bins. The solid points, which are
offset to slightly lower θ-values for clarity, are the ++ correlation functions, and the dashed
points are the ×× functions. All error bars are Poisson only.
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A nonzero star-galaxy correlation function ξsg resulting from systematic PSF anisotropy
indicates the presence of a spurious contribution to the shear-shear correlation function with
amplitude ≈ 0.9ξsg. We will not determine this response to high enough accuracy to subtract
the effect with small residual error: doing so would not require just a simulation, but a
simulation that knows the correct radial profile of the PSF errors.12 In our case, the star-
galaxy correlation function is detectable but below the errors on the galaxy-galaxy ellipticity
auto-correlation (although not by very much), so a highly accurate correction is unnecessary.

We constrain the PSF anisotropy contribution by computing the star-galaxy correlation
function. This was done above, but some of the star-galaxy signal is due to the systematic
variation of PSF ellipticity with declination and is removed by the subtraction procedure
above. The star-galaxy ellipticity correlation function with the corrected catalogue is shown
in Fig. 7.5. The implied contamination to the galaxy ellipticity correlation function, appro-
priately averaging the bands and applying the factor of Rpsf = 0.9, is shown in Fig. 7.6.

These measured star-galaxy correlations can be used to construct a reasonable system-
atics covariance matrix for this systematic. We take the amplitude of the diagonal elements
of the PSF systematic covariance to be equal to the amplitude of the measured contamina-
tion. We also assume that the off-diagonal terms are fully-correlated between bins, which
is equivalent to fixing the scaling of this systematic with radius, and saying that only the
overall amplitude of the systematic is uncertain.

Since there are a number of uncertainties in this procedure, we do not apply any correc-
tion for these additive PSF systematics as we do for ones that are previously discussed, such
as intrinsic alignments or stellar contamination. Instead, we simply include a term in the
systematics covariance matrix to account for it. We also will present a worst-case scenario for
the impact of this term on cosmological constraints; in Chap. 9 we will show what happens
to the cosmology constraints if we assume that the systematic error is +2σ from its mean,
i.e. 40 per cent of the statistical errors. This should be taken as a worst-case scenario for
this particular systematic.

12This might be an option in future space-based surveys if the type of error can be traced to the source of
ellipticity (astigmatism×defocus, coma, or jitter). In either space or ground-based data, one could imagine
doing cross-correlations of higher-order shapelet modes (Refregier, 2003) to extract the particular form of
the errors. None of these options are pursued here.
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Figure 7.6 The implied contamination to the galaxy ellipticity correlation function if the
star-galaxy correlation function is used as a measure of the additive PSF power. The solid
points are the ++ correlation functions, and the dashed points are the ×× functions. All
error bars are propagated from the Poisson errors assuming correlation coefficient +1 (a
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show the 1σ errors in each radial bin from the Monte Carlo simulations (see Sec. 8.2.1)
which include both Poisson and cosmic variance uncertainties. Note also that the shapes
and normalisations of the ++ and ×× signals are nearly identical.
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Chapter 8

Analysis Tools

8.1 Analysis tools

8.1.1 Ellipticity correlation function

We compute the ellipticity correlation functions defined in Eq. (7.9) on scales from 1–120
arcminutes. For the cosmological analysis, we start by computing the correlation function
in 100 bins logarithmically spaced in separation θ to avoid bin width artifacts. For the
cosmological parameter constraints, we project these onto the Complete Orthogonal Sets of
E-/B-mode Integrals (COSEBI) basis (Schneider et al., 2010) to avoid the instabilities of
inverting a large covariance matrix estimated via Monte Carlo simulations (we will describe
our implementation of COSEBIs in Sec. 8.1.3). However, for display purposes, it is more
convenient to reduce the θ resolution to only 10 bins so that the real trends are more visually
apparent.

Weighting

The correlation functions used here are weighted by the inverse variance of the ellip-
ticities, where the “variance” includes shape noise. Specifically, we define a weight for a
galaxy

wi =
1

σ2
e + 0.372

, (8.1)

where σe is the ellipticity uncertainty per component defined by our shape measurement
pipeline. As demonstrated by Reyes et al. (2011a), these may be significantly underestimated
in certain circumstances; however, this will only make our estimator slightly sub-optimal,
so we do not attempt to correct for it. The value of 0.37 for the root-mean-square (RMS)
intrinsic ellipticity dispersion per component comes from the results of Reyes et al. (2011a),
for r < 22, and therefore we are implicitly extrapolating it to fainter magnitudes. Given
that Leauthaud et al. (2007) found a constant RMS ellipticity to far fainter magnitudes in
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Figure 8.1 The ellipticity correlation functions in the rr, ri, ii and ww (combined) band
combinations. The solid points denote the ++ and the dashed points denote the ×× com-
ponents of the correlation function. The points have been slightly displaced horizontally for
clarity. The Monte Carlo errors are shown.

the COSMOS data, we consider this extrapolation justified1.

Direct pair-count code

A direct pair-count correlation function code was used for the cosmological analysis. It
is slow (∼ 3 hours for 2 × 106 galaxies on a modern laptop) but robust and well-adapted
to the Stripe 82 survey geometry. The code sorts the galaxies in order of increasing right
ascension α; the galaxies are assigned to the range −60◦ < α < +60◦ to avoid unphysical

1Note that we do not use the actual value of RMS ellipticity from Leauthaud et al. (2007) – only the
trend with magnitude – because, as demonstrated by Mandelbaum et al. (2012), the RMS ellipticity value
in Leauthaud et al. (2007) is not valid for our adaptively-defined moments, which use an elliptical weight
function matched to the galaxy light profile.
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edge effects near α = 0. It then loops over all pairs with |α1 − α2| < θmax. The usual
ellipticity correlation functions can be computed, e.g.

ξ++(θ) =

∑
ij wiwjei+ej+∑

ij wiwj
, (8.2)

where the sum is over pairs with separations in the relevant θ bin, and the ellipticity compo-
nents are rotated to the line connecting the galaxies. The direct pair-count code works on a
flat sky, i.e. equatorial coordinates (α, δ) are approximated as Cartesian coordinates. This is
appropriate in the range considered, |δ| < 1.274◦, where the maximum distance distortions
are 1

2
δ2

max = 2.5× 10−4. The direct pair-count code is applicable to either auto-correlations
of galaxy shapes measured in a single filter (rr, ii) or cross-correlations between filters or
between distinct populations of objects (ri and all of the star-galaxy correlations).

Simple post-processing allows one to compute the ξ+ and ξ− correlation functions, de-
fined by

ξ+(θ) ≡ ξ++(θ) + ξ××(θ) (8.3)

and
ξ−(θ) ≡ ξ++(θ)− ξ××(θ). (8.4)

Combining bands

Finally, the different band correlation functions rr, ri, and ii must be combined accord-
ing to some weighting scheme:

ξww++(θ) = wrrξ
rr
++(θ) + wriξ

ri
++(θ) + wiiξ

ii
++(θ), (8.5)

where the label “ww” indicates that the bands were combined. The relative weights were
chosen according to the fraction of measured shapes in r- and i-bands, i.e. wrr = f 2

r ,
wri = 2frfi, and wii = f 2

i where the weights are fr = 0.4603 and fi = 0.5397.
The final ellipticity correlation functions (with the θ resolution reduced to 10 bins) are

shown in Fig. 8.1.

8.1.2 Tests of the correlation function

We implement several null tests on the correlation function to search for remaining
systematic errors.

The first test, shown in Fig. 8.2, constructs the difference between the cross-correlation
function of r and i band galaxy ellipticities versus the rr and ii auto-correlations. The
differences in the two types of correlation functions are small compared to the statistical
uncertainty in the signal. This is consistent with our expectations, as the true cosmic shear
signal should be independent of the filters in which galaxy shapes are measured.

The second test, shown in Fig. 8.3, compares the (band averaged or ww) correlation
function computed using galaxy pairs separated in the cross-scan (north-south) direction
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versus pairs separated in the along-scan (east-west) direction. This difference should be zero
if the signal we measure is due to lensing in a statistically isotropic universe. The error bars
shown are Poisson errors, so they may be slight underestimates at the larger scales, where
cosmic variance becomes important. Visual inspection shows no obvious offset from zero,
but the error bars are larger for this test than in Fig. 8.2 because the null test includes no
cancellation of galaxy shape noise.

8.1.3 E/B-mode decomposition

As a final check for systematics, we decompose the 2-point correlation function (2PCF)
into E- and B-modes, where, to leading order, gravitational lensing only creates E-modes.
The B-modes can arise from the limited validity of the Born approximation (Jain et al.,
2000; Hilbert et al., 2009), redshift source clustering (Schneider et al., 2002b), and lensing
(magnification) bias (Schmidt et al., 2012; Krause & Hirata, 2010), however the amplitude
of B-modes from these sources should be undetectable with our data. At our level of sig-
nificance, a B-mode detection would indicate remaining systematics, e.g. due to spurious
power from an incomplete PSF correction.

Formerly used methods to decompose E-and B-modes, such as the aperture mass dis-
persion

〈M2
ap〉(θ) =

∫ 2θ

0

dϑϑ

2 θ2

[
ξ+(ϑ)T+

(
ϑ

θ

)
+ ξ−(ϑ)T−

(
ϑ

θ

)]
, (8.6)

with the filter functions T± as derived in Schneider et al. (2002b), or the shear E-mode
correlation function, suffer from E/B-mode mixing (Kilbinger et al., 2006), i.e. B-modes
affect the E-mode signal and vice versa. These statistics can be obtained from the measured
2PCF, for an exact E/B-mode decomposition, however they require information on scales
outside the interval [θmin; θmax] for which the 2PCF has been measured.

The ring statistics (Schneider & Kilbinger, 2007; Eifler et al., 2010; Fu & Kilbinger, 2010)
and more recently the COSEBIs (Schneider et al., 2010) perform an EB-mode decomposition
using a 2PCF measured over a finite angular range. COSEBIs and ring statistics can be
expressed as integrals over the 2PCF as

EB =

∫ θmax

θmin

dθ

2
θ[T log

+n(θ)ξ+(θ)± T log
−n(θ)ξ−(θ)] (8.7)

and

REB(θ) =

∫ θ

θmin

dθ′

2θ′
[ξ+(θ′)Z+(θ′, θ)± ξ−(θ′)Z−(θ′, θ)]. (8.8)

For the ring statistics, we use the filter functions Z± specified in Eifler et al. (2010). The
derivation of the COSEBI filter functions T±n is outlined in Schneider et al. (2010), where
the authors provide linear and logarithmic filter functions indicating whether the separa-
tion of the roots of the filter function is distributed linearly or logarithmically in θ. Note
that whereas the ring statistics are a function of angular scale, the COSEBIs are calculated
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Figure 8.2 The difference between the galaxy ellipticity cross-correlations (ri) and the auto-
correlations (rr + ii)/2, with error bars determined from the Monte Carlo simulations. The
upper panel shows the ++ correlations and the lower panel shows the ×× correlations. The
dashed line is the 1σ statistical error bar on the actual signal.
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Figure 8.3 The null test of the correlation functions measured using galaxy pairs whose
separation vector is within 45◦ of the north-south direction, minus that measured using
galaxy pairs whose separation vector is within 45◦ of the east-west direction. The error bars
shown are the Poisson errors only. The dashed curve shows the 1σ error bars of the actual
signal (all colour combinations and separation vectors averaged). The 6 panels show the
three colour combinations (rr, ri, and ii) and the 2 components (++ or ××).
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Figure 8.4 The COSEBI filter functions Tn+ (upper panel) and Tn− (lower panel) for the
first 5 modes.

over the total angular range of the 2PCF, condensing the information from the 2PCF nat-
urally into a set of discrete modes. The linear T -functions can be expressed conveniently
as Legendre polynomials, however T log

±n compresses the cosmological information into signifi-
cantly fewer modes; we therefore choose the logarithmic COSEBIs as our second-order shear
statistic in the likelihood analysis in Chapter. 9. The COSEBI filter functions are displayed
graphically in Fig. 8.4.

Figure 8.5 shows three different E/B-mode statistics derived from our measured shear-
shear correlation function, i.e. the COSEBIs, the ring statistics, and the aperture mass dis-
persion. The error bars are obtained from the square root of the corresponding covariances’
diagonal elements (statistics only). Note that the COSEBIs data points are significantly
correlated. Slightly smaller is the correlation for the aperture mass dispersion, and the ring
statistics’ data points have the smallest correlation.

From the COSEBIs, we find a reduced χ2 for the E-modes to be consistent with zero
of 6.395, versus 1.096 for the B-modes (5 degrees of freedom each). The latter is consistent
with purely statistical fluctuations.

8.2 Covariance estimation

8.2.1 Ellipticity correlation function covariance matrix

The covariance matrix of the ellipticity correlation function estimated via Eq. (8.5) was
computed in several ways. The preferred method for our analysis is a Monte Carlo method
(Sec. 8.2.1) but we compare that covariance matrix with an estimate of the Poisson errors
(Sec. 8.2.1) as a consistency check.
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Figure 8.5 The measured COSEBIs, ring statistics, and aperture mass dispersion from the
combined cosmic shear signal. The error bars equal the square root of the corresponding
covariances’ diagonal elements (statistics only). Note that the COSEBIs data points are
significantly correlated. Slightly smaller is the correlation for the aperture mass dispersion,
and the ring statistics’ data points have the smallest correlation.
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Poisson method

The direct pair-count correlation function code can compute the Poisson error bars, i.e.
the error bars neglecting the correlations in ei+ej+ between different pairs. This estimate of
the error bar is

σ2[ξ++(θ)] =

∑
ij w

2
iw

2
j |ei|2|ej|2

2
[∑

ij wiwj

]2 . (8.9)

Equivalently, this is the variance in the correlation function that one would estimate if one
randomly re-oriented all of the galaxies. The Poisson method is simple, however it is not
fully appropriate for ri cross-correlations (since the same intrinsic shape noise is recovered
twice for pairs that appear in both ri and ir cross-correlations). Moreover, at scales of tens
of arcminutes and greater there is an additional contribution because the cosmic shear itself
is correlated between pairs. Therefore the Poisson error bars should be used only as a visual
guide: they would underestimate the true uncertainties if used in a cosmological parameter
analysis.

Monte Carlo method

We used a Monte Carlo method to compute the covariance matrix of ξ++(θ) and ξ××(θ).
The method is part theoretical and part empirical: it is based on a theoretical shear power
spectrum, but randomizes the real galaxies to correctly treat the noise properties of the
survey. The advantages of the Monte Carlo method – as implemented here – are that spatially
variable noise, intrinsic shape noise including correlations between the r and i band, and the
survey window function are correctly represented. The principal disadvantages are that the
cosmic shear field is treated as Gaussian and a particular cosmology must be assumed (see
Eifler et al., 2009, for alternative approaches). However, so long as this cosmology is not
too far from the correct one (an assumption that can itself be tested!), the Monte Carlo
approach is likely to yield the best covariance matrix.

The Monte Carlo approach begins with the generation of a suite of 459 realizations
of a cosmic shear field in harmonic space according to a theoretical spectrum. For our
analysis, the theoretical spectrum was that from the WMAP 7-year (Larson et al., 2011)
cosmological parameter set (flat ΛCDM; Ωbh

2 = 0.02258; Ωmh
2 = 0.1334; ns = 0.963;

H0 = 71.0 km s−1 Mpc−1; and σ8 = 0.801), and the shear power spectrum code used in
Albrecht et al. (2009), itself based on the Eisenstein & Hu (1998) transfer function and the
Smith et al. (2003) nonlinear mapping. The redshift distribution discussed in section 7.4.1,
based on a calibration sample from DEEP2, VVDS, and PRIMUS, was used as the input to
the shear power spectrum calculation.

From this power spectrum we generate a sample set of Gaussian E-mode shear harmonic
space coefficients aE

lm. The full power spectrum is used at l ≤ 1500; a smooth cutoff is
applied from 1500 < l < 2000 and no power at l ≥ 2000 is included. This is appropriate for
a covariance matrix since the power at smaller scales is shot noise dominated and cannot
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be recovered. (The E-mode power spectrum is CEE
1500 = 3.6 × 10−11, as compared to a shot

noise of γ2
int/n̄ ∼ 1.8 × 10−9.) No B-mode shear is included. The particle-mesh spherical

harmonic transform code of Hirata et al. (2004a) with a 6144× 3072 grid (L′ = 6144) and a
400-node interpolation kernel (K = 10) was used to transform these coefficients into shear
components (γ1, γ2) at the position n̂j of each galaxy j.2

A synthetic ellipticity catalogue was then generated as follows. For each galaxy, we
generated a random position angle offset ψj ∈ [0, π) and rotated the ellipticity in both r and
i bands by ψj.

3 We then added the synthetic shear weighted by the shear responsivity to
the randomized ellipticity to generate a synthetic ellipticity:

esyn
j = e2iψjetrue

j + 1.73Γ(n̂j). (8.10)

The 1.73 prefactor was estimated from Eq. (7.13), which we expected to be good enough
for use in the Monte Carlo analysis, so that the Monte Carlos could be run in parallel with
the shear calibration simulations. The latter gave a final result of 1.78± 0.04, which is not
significantly different.

The direct pair-count correlation function code, in all versions (rr, ri, and ii) was run
on each of the 459 Monte Carlo realisations, before combining the different correlations to
get the weighted value via Eq. (8.5).

The Monte Carlo and Poisson error bars are compared in Fig. 8.6. The correlation
coefficients of the correlation functions in different bins are plotted graphically in Fig. 8.7.

From each Monte Carlo correlation function we compute the COSEBIs via Eq. (8.7) and
use their covariance matrix in our subsequent likelihood analysis. In order to test whether
our covariance has converged, meaning that the number of realisations is sufficient to not
alter cosmological constraints, we perform 3 likelihood analyses in σ8 vs. Ωm space varying
the numbers of realisations from which we compute the covariance matrix (see Chap. 9 for
detailed methodology; for now we are just establishing convergence of the covariance matrix).
In Fig. 8.8 we show the 68 and 95 per cent likelihood contours, i.e. the contours enclose
the corresponding fraction of the posterior probability (within the ranges of the parameters
shown). We see that the contours hardly change when going from 300 to 400 realizations
and show no change at all when going from 400 to 459 realisations, hence the 459 Monte
Carlo realizations are sufficient for our likelihood analysis.

8.2.2 Systematic contributions to the covariance matrix

The following additional contributions are added to the Monte Carlo covariance matrix
(and if appropriate the theory result) described in Sec. 8.2.1.

2The use of a full-sky approach for the Monte Carlo realisations was not necessary for the SDSS Stripe
82 project, but was the simplest choice given legacy codes available to us.

3To simplify bookkeeping, the actual implementation was that a sequence of 107 random numbers was
generated, and a galaxy was assigned one of these numbers based on its coordinates in a fine grid with 0.36
arcsec cells in (α, δ).
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Figure 8.7 The matrix of correlation coefficients for the combined (ww) correlation functions
in the 10 angular bins for which the correlation function is plotted in the companion fig-
ures. The bin number ranges from 0–9 for ξ++(θ) and from 10–19 for ξ××(θ); all diagonal
components are by definition equal to unity. Based on 459 Monte Carlo realisations.
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Figure 8.8 Convergence test of the σ8 vs. Ωm parameter constraints as a function of the
number of Monte Carlo realizations used to compute the covariance. The plot shows the 68
and 95 per cent likelihood contours (however, the lower 95 per cent contours are not visible).
The covariance includes statistical errors only.
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1. The intrinsic alignment error was included following Sec. 7.2: the theory shear cor-
relation function was reduced by a factor of 0.92, and an uncertainty of 4 per cent
of the theory was added to the covariance matrix, i.e. we add an intrinsic alignment
contribution

Cov[ξi, ξj](intrinsic alignment) = 0.042ξ
(th)
i ξ

(th)
j , (8.11)

where the theory curve (th) is obtained at the fiducial WMAP7 point. This covariance
matrix includes perfect correlation between radial bins, implying that we treat this
systematic as being an effect with a fixed scaling with separation, so the only degree
of freedom is its amplitude.

2. The stellar contamination was included following Sec. 7.5: the theory shear correlation
function was reduced by a factor of 0.936, and an uncertainty of 3 per cent of the theory
was added to the covariance matrix, i.e. we add a stellar contamination contribution

Cov[ξi, ξj](stellar contamination) = 0.032ξ
(th)
i ξ

(th)
j , (8.12)

where the theory curve (th) is obtained at the fiducial WMAP7 point.

3. The implied error from the redshift distribution uncertainty is derived from 402 real-
isations of the sampling variance simulations as described in Sec. 7.4.2. We construct
the covariance matrix of the predicted E-mode COSEBIs.

4. The shear calibration uncertainty was conservatively estimated in Sec. 7.3 to be ±2.4
per cent, or equivalently 4.8 per cent in second-order statistics. We thus add another
term to the covariance matrix,

Cov[ξi, ξj](shear calibration) = 0.0482ξ
(th)
i ξ

(th)
j . (8.13)

5. In Chap. 7.6, we described a procedure for including uncertainty due to additive PSF
contamination. According to this procedure, the relevant systematics covariance matrix
is related to the amplitude of the measured contamination signal:

Cov[ξi, ξj](PSF contamination) = 0.92ξsg,iξsg,j, (8.14)

again assuming a fixed scaling with radius for this systematic uncertainty. Since all
entries scale together, we do not spuriously “average down” our estimate of the sys-
tematic error by combining many bins.

The final data vector and its covariance matrix (including all the statistical and system-
atic components) are given in Tables 8.1 and 8.2. Note that given our procedure of applying
the systematic corrections to the theory, the data vector is the observed one without any
such corrections for the stellar contamination and intrinsic alignments contamination. With
this in hand, we can estimate the significance of the E- and B-mode signals described in
section 8.1.3. The probability that the COSEBI E-mode signal that we observe is due to
random chance given the null hypothesis (no cosmic shear) is 6.0 × 10−6. The probability
of measuring our B-mode signal due to random chance given the null hypothesis of zero B
modes is .36, evidence that there is no significant B-mode power.
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Table 8.1 Our data vector. The first five elements are COSEBI mode amplitudes; the final
is the correlation function averaged in the range 29.2296 ≤ θ ≤ 44.9730.

4.89797E-10
1.28335E-09
1.25136E-09
1.45616E-09
8.92333E-10
1.46457E-05

Table 8.2 The covariance matrix for the data vector shown in table 8.1.
Data vector index Data vector index Covariance

0 0 3.37161E-20
0 1 4.67637E-20
0 2 4.00484E-20
0 3 2.49916E-20
0 4 9.84257E-21
0 5 3.01770E-17
1 1 1.06383E-19
1 2 1.19226E-19
1 3 8.39508E-20
1 4 3.86519E-20
1 5 1.82344E-16
2 2 1.99923E-19
2 3 1.87469E-19
2 4 1.12196E-19
2 5 5.07790E-16
3 3 2.56568E-19
3 4 2.13363E-19
3 5 8.02118E-16
4 4 2.67774E-19
4 5 5.67797E-16
5 5 3.68112E-11
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Chapter 9

Cosmological Constraints

Having described the measured cosmic shear two-point statistics, and shown that the
systematic bias in this measurement is small compared with the statistical constraints, we
now turn to the cosmological interpretation. We work in the context of the flat ΛCDM
parametrisation, taking where necessary the WMAP7 (Komatsu et al., 2011) constraints for
our fiducial parameter values.

9.1 The prediction code: modeling second-order shear

statistics

To produce a cosmological interpretation of our measured cosmic shear signal from our
model framework, we require a method to convert a vector of cosmological parameters into
a prediction of the observed cosmic shear signal. Due to projection effects, we expect that
a significant fraction of the observed cosmic shear signal is produced by the clustering of
matter on nonlinear scales, so a suitably accurate prediction algorithm must ultimately rely
on numerical simulations of structure formation.

The prediction code used in our likelihood analysis is a modified version of the code
described in Eifler (2011). We combine Halofit (Smith et al., 2003), an analytic approach to
modeling nonlinear structure, with the Coyote Universe Emulator (Lawrence et al., 2010),
which interpolates the results of a large suite of high-resolution cosmological simulations
over a limited parameter space, to obtain the density power spectrum. The derivation is
a two-step process: First, we calculate the linear power spectrum from an initial power
law spectrum Pδ(k) ∝ kns employing the dewiggled transfer function of Eisenstein & Hu
(1998). The non-linear evolution of the density field is incorporated using Halofit. In order to
simulate wCDM models we follow the scheme implemented in icosmo (Refregier et al., 2011),
interpolating between flat and open cosmological models to mimic Quintessence cosmologies
(see Schrabback et al. 2010 for more details). In a second step, we match the Halofit power
spectrum to the Coyote Universe emulator (version 1.1) power spectrum, which emulates
Pδ over the range 0.002 ≤ k ≤ 3.4h/Mpc within 0 ≤ z ≤ 1 to an accuracy of 1 per cent.
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Wherever possible, the matched power spectrum exactly corresponds to the Coyote Universe
Emulator; of course this is limited by the cosmological parameter space of the Emulator and
its limited range in k and z. However, even outside the range of the Emulator, we rescale the
Halofit power spectrum with a scale factor Pδ(Coyote)/Pδ(Halofit) calculated at the closest
point in parameter space (cosmological parameters, k, and z) where the Emulator gives
results. Outside the range of the Emulator, the accuracy of this “Hybrid” density power
spectrum is of course worse than 1 per cent, however it should be a significant improvement
over a density power spectrum from Halofit only. From the so-derived density power spectrum
we calculate the shear power spectrum via Eq. (7.10) and the shear-shear correlation function
via Eq. (7.9). As a final step, we transform these predicted correlation functions to the
COSEBI basis as described above in Sec. 8.1.3.

For our final results in the (Ωm, σ8) likelihood analysis, we used both prediction codes;
the results are compared in Fig. 9.1, where they are seen to agree to much better than 1σ.
We therefore conclude that uncertainty in the theory predictions is sub-dominant to the
other sources of systematic error, and to the statistical error.

9.2 Constructing the input data vector

For our primary science results, we use the measured 5 COSEBI modes (see Fig. 8.5,
left panel). As a first step we want to determine the number of COSEBI modes that need
to be included in our likelihood analysis. In Fig. 9.2 we show a likelihood analysis in the
σ8-Ωm parameter space varying the number of modes in the data vector. We find that there
is hardly a change in the likelihood contours when going from 4 to 5 modes; we therefore
conclude that 5 modes is a sufficient number to capture the cosmological information encoded
in our data set.

As shown in Eifler et al. (2008), the information content of the aperture mass dispersion
can be greatly improved when including 1 data point of the shear-shear correlation function
ξ+ into the data vector; here we adopt this concept for the COSEBIs. The basic idea is
that the data point of the correlation function is sensitive to scales of the power spectrum
to which the COSEBIs are insensitive. We incorporate only a single data point of the
correlation function as this is sufficient to capture the bulk of the additional information
while simultaneously minimizing possible B-mode contamination.

In order to determine the optimal scale of the data point that is to be included, we
consider 10 bins of ξ+ ranging from 1.3 to 97.5 arcmin and perform 10 likelihood analyses
for a combined data vector consisting of 5 COSEBI modes and one additional data point of
ξ+. We quantify the information content through the so-called q figure of merit (q-FoM)

q =
√
|Q|, where

Qij =

∫
d2π p(π|d) (πi − πf

i)(πj − πf
j) , (9.1)

π = (Ωm, σ8) is the parameter vector, p(π|d) is the posterior likelihood at this parameter
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Figure 9.1 The 68 and 95 per cent likelihood contours of the combined data vector including
a full treatment of systematics when using the Halofit prediction code (dashed) and when
using the Coyote Universe-calibrated prediction code (solid). The red lines correspond to the
best-fitting value of σ8 for a given Ωm. The dot indicates the WMAP7 best-fitting values.
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Figure 9.2 Convergence test of the σ8 vs. Ωm parameter constraints as a function of number
of COSEBI modes in the data vector. The plot shows the likelihood contours enclosing 68
and 95 per cent of the posterior distribution. (The lower bounding curve for the 95 per cent
contours is not visible on the plot.) The covariance contains statistical errors only. The dot
indicates the WMAP7 best-fitting values.
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point, and πf
i denotes the fiducial parameter values. If the likelihood in parameter space

(i.e. the posterior probability) is Gaussian, the q-FoM corresponds to the more common
Fisher matrix based figure of merit f = 1/|

√
F|. The Fisher matrix F can be interpreted

as the expectation value of the inverse parameter covariance evaluated at the maximum
likelihood estimate parameter set, which in our ansatz corresponds to the fiducial parameters.
Mathematically we can express this equivalence as

f =
1√
|F|

=
√
|Cπ| =

√
|Q| = q . (9.2)

Since the assumption of a Gaussian posterior is clearly violated in the σ8-Ωm parameter space,
we perform a full likelihood analysis and calculate q to quantify the size of the likelihood.
Note that smaller q-FoM is “better.”

We varied the angular scale (in arcmin) of the added ξ+(θ) data point, and found a
minimal q-FoM at θ = 37.8 arcmin. We will use this scale for the additional ξ+ data point
henceforth. Note that this analysis uses a simulated input data vector in order to avoid
biases from designing a statistical test based on the observed data. The constraints coming
from the various possible data vectors – the COSEBIs, the COSEBIs supplemented with a
single ξ+ point, and the full shear correlation function – are compared in Fig. 9.3. They
are not identical, which is expected since they weight the data in different ways, but are
consistent with each other.

The COSEBI modes are highly correlated with each other, and they are correlated to
a lesser extent with ξ+ at 38 arcmin. The correlation matrix is shown in Fig. 9.4, and the
corresponding covariance matrix is tabulated in the Appendix in Table 8.2.

9.3 Parameter Fits

We perform all of our fits to a standard five-parameter ΛCDM model1. For the initial
likelihood analysis, we fix ns, Ωbh

2, Ωmh
2, and w0 at their fiducial best-fit WMAP7 values

(Komatsu et al., 2011), and vary σ8. The upper panel of Fig. 9.5 shows the likelihood of σ8

with all other parameters fixed, with a value at the peak and 68 per cent confidence interval
of 0.636+0.109

−0.154. For a survey of this size and depth, the constraints are comparable to the
statistically achievable confidence limits.

We also perform a likelihood analysis fixing three parameters, and varying Ωm and σ8

simultaneously, as these two parameters are much more sensitive to the measured cosmic
shear signal than the others. The resulting two-dimensional constraints are shown in the
bottom panel of Fig. 9.5. Our 68 per cent confidence limits on the degenerate product

σ8

(
Ωm

0.264

)0.67
are 0.65+0.12

−0.15 for the Coyote Universe prediction code (see Fig. 9.5, solid red

line), and σ8

(
Ωm

0.264

)0.72
= 0.67+0.12

−0.15 for the Halofit prediction code (see Fig. 9.5, dashed red
line).

1The optical depth to reionization τ is a sixth parameter implicitly included in the WMAP7 chains, but
with no effect on the lensing shear correlation function.
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Figure 9.3 The likelihood contours of the combined data vector (solid), the shear-shear
correlation function (dashed), and the COSEBIs (dotted) data vector to illustrate how much
information is gained when including the additional data point. Note that the COSEBIs’
lower 95 per cent contour is outside the considered region. The dot indicates the WMAP7
best-fitting values.
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Figure 9.4 The correlation matrix of the COSEBI modes 1–5 (“E1...E5” in the figure) and
ξ+(38′). The left panel shows only the statistical (Monte Carlo) errors, and the right panel
includes the systematics as well.



Section 9.3. Parameter Fits 114

0.4 0.6 0.8 1.0 1.2 1.4

0.
00

0.
01

0.
02

0.
03

0.
04

σ8

po
st

er
io

r 
pr

ob
ab

ili
ty

IA+ShearCal+PSF+Masking systematics
IA+ShearCal+PSF
IA+ShearCal
No systematics

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

0.
4

0.
6

0.
8

1.
0

1.
2

1.
4

IA+ShearCal+PSF+Masking systematics
IA+ShearCal+PSF
IA+ShearCal
No systematics

σ 8

Ωm

Figure 9.5 The effect of systematic errors in the 1-D likelihood of σ8 (upper panel) and
in the 2-D constraints (68 per cent likelihood contours only) in the σ8 − Ωm plane (lower
panel). The solid curve shows our final analysis, while the other curves show results including
subsets of the systematic errors. The dot-dashed curve labeled “no systematics” shows only
the statistical errors, without any systematic error corrections either to the theory or to the
covariance matrix. The dot indicates the WMAP7 best-fitting values.

We show the effects of removing each systematic error correction, Fig. 9.5 also shows, for
both the one- and two-dimensional analyses, the impact of systematic error corrections. The
combined effects of these uncertainties are clearly substantially smaller than the statistical
error on the amplitude of the shear signal.

Finally, we adopt the WMAP7 likelihoods as priors, and evaluate our likelihood at each
link in the WMAP7 Markov chain. For each chain element, we assign a weight equal to our
likelihood function evaluated at the parameter vector for that chain element. For each of
the parameter constraint plots shown here, we first assign each Markov Chain Monte Carlo
(MCMC) chain element to a point on a regular grid in the parameter space; the value of
the marginalised likelihood at each grid-point, Hi,j is then the sum of our likelihood weights
over the MCMC chain elements at the (i, j) grid-point,

Hi,j =
∑
k

Ik(i, j)Lk, (9.3)

where the indicator function Ik(i, j) is equal to unity when the (i, j) grid-point in parameter
space is nearest the kth chain element, and zero otherwise. The likelihood Lk for each chain
element is evaluated in the usual way as:

Lk = exp

(
− d̄TkC

−1d̄k
2

)
. (9.4)
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Here C is the full covariance matrix for the measurement, incorporating both the statistical
and systematic uncertainties, and the normalization is arbitrary. The data vector d̄k is the
extended COSEBI vector described above; where shown, the WMAP7 priors are simply this
sum with Lk = 1 for each point.

We estimate the detection significance for the final signal, the difference
√
−2∆ logL

between the highest-likelihood Markov Chain element for both the ΛCDM and wCDM mod-
els and the likelihood evaluated with no signal. The 1σ detection significances for these two
models are 2.64 and 2.88, respectively. This is not the significance of the detection of cosmic
shear (as in Sec. 8.2.2), but rather a measurement of the likelihood of these two models given
the combination of WMAP7 priors with this experiment.

In Fig. 9.6, we show marginalized posterior likelihoods in the case of fixed ΛCDM (i.e.,
w = −1) for Ωmh

2, Ωbh
2, ns, and σ8. The results with a free equation of state of dark

energy (wCDM) are in Fig. 9.7. Our measurement provides some additional constraints
beyond those from WMAP7 on these parameters. In particular, the low amplitude of the
measured shear signal rules out some of the previously allowed volume of Ωmh

2 and σ8

WMAP7 constraints.

9.4 Conclusions

Using coadded imaging constructed from SDSS Stripe 82 data, we have constructed a
weak lensing catalogue of 1 328 885 galaxies covering 168 square degrees, and showed that the
additive shear systematics arising from the PSF are negligible compared to the cosmic shear
signal. In this paper, we carried out a cosmic shear measurement that resulted in a 20 per
cent constraint on σ8 (with all other cosmological parameters fixed). This adds constraining
power beyond that from WMAP7, and serves as an important independent data point on
the amplitude of the matter power spectrum at late times. In particular, the primary CMB
anisotropies presently provide only a modest constraint on Ωmh

2, and (due to the effect of
matter density on the growth of structure) there is then an elongated allowed region in the
(Ωmh

2, σ8) plane; see Fig. 9.6. The WMAP7-allowed region is ideally oriented for lensing to
play a role: the lensing signal at the high-Ωmh

2, high-σ8 end of the ellipse leads to a much
higher lensing signal than low Ωmh

2, low σ8. The low amplitude of cosmic shear observed
in this paper eliminates the high-Ωmh

2, high-σ8 solutions, and leads to a WMAP7+SDSS
lensing solution of σ8 = 0.784+0.028

−0.026(1σ)+0.055
−0.054(2σ) and Ωmh

2 = 0.1303+0.0047
−0.0048(1σ)+0.0091

−0.0092(2σ);
the 2σ error ranges are respectively 14 and 17 per cent smaller than for WMAP7 alone.

We have also carefully evaluated other sources of uncertainty such as the source redshift
distribution, intrinsic alignments, and shear calibration, to ensure that our measurement is
dominated by statistical errors rather than systematic errors. This achievement is important
when considering that (i) the SDSS data were never designed with this application in mind,
and indeed includes several features (e.g. the minimal amount of cross-scan dithering) that
cause significant difficulty, and (ii) with the multitude of upcoming multi-exposure lensing
surveys in the next few years, it is important to cultivate new data analysis techniques (such
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Figure 9.6 The cosmological parameter constraints using the extended COSEBI data vector,
fixing the dark energy equation of state w at −1, but allowing all other parameters to vary.
Off-diagonal panels show joint two-dimensional constraints after marginalization over all the
other parameters, which are shown. For these, the red contours show the WMAP7 priors
containing 68.5 and 95.4 per cent of the posterior probability. The black contours are the
same but for WMAP7+SDSS lensing. Diagonal panels show the fully-marginalized one-
dimensional posterior distribution for each parameter; for these panels, the red (dashed)
contours show the marginalized WMAP7 constraints.
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Figure 9.7 The cosmological parameter constraints using the extended COSEBI data vector,
varying all five parameters. Off-diagonal panels show joint two-dimensional constraints after
marginalization over all the other parameters, which are shown. For these, the red contours
show the WMAP7 priors containing 68.5 and 95.4 per cent of the posterior probability. The
black contours are the same but for WMAP7+SDSS lensing. Diagonal panels show the fully-
marginalized one-dimensional posterior distribution for each parameter; for these panels, the
red (dashed) contours show the marginalized WMAP7 constraints.
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as the one used here) that are capable of producing homogeneous data with tight control
over PSF anisotropies. As a quantitative measure of the extent of PSF correction possible
with SDSS data, we take the RMS residual spurious shear at a particular scale estimated
from the star-galaxy correlations,

γrms,eq(θ) =

√
Rpsf ξ+,sg(θ)

R
. (9.5)

From Fig. 7.6, we see that this is ∼ 2× 10−3 at the smallest scales (1–6 arcmin), is < 10−3

at scales θ > 0.1 degree, and drops to 3.7× 10−4 in the final bin (1.2–2.0 degrees).2 There is
almost no difference between the ++ and ×× signals, suggesting that the spurious additive
ellipticity signal contains similar amounts of E- and B-modes3; something similar was seen
in the SDSS single-epoch data via run-by-run comparisons of ellipticity measurements on
the same galaxies (Mandelbaum et al., 2006a, Fig. 8). This is good news for the use of the
B-mode as a diagnostic of PSF systematics, although an understanding of the generality of
this pattern remains elusive.

A major lesson learned from this project is the importance of masking bias, in which
the intrinsic orientation of a galaxy affects whether it falls within the survey mask. This
is likely the main reason why we had to implement the 〈e1〉 projection. While we have
clearly not exhausted the range of options for removing this bias at the catalogue level,
future surveys should be designed to produce more uniform data quality via an appropriate
dithering strategy and suppress the masking bias at the earliest stages of the analysis.

Our major limitation in the end was the source number density, which was driven by
the fact that our PSF-matching procedure was limited by the worst seeing in the images that
we use, and therefore we had to eliminate the images with seeing worse than the median.
This means that the coadds were not as deep as they could have been, and the final effective
seeing was 1.31 arcsec (full-width half maximum). In principle this will be an obstacle to
applying this technique in the future, but in fact, that statement depends on context. For
example, for a survey such as HSC or LSST where we expect typically ∼ 0.7 arcsec seeing,
and with plans to preferentially use the best-seeing nights for r and i-band imaging that
will be used for shape measurement, it is conceivable that nearly all images intended for
lensing will have seeing in the 0.6–0.8 arcsec range. In that context, a PSF-matched coadd
that has the rounding kernel applied may actually not result in much loss of information
about the shapes of most useful galaxies, and will have the advantage of the removal of PSF
anisotropies. Moreover, even for surveys for which the loss of information that results from
this method may not be suitable for the final cosmological analysis, this method may still
serve as a useful diagnostic of the additive PSF systematics.

2We used Rpsf = 0.9 and R = 1.776, as described in the text.
3Recall that ξ++(θ)− ξ××(θ) and PE(`)− PB(`) are J4 Hankel transforms of each other.
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Chapter 10

The Future

Broadly speaking, weak lensing is best thought of as deeply signal-starved. For a com-
parable level of effort, the marginal impact of an increase in signal-to-noise is likely to be
much larger than methodological improvements or increased statistical sophistication.

The additive shear bias due to improper PSF modeling is a good example. The response
of the measured shear field to a small PSF anisotropy is discussed in Chapter 4. This error
scales strongly (as R4

2 in the two-point statistics) with the relative size of the PSF and
galaxy. An increase in signal-to-noise that permitted the lensing analysis to rely on slightly
better-resolved galaxies could reduce the magnitude of all PSF-dependent systematics by a
large factor.

In general a stronger signal should allow more accurate modeling of systematic effects.
For this reason, it is likely that the major gains yet to be realized in weak lensing will come
from new probes of the underlying signal.

In this Chapter, I discuss two ideas that may offer opportunities to realize such gains.
Both are still relatively unproven, but early results are very promising.

10.1 The Photometric Fundamental Plane

The fundamental plane (FP) is in many ways an ideal tool for measuring magnification.
It is an observed correlation between galaxy effective radius (Re), which is magnified by
gravitational lensing, and two galaxy properties which are unaltered by lensing: galaxy
surface brightness (µ) and the stellar velocity dispersion (σ). The intrinsic scatter in the FP
is ∼ 0.08 dex (Jørgensen et al., 1996; Bernardi et al., 2003), or 20%. Thus the FP makes it
possible to predict the intrinsic value of Re from observations of µ and σ, which can then be
compared with the observed values of Re to measure magnification.

The FP was in fact proposed as a tool for this purpose by Bertin & Lombardi (2006),
but it has never been used as such due to a critical flaw. Placing galaxies on the FP requires
σ measurements. Even with the tight scatter in the FP, a statistically viable measurement
would require high-resolution spectroscopic measurements for millions of galaxies.
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Identifying a purely photometric analog to the FP with comparable scatter would solve
this problem. Such a relation has already been identified by Graham (2002), where the
concentration of the galaxy light profile fills the role normally served by σ. This works in
part because concentration and velocity dispersion are both strongly correlated with galaxy
mass, and in part because at fixed mass, galaxies with more concentrated mass profiles have
higher velocity dispersions. The relation between the spectroscopic fundamental plane and
the photometric relation deployed here will be explored more fully in subsequent work.

10.1.1 Background Sources

To define a photoFP for this work, a sample of galaxies is drawn from the Sloan Digital
Sky Survey III (SDSS-III) Eighth Data Release (DR8, Aihara et al. 2011b). The sample is
limited to resolved sources that meet basic quality cuts (e.g., are not saturated). For these,
we estimate photometric redshifts (photo-z’s) based on the SDSS ugriz photometry using
the public code ZEBRA (Feldmann et al., 2006) run with the default templates, allowing
interpolation between the standard templates without template optimization. To select a
sample of early type background sources that should lie on the photoFP, we exclude the
∼ 2/3 of the galaxies with best-fitting templates inconsistent with that of a passive stellar
population. The sample selection for background sources will be described in greater detail
in Paper II.

The SDSS photometric pipeline does not measure Sérsic index. Here, the SDSS petrosian
concentration C = R 90/R 50, defined as the ratio of the radii containing 90% and 50% of
the Petrosian flux (e.g., Shimasaku et al. 2001), is substituted for n. All reported quantities
are measured in the r band.

A photoFP of the form
logRe = αµ+ β logC + γ, (10.1)

is fit, where Re is the half-light radius of the best-fit de Vaucouleurs light profile converted
into physical units using the ZEBRA photo-z, µ is the mean de Vaucouleurs surface bright-
ness within Re, and α, β, and γ are free parameters. To avoid errors resulting from a
redshift-dependent selection function, evolution in the photoFP, and K-corrections to the
radii due to the fact that the morphological measurements are all made in the observed-
frame r band, the galaxy sample is divided into redshift bins with width ∆z = 0.01 and
fit the photoFP separately in each bin. The best-fit coefficients are chosen to minimize the
dispersion in effective radius at fixed µ and logC, taking into account only the errors in Re.

Figure 10.1 shows an edge-on view of the photoFP for our source sample. The dispersion
around the photoFP in the direction of effective radius is 0.15 dex, or 35%.
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10.1.2 Magnification using the photoFP

A line-of-sight matter overdensity at lens redshift zl will produce an image convergence
κ of amplitude:

κ =
Σ(dl~θ)

Σcrit

, (10.2)

where Σ is the projected surface density on the sky at zl and Σcrit is the characteristic surface
density of matter required for lensing. Σcrit is defined by the lensing geometry, such that

Σcrit =
c2

4πG

ds

dldls (1 + zl)
2 , (10.3)

where dl, ds, and dls are the angular diameter distances from the observer to the lens, from
the observer to the source, and from the lens to the source, respectively. The factor of
(1 + zl)

2 arises from the use of comoving coordinates.
The lensing convergence re-scales the light profile, in the limit of very weak lensing, by

a factor of (1 + κ). The radius and luminosity increase, but as the light profile is simply
rescaled, the concentration is left unchanged. In the presence of the scaling relation described
above, this implies an estimator κ̂ of:

log (1 + κ̂) = ∆ logRe

≡ logRe − (αµ+ β logC + γ).
(10.4)

If the errors in the observables are uncorrelated, the variance in our estimator κ̂ is
just the variance in the photoFP in the direction of Re. A galaxy-galaxy lensing signal is
extracted by cross-correlating this estimator with a population of foreground lenses.

10.2 A Magnification Measurement

10.2.1 Lens Sample

The lens sample is selected from the NYU Value-Added Catalog (Blanton et al., 2005)
version of the SDSS Data Release 7 (DR7) spectroscopic survey (Abazajian et al., 2009),
using only Luminous Red Galaxy Sample targets (LRGs, Eisenstein et al. 2003). The sample
is limited to massive galaxies with absolute r-band magnitudes −21.5 > M0.0r > −22.6 and
redshifts 0.15 < z < 0.35. In order to compare with the results of Mandelbaum et al. (2008).
The magnitudes are k-corrected and evolution corrected to z = 0.0 as in Mandelbaum et al.
(2006c, hereafter M+06). Finally, to exclude satellite galaxies that are not at the centers of
their dark matter haloes, galaxies with brighter nearby LRGs are removed, again following
M+06 . This gives a sample of ∼ 55, 000 lenses that have comparable properties to the
combined LRG sample of M+06.
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10.2.2 Correcting Biases due to Photometric Redshift Errors

In the presence of photo-z errors, the overdensity of sources clustered near a lens will
produce an excess of galaxies with incorrect photo-z (zp) along the line of sight to the lens. As
a result, averaging ∆ logRe over the foreground or background source galaxies systematically
mis-estimates the residuals from the plane associated with a lens due to the ‘shadow’ cast
by photo-z errors.

This bias is dealt with by calculating the magnitude of this spurious signal directly
from the data, and subtract it from our measured signal. It is important to first estimate
the error in ∆ logRe induced by a galaxy being assigned the wrong zp (∆ logRerr

e ), and then
to calculate what fraction fl of the galaxies at each zp have been scattered in from zl. In
these terms, the observed mean photoFP residual is:

∆ logRobs
e = (1− fl) log (1 + κ) + fl∆ logRerr

e , (10.5)

where κ is the true convergence.
∆ logRerr

e can be estimated by assuming that the galaxy lies on the photoFP at zl but is
incorrectly assigned to zp. The inferred effective radius of a galaxy with true redshift zl that
is mistakenly assigned to zp will be off by a factor of ds (zp) /ds (zl). The surface brightness
dimming correction will be similarly incorrect, with µp = µl − 10 log [(1 + zp) / (1 + zl)].
Finally, the photoFP fits differ between redshift bins. A galaxy with an incorrect photo-z
will therefore lie off the photoFP in its assigned redshift bin by

∆ logRerr
e = log

(
ds (zp)

ds (zl)

Rp
e (µp, C)

Rl
e (µl, C)

)
. (10.6)

The expressions Rp
e (µp, C) and Rl

e (µl, C) are the radii that would be predicted by the
photoFP for that galaxy’s surface brightness and concentration in the bins corresponding to
zp and zl, respectively.

The quantity fl can be estimated by cross-correlating the positions of sources at zp with
lenses at zl. The positions of galaxies in widely separated redshift bins are assumed to be
uncorrelated and that any observed excess of sources far behind a lens is due to scattering
from zl. This means that

fl =
wil(θ)

1 + wil(θ)
, (10.7)

where wil(θ) is the angular cross-correlation between the positions of sources at zi and lenses
at zl. A cross-correlation signal of this form can also be produced by the boosted number
counts of magnified background sources (e.g., Jain & Lima 2011) but that effect is too weak
to detect with a lens sample of this size.

The cross-correlations for 0.20 < zl < 0.25 with a range of zs bins are shown in figure
10.2. An angular correlation function of the form

1 + wil(θ) =
Ail
θ 0.8

+Bil (10.8)



Section 10.2. A Magnification Measurement 123

is fit, where Ail and Bil are free parameters. The choice of power law index is motivated by
the angular correlation function measurements of Wake et al. (2011), which are in agreement
with the observed wll. Incorrectly estimating the true mean density of galaxies at zp will
cause Bil to deviate from unity, as is observed. The effects of this uncertainty are removed
when calculating fl by setting Bil = 1. Sources with fl > 0.20 (above the black horizontal
line in Figure 2) are excluded from the lensing measurement, while sources with fl < 0.20
are corrected using equation 10.5.

In addition to the effects of galaxy clustering on photometric redshift errors, a mean
offset between the true and photometric redshifts in a zp bin will cause an incorrect estimation
of the critical density Σcrit for all of the galaxies in that bin. This error depends on the
distribution of foreground lens redshifts. Using the method of Mandelbaum et al. (2008),
the effect of a mean shift in the photo-z’s on the signal is estimated to be no more than 10%.
This uncertainty is small relative to the other corrections discussed here, so this calculation
is deferred to subsequent work.

10.2.3 Sky Proximity Bias Correction

The SDSS photometric pipeline produces known sky subtraction proximity effects, where
the photometry of objects near bright stars or galaxies is systematically biased (c.f. Aihara
et al. 2011b). This may induce a systematic bias in the estimated radii, surface brightnesses,
and concentrations that contaminates the lensing signal. Sky subtraction effects cannot
distinguish between foreground and background galaxies (with respect to the bright lens),
so this proximity bias can in principle be estimated from the photoFP residuals for galaxies
in the foreground of the lenses, which are unaffected by lensing.

Figure 10.3 shows the average deviation from the photoFP as a function of source-
lens angular separation for both foreground and background sources. The sky proximity
bias systematically induces a reduction in effective radius relative to the photoFP trend.
The lensing signal is thus the difference between the background and foreground photoFP
deviations at each angular separation. Of note is the fact that the empirical sky correction
extends beyond the size of the SDSS sky subtraction box, which is ∼ 100′′; this is a result
of galaxy clustering. Each of the bright objects used as a lens will tend to be associated
with a galaxy overdensity on the sky. This excess will also impact the sky correction, even
in neighboring sky subtraction cells, so the angular scale of the resulting correction will be
set by the galaxy correlation function.

The low redshift of the lens sample and the poor quality of the photo-z’s (which pref-
erentially scatter higher-z sources to lower z) result in a large fraction of source galaxies
near lenses with photometric redshifts zp < zl that are actually at z > zl. This means that
a foreground sample of sources with photo-z’s will be contaminated by objects from higher
z. The cut on fL described above removes many such contaminating galaxies, at the cost
of dramatically reducing the signal-to-noise ratio of the sky proximity bias estimate. This
remains the major source of uncertainty in this measurement.

As a check against this effect, the deviation from the photoFP trend of those foreground
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sources with spectroscopic redshifts is also shown. Any large bias to this sky subtraction
estimate resulting from imperfect photo-z’s should produce a substantial difference between
the spectroscopic and photometric foreground estimates; this is not observed.

10.2.4 Halo Mass Profile

After controlling for the systematic errors described above, the line-of-sight surface
matter density Σ is calculated by weighting each lens–background source pair by the critical
density for lensing, Σcrit (zs, zl). This density is binned by physical separation in the lens
plane. The results are shown in figure 10.4, along with existing measurements from M+06
for a similar lens population.

10.3 Discussion: The Way Forward

The magnification signal demonstrated above, while many times stronger than previous
magnification measurements, is still somewhat noisier than the shear signal for a comparable
sample. This is because the convergence dispersion resulting from the measured photoFP
width is 35% (1.8 times larger than the intrinsic shear dispersion of 20%) and because only
the third of the source sample consistent with early-type SEDs has been used.

If the fundamental achievable limit for this technique is the intrinsic scatter in the
spectroscopic fundamental plane, then the average magnification S/N for an early-type galaxy
is the same as in shear; a comparable photometric Tully-Fisher relation for late-type galaxies
would bring us to the point where magnification and shear provide comparable information.
And any improvement in our understanding of galaxy evolution and dynamics that further
diminishes the scatter in these scaling relations will boost the magnification signal beyond
that available for shear measurement.

Perhaps just as valuable, magnification by this method is not sensitive to the same
systematic biases that challenge upcoming shear measurements. For instance, the intrinsic
galaxy alignment signal on large scales should not affect galaxy sizes, concentrations, and
mean surface brightnesses in same the manner in which it affects shapes. We expect that this
technique will also prove useful in extracting and removing instrumental sytematics, such as
those arising from variations in the telescope point-spread function, and will investigate this
prospect in a subsequent paper.

10.4 Shear using the Optical Tully-Fisher Relation

The low signal-to-noise of shear measurements has always necessitated the use of photo-
metric data, as weak lensing measurements must average over many galaxy images in order
to achieve a usably strong signal. This necessity introduces a set of major observational
challenges. The statistical requirements entail measuring shapes for faint, poorly-resolved
galaxies, for which the effects of errors in the telescope point-spread function model are large.
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Precise, unbiased photometric redshifts, which are necessary to interpret a lensing signal,
are very difficult to obtain.

In the shot-noise limit, the signal-to-noise in a lensing map will scale as σe/
√
n, where

n is the number density of usable galaxy shape measurements on the sky. A deep imaging
survey such as LSST [REF] may achieve a target density of around 40 usable galaxies per
square arcminute.

Existing or planned large spectroscopic surveys such as SDSS-III/BOSS Schlegel et al.
(2009) and BigBOSS Schlegel et al. (2011) achieve a target density on the sky in excess of
many hundreds of targets per square degree; for present purposes, a modest fiducial value
of 0.3 galaxies per square arcminute will serve as an achievable spectroscopic target density
using existing technology.

The optical Tully-Fisher relation is a well-known scaling relation between the circular
velocity of disc galaxies and their intrinsic luminosity (or stellar mass) Tully & Fisher (1977).
It was originally presented as a tool for distance measurement, though it has in recent years
been replaced in this by Type Ia supernovae.

In standard Tully-Fisher measurements, the inclination of the galaxy with respect to the
line of sight, sin i, is estimated from the ellipticity of the galaxy image. This is important, as
the circular velocity actually measured in the spectroscopic rotation curve is vc sin i. Failing
to correct for inclination angle scatters galaxies off of the Tully-Fisher in the direction of
smaller vcirc. As i is uniformly distributed, this scatter is quite large compared with the
intrinsic dispersion about the mean relation, as shown in figure 10.5.

If the true Tully-Fisher relation is known, however, then the amount by which a galaxy’s
circular velocity lies off of the relation is a very accurate estimator for sin i, and thus its
intrinsic unlensed ellipticity

log10 (sin (i)) = log10 (vcirc, obs)− [a+ b log10 (M?)] (10.9)

The sine of the inclination angle is related to the observed axis ratio of the galaxy q as:

sin θ =

(
1− q2

1− q2
z

)1/2

(10.10)

where qz is the ratio of the vertical and radial disk scale lengths; this is typically taken to
be 0.19 Reyes et al. (2011b). The axis ratio and position angle in the image plane together
determine the two ellipticity components that are normally used as a (noisy) estimator of
the weak lensing shear. The scatter off of the Tully-Fisher relation due to uncorrected
line-of-sight inclination is much larger than the intrinsic scatter in the relation itself. This
means that the intrinsic ellipticity of the galaxy can be predicted to high precision using only
the stellar mass and the rotation curve. Lensing will distort the galaxy ellipticity without
modifying the rotation curve. Comparing the observed galaxy ellipticty to that estimated
from the circular velocity offset from the mean Tully-Fisher relation can dramatically reduce
the galaxy shape noise.
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Figure 10.5 shows a simple simulation of the achievable reduction in shape noise which
adopts the Tully-Fisher fit parameters and measured scatter from Reyes et al. (2011b) and
assumes a uniform distribution in i. Each galaxy’s intrinsic axis ratio is inferred from its
distance off of the mean TF relation, using equation 10.10. The relation between the true
and estimated ellipticities is shown in the right panel.

Estimating the inclination angle as above yields a correct estimate of the galaxy’s shape
to within 8%. Notably, the axis ratios of galaxies with small inclinations (i.e., those that are
more nearly face-on) have a much smaller dispersion – only 4% for the less inclined half of
the sample. For comparison, the dispersion in shapes for typical lensing surveys is around
35%.

This reduction in the shape noise would allow a spectroscopic weak lensing survey
with signal strength approximately as great as that available from LSST, while avoiding
the challenging systematic errors (e.g., from photometric redshift biases) associated with
purely photometric lensing measurements. This should be possible with a target density
comparable to that achieved by current spectroscopic galaxy surveys such as SDSS-III/BOSS
or BigBOSS, at significantly lesser cost, and without any of the systmatic errors associated
with photometric redshifts. It should be noted that this technique is beyond the reach of the
aforementioned spectroscopic surveys. Boss and BigBOSS use or are planning to use fibers,
so they cannot produce rotation curves.

A practical pilot study is necessary in order to understand whether such a measurement
is feasible. The most straightforward approach is to use a wide-field multi-slit spectrograph
to obtain rotation curves for a sufficiently dense sample of disk galaxies behind a massive
low-redshift cluster with existing shear maps. The weak lensing maps derived from the
Tully-Fisher shape measurements can then be compared with conventional lensing maps for
the same field.

A successful demonstration of Tully-Fisher spectroscopic weak lensing would be very
timely, as there are several large spectroscopic surveys (PFS, BigBOSS) planned for the
near future.

10.5 Discussion

Much additional work will be required before either photometric or spectroscopic galaxy
scaling relations can be used for high-precision cosmology. What is not in doubt, however,
is the existence of a substantial amount of unexploited weak lensing signal. The systematic
errors will be easier to model as the available signal grows; what is more difficult to account
for, but much more valuable, is that the scope for asking new questions will grow as well.
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Figure 10.1 The photometric fundamental plane for the source sample of 8.4 million galaxies,
shown edge-on. logRe is fit as a function of effective surface brightness (µ) and concentration
(logC) separately in redshift bins of width ∆z = 0.01. Gray points show a random subset of
100,000 galaxies from the source catalog, while the solid line shows the one-to-one relation.
Contours enclose the 0.5σ, 1σ, 1.5σ, 2σ, 2.5σ, and 3σ boundaries of the 2D distribution
for the full source catalog. The inset shows the distribution of residuals in logRe from the
photoFP fits, which has width σ = 0.153 dex.
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Figure 10.2 The projected correlation function for sources around lenses with 0.20 < zl <
0.25. Greyscale (colors in online version) indicate different bins in zs. Solid lines show fits
to the data. At small separations, a large fraction of the galaxies in nearby z bins are likely
scattered in from zl through photo-z errors. See text for details.
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Figure 10.3 The raw magnification signal around the galaxy lenses (filled black circles) com-
pared with the sky proximity bias measured from foreground sources. The red crosses show
the estimated sky subtraction effect using sources with photo-z’s; the blue triangles show
the same estimate, but using those foreground galaxies with spectroscopic redshifts.



Section 10.5. Discussion 130

Figure 10.4 Solid line with error bars (red in online version): Σ from this work. Open squares
with error bars: ∆Σ from M+06 measured using shear. That measurement used a smaller
lens sample than considered here, so those error bars have been reduced in order to allow for
a fair comparison of the statistical power of the two samples. The solid line is the best-fit ∆Σ
profile from M+06. The shaded region (red in the online version) shows the corresponding
Σ profile (with 68% confidence interval) derived from the M+06 data.
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Figure 10.5 The Tully-Fisher relation, using the best-fit trend (red line) and scatter reported
in Reyes et al. (2011b). Blue squares show the positions of galaxies before inclination correc-
tion, and black crosses show the typical results from standard inclination corrections. The
difference between these two clusters of points is the magnitude of the signal. Errors in the
inclination estimate generate part of the known scatter around the trend.
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