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ABSTRACT

This paper studies the market price of credit risk incorporated into one
of the most important credit spreads in the financial markets: interest-
rate swap spreads. Our approach consists of jointly modeling the swap
and Treasury term structures using a four-factor affine credit framework
and estimating the parameters by maximum likelihood. We solve for
the implied special financing rate for Treasury bonds and find that the
liquidity component of on-the-run bond prices can be very significant.
We show that most of the variation in swap spreads is driven by changes
in the liquidity of Treasury bonds rather than changes in default risk.
We find that there are positive credit premia in swap spreads on average.
These premia, however, vary significantly over time and were negative
for much of the 1990s. Since the hedge-fund crisis of 1998, credit premia
have become positive and are currently at historical highs.



1. INTRODUCTION

One of the most fundamental issues in finance is how the market compensates investors
for bearing the credit risk inherent in securities issued by entities that may default on
their obligations. Recent events such as the default by Russia on its ruble-denominated
debt in August 1998 and the subsequent flight to quality which resulted in major losses
at many hedge funds and investment banks demonstrate that changes in the willingness
to bear credit risk can have dramatic effects on the financial markets.1 Furthermore,
these events indicate that variation in credit spreads may reflect both changes in
perceived default risk and in the relative liquidity of bonds. Understanding the risk
and return tradeoffs for these types of securities will become even more important in
the future as the supply of U.S. Treasury securities available in the market decreases.

This paper studies the market price of credit risk incorporated into what is rapidly
becoming one of the most important credit spreads in the financial markets: interest
rate swap spreads. Since swap spreads represent the difference between swap rates
and Treasury bond yields, they reflect the difference in the default risk of the financial
sector quoting Libor rates and the U.S. Treasury. In addition, swap spreads may
include a significant liquidity component if the relevant Treasury bond trades special
in the repo market. Thus, swap spreads represent a near-ideal data set for examining
how both default and liquidity risks influence security returns. The importance of
swap spreads derives from the dramatic recent growth in the notional amount of
interest rate swaps outstanding relative to the size of the Treasury bond market. For
example, the total amount of Treasury debt outstanding at the end of 1999 was $ 5.7
trillion. In contrast, the Bank for International Settlements (BIS) estimates that the
total notional amount of interest rate swaps outstanding at the end of 1999 was $ 43.9
trillion, or nearly eight times the amount of Treasury debt.

Since swap spreads are fundamentally credit spreads, our approach consists of
jointly modeling the interest rate swap and Treasury term structures using the reduced-
form credit framework of Duffie and Singleton (1997, 1999). To capture the rich dy-
namics of the swap and Treasury curves, we use a four-factor affine term structure
model which allows the swap spread to include both default-risk and liquidity com-
ponents and to be correlated with interest rates. In addition, our specification allows
market prices of risk to vary over time to reflect the possibility that the willingness of
investors to bear credit and liquidity risk may change. Using an approach motivated
by Dai and Singleton (2000a), we estimate the parameters of the model by maximum
likelihood. The data for the study consist of an extensive set of rates spanning nearly

1Duffie, Peterson, and Singleton (2000) provide a in-depth analysis of how the market
values of Russian bonds were affected by changes in default risk and liquidity.
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the full history of the swap market. We show that both the swap and Treasury term
structures are well described by the four-factor affine model. In particular, both curves
can be fit simultaneously with a root mean squared error over the entire sample pe-
riod of only about six basis points. Because of this, we are able to examine credit and
liquidity effects at a higher resolution than in a number of previous studies.

A number of interesting results emerge from this analysis. First, we solve for the
short-term riskless rate implied by Treasury bond prices. We find that the implied
riskless rate can differ substantially from the Treasury-bill rate and is often much
higher. This supports the widespread view on Wall Street that because of the extreme
liquidity of Treasury bills, their yields tend to be downward-biased estimates of the
true riskless rate. Since the implied short-term riskless rate can be interpreted as the
special repo rate for the on-the-run Treasury bonds in the sample, we contrast them
with repo rates for generic or general Treasury collateral.2 We find that these implied
special repo rates are slightly less than the general repo rates on average, implying
that the prices of the on-the-run Treasury bonds in the sample include premia for
their liquidity or specialness relative to off-the-run Treasury securities. By integrating
the difference between the general and implied special repo rates, we obtain direct
estimates of the size of the specialness component in on-the-run Treasury security
prices. These specialness premia can be large in economic terms. For example, the
specialness premium for the ten-year Treasury note can be as much as .66 percent
of its notional amount, which translates into a nine basis point effect on its yield to
maturity. The estimated specialness premia match closely those implied by a limited
sample of market term special repo rates provided to us.

We then solve for the implied spread process representing the sum of the instanta-
neous default risk and liquidity components as in Duffie and Singleton (1997). We find
that this spread varies significantly over time, but is nearly zero for an extended period
during the mid to latter 1990s. Using the earlier results for the implied special repo
rate, we decompose the spread into its default-risk and liquidity components. We show
that the default-risk component is typically the largest component of the spread. The
liquidity component, however, is much more volatile and can often exceed the size of
the default-risk component. Thus, most of the variation in swap spreads is attributable
to changes in the relative liquidity of swaps and Treasury bonds. This suggests that if
there are credit premia incorporated into swap spreads, they should be interpreted as
primarily liquidity premia. Furthermore, our results imply that the historically high
swap spreads recently observed in the financial markets are largely due to an increase
in the liquidity of Treasury securities rather than to a decline in the creditworthiness
of the financial sector.

Finally, we examine the implications of the model for the market prices of interest-

2In a recent paper, Duffie (1996) studies the causes and effects of special repo rates in
the Treasury repo market.
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rate and credit-related risk. Consistent with previous research, we find that there are
significant time-varying term premia embedded in Treasury bond prices. The results
suggest, however, that these term premia have decreased substantially during recent
years. We also find that there are significant credit premia embedded in the swap
curve. On average, these premia are positive, ranging from two basis points for a
one-year horizon to 42 basis points for a ten-year horizon. These credit premia also
display substantial time variation. Surprisingly, we find evidence that credit premia
were significantly negative for an extended period during the 1990s. Since the hedge-
fund crisis of 1998, however, credit premia have become positive and are currently
at historically high levels. Taken together, these results suggest that there have been
major changes over time in the expected returns from bearing the default and liquidity
risk inherent in interest rate swaps.

This paper complements and extends the important recent paper by Duffie and
Singleton (1997) who apply a reduced-form credit modeling approach to the swap
curve and examine the properties of swap spreads. Our results support their finding
that both default-risk and liquidity components are present in swap spreads and our
approach allows us to estimate the size of the components. By modeling both the
swap and Treasury curves simultaneously, however, we are also able to address the
issue of how credit risk is priced in the market, which is the primary focus of this paper.
Another important related paper is He (2000) who independently uses a multi-factor
affine term structure framework similar to ours in modeling swap spreads. While He
does not estimate the parameters of his model, our empirical results provide support
for both swap spread modeling frameworks. Grinblatt (2001) models the swap spread
as the annuitized value of an instantaneous convenience yield. If this convenience yield
is interpreted as the liquidity component of the spread process, then our results can
also be viewed as providing support for the implications of his model. Other related
papers include Sun, Sundaresan, and Wang (1993) who study the extent to which
counterparty credit risk affects market swap rates, and Collin-Dufresne and Solnik
(2001) who focus on the spread between Libor corporate rates and swap rates.

The remainder of this paper is organized as follows. Section 2 explains the frame-
work used to model the swap and Treasury term structures. Section 3 describes the
data. Section 4 discusses the maximum likelihood estimation of the model. Section
5 focuses on the implications of the results for the liquidity of Treasury securities.
Section 6 discusses the empirical results about the properties of swap spreads. Sec-
tion 7 presents the results about the pricing of default and liquidity risk. Section 8
summarizes the results and makes concluding remarks.

2. MODELING SWAP SPREADS

To understand how the market prices credit risk over time, we need a framework for
estimating expected returns implied by the swap and Treasury term structures. In
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this section, we use the Duffie and Singleton (1997, 1999) credit modeling approach
as the underlying framework in which to analyze the behavior of swap spreads. In
particular, we jointly model the swap and Treasury term structures using a four-factor
affine framework and estimate the parameters of the model by maximum likelihood.3

Recall that under standard no-arbitrage assumptions, the value D(T ) of a riskless
zero-coupon bond with maturity T can be expressed as

D(T ) = EQ

"
exp

Ã
−
Z T

0

rs ds

! #
, (1)

where r denotes the instantaneous riskless rate and the expectation is taken with
respect to the risk-neutral measure Q rather than the objective measure P . In the
Duffie and Singleton (1997, 1999) framework, default is modeled as the realization of a
Poisson process with an intensity which may be time varying. Under some assumptions
about the nature of recovery in the event of default, they demonstrate that the value
of a risky zero-coupon bond C(T ) can be expressed in the following form

C(T ) = EQ

"
exp

Ã
−
Z T

0

rs + λs ds

! #
, (2)

where λ is a credit-spread process.4 They also show that this credit-spread process may
be viewed as the product of the time-varying Poisson intensity and the recovery-rate
process. Furthermore, they argue that the credit-spread process could also include a
time-varying liquidity component which may be either positive or negative. In this
paper, we simply refer to λ as the credit-spread process, keeping in mind, however,
that λmay include both default-risk and liquidity components. Consequently, the term
credit risk is used in a general sense throughout this paper, reflecting that variation
in credit or swap spreads may be due to changes in either default risk or liquidity.

In applying the Duffie and Singleton (1997, 1999) credit model to swaps, we are
implicitly making two assumptions. First, we assume that there is no counterparty
credit risk. This is consistent with recent papers by Grinblatt (2001), Duffie and
Singleton (1997), and He (2000) that argue that the effects of counterparty credit risk

3Other examples of affine credit models include Duffee (1999, 2000), Duffie and Liu
(2000), He (2000), Duffie, Petersen, and Singleton (2000) and Colin-Dufresne and
Solnik (2001).

4In the Duffie and Singleton (1999) model, the recovery rate is linked to the value
of the bond immediately prior to the default event. While this assumption has often
been criticized, the fact that Libor is computed from a set of banks that may change
over time if some banks experience a deterioration in their credit rating argues that
this assumption may be more defensible when applied to the swap curve.
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on market swap rates should be negligible because of the standard marking-to-market
or posting-of-collateral and haircut requirements almost universally applied in swap
markets.5 Second, we make the relatively weak assumption that the credit risk inherent
in the Libor rate (which determines the swap rate) can be modeled as the credit risk
of a single defaultable entity. In actuality, the Libor rate is a composite of rates
quoted by 16 banks and, as such, need not represent the credit risk of any particular
bank.6 In this sense, the credit risk implicit in the swap curve can be viewed essentially
as the average credit risk of the most representative banks providing quotations for
Eurodollar balances.7

To model the discount bond prices D(T ) and C(T ), we next need to specify the
dynamics of r and λ. In doing this, we parallel the approach used by Duffie and Kan
(1996), Duffie and Singleton (1997), Dai and Singleton (2000a, 2000b) and others by
assuming that the riskless rate is given as the sum of three affine state variables,

r =W +X + Y. (3)

By allowing the riskless rate to be driven by three distinct state variables, the model
is consistent with the empirical evidence of Litterman and Scheinkman (1991), Knez,
Litterman, and Scheinkman (1994), Longstaff, Santa-Clara, and Schwartz (2000) and
many others who find evidence of at least three factors in term structure dynamics.8

In modeling the dynamics of the spread λ, we assume that

5Even in the absence of these requirements, the effects of counterparty credit risk
for swaps between similar counterparties are very small relative to the size of the
swap spread. For example, see Cooper and Mello (1991), Sun, Sundaresan, and Wang
(1993), Bollier and Sorensen (1994), Longstaff and Schwartz (1995), Duffie and Huang
(1996), and Minton (1997).

6The official Libor rate is determined by eliminating the highest and lowest four bank
quotes and then averaging the remaining eight. Furthermore, the set of 16 banks whose
quotes are included in determining Libor may change over time. Thus, the credit risk
inherent in Libor may be ‘refreshed’ periodically as low credit banks are dropped
from the sample and higher credit banks are added. The effects of this ‘refreshing’
phenomenon on the differences between Libor rates and swap rates are discussed in
Colin-Dufresne and Solnik (2001).

7For discussions about the economic role that interest-rate swaps play in financial
markets, see Bicksler and Chen (1986), Turnbull (1987), Smith, Smithson, and Wake-
man (1988), (1988), Wall and Pringle (1989), Macfarlane, Ross, and Showers (1991),
Sundaresan (1991), Litzenberger (1992), Sun, Sundaresan, and Wang (1993), Brown,
Harlow, and Smith (1994), Minton (1997), Gupta and Subrahmanyam (2000), and
Longstaff, Santa-Clara, and Schwartz (2000).

8Other examples of multi-factor affine term structure models include Cox, Ingersoll,
and Ross (1985), Longstaff and Schwartz (1992), Chen and Scott (1993), Pearson and
Sun (1993), Piazzesi (2000) and others.
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λ = γr + Z, (4)

where γ is a constant which may be positive or negative, and Z is also an affine
state variable. By allowing the spread λ to depend on the riskless rate r, the model
captures the potential dependence of spreads on the term structure. For example,
Longstaff and Schwartz (1995) and Duffee (1999) find evidence that credit spreads
are negatively related to the level of interest rates, an empirical result consistent with
theoretical models of credit spreads such as Merton (1974), Black and Cox (1976),
and Longstaff and Schwartz. The state variable Z allows the risky term structure to
be influenced by an additional credit and/or liquidity factor which does not affect the
riskless term structure.

To close the model, we need to specify the dynamics of the four state variables
driving r and λ. To focus more clearly on the intuition of how the market prices
the risk of variation in swap spreads, we use a particularly tractable term structure
specification: a four-factor Vasicek (1976) framework. Specifically, we assume that
the dynamics of W , X, Y , and Z under the objective measure are given by

dW = βW (αW − W ) dt + σW dBW ,

dX = βX (αX − X) dt + σX dBX ,

dY = βY (αY − Y ) dt + σY dBY ,

dZ = βZ (αZ − Z) dt + σZ dBZ ,

(5)

where the α, β, and σ terms are constants, and BW , BX , BY , and BZ are independent
Brownian motions. Since λ is linear in the state variables, this model implies that the
spread could potentially be negative. There are several reasons why this assumption
may be appropriate in this context. First, the process λ reflects the differential credit
between the swap and Treasury curves. While swap spreads have been uniformly pos-
itive in the U.S., swap spreads have occasionally been negative in other currencies.
Allowing λ to take on negative values enables the model to applied more generally.
Secondly, λ also reflects potential differences in liquidity. Again, while the liquidity
of Treasury bonds has historically been very high, the liquidity of the swaps mar-
ket is growing rapidly while the total notional amount of Treasury debt is currently
shrinking.

Since our primary objective is to study how the market compensates investors
over time for bearing the credit risk, it is important to allow a general specification
of the market prices of risk in this affine term structure framework. Accordingly, we
assume that the dynamics of the state variablesW , X, Y , and Z under the risk-neutral
measure are given by
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dW = κW (µW − W ) dt + σW dBW ,

dX = κX (µX − X) dt + σX dBX ,

dY = κY (µY − Y ) dt + σY dBY ,

dZ = κZ (µZ − Z) dt + σZ dBZ .

(6)

This specification allows both the long-term mean and mean-reversion parameters ap-
pearing in the drift of the state variable process to take different values under the
risk-neutral measure. This approach differs from the traditional Vasicek (1976) for-
mulation in that market prices of risk are allowed to be time varying, but is similar
to the specification used in Liu (1999) and Dai and Singleton (2000b). Because the
dynamics imply that the state variables are Gaussian, allowing both of the drift pa-
rameters to differ under the risk-neutral measure does not change the sets of measure
zero, preserving the absolute continuity of the risk-neutral measure. Note that the
volatility parameters are the same under both the objective and risk-neutral mea-
sures. Allowing for time-varying prices of risk is important since recent events such
as the flight to quality during the latter part of 1998 suggest that the willingness of
investors to bear default and liquidity risk may depend on market conditions.

Given the risk-neutral dynamics of the state variables, it is straightforward to
obtain closed-form solutions for the prices of riskless zero-coupon bonds,

D(T ) = exp
³
AW (T ) +AX(T ) +AY (T )

−BW (T )W −BX(T )X −BY (T )Y
´
, (7)

where

Ai(T ) = −µiT + µiBi(T ) + σ2

2κ2i

µ
T − 2Bi(T ) + 1

2κi

¡
1− e−2κiT ¢¶ ,

Bi(T ) =
1

κi
(1− exp(−κiT )),

i =W,X, Y,Z.

Similarly, the prices of risky zero-coupon bonds are given by

7



C(T ) = exp
³
A∗W (T ) +A

∗
X(T ) +A

∗
Y (T ) +AZ(T )

−B∗W (T )W −B∗X(T )X −B∗Y (T )Y −BZ(T )Z
´
, (8)

where
A∗i (T ) = −(1 + γ)µiT + (1 + γ)µiBi(T )

+
(1 + γ)2σ2

2κ2i

µ
T − 2Bi(T ) + 1

2κi

¡
1− e−2κiT ¢¶ ,

B∗i (T ) =
1 + γ

κi
(1− exp(−κiT )) ,

i =W,X, Y.

With these closed-form solutions, market bond prices can be inverted to solve directly
for the unobservable state variables.

3. THE DATA

Given this framework for modeling the swap and Treasury term structures, the next
step is to estimate the parameters of the model using historical market data. In doing
this, we use one of the most extensive sets of U.S. swap data available, covering the
period from January 1988 to June 2000. This period includes most of the active
history of the U.S. swap market.

The swap data for the study consist of weekly (Friday) observations of the three-
month Libor rate and midmarket constant maturity swap (CMS) rates for maturities
of two, three, five and ten years. These maturities represent the most liquid and
actively-traded maturities for swap contracts. All of these rates are based on end-
of-trading-day quotes available in New York to insure comparability of the data. In
estimating the parameters, we are careful to take into account daycount differences
among the rates since Libor rates are quoted on an actual/360 basis while swap rates
are semiannual bond equivalent yields. There are two sources for the swap data. The
primary source is the Bloomberg system which uses quotations from a number of swap
brokers. The data for Libor rates and for swap rates from the pre-1990 period are
provided by Salomon Smith Barney Inc. As an independent check on the data, we
also compare the rates with quotes obtained from Datastream; the two sources of data
are generally very consistent.
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The Treasury data consists of weekly (Friday) observations of the constant ma-
turity Treasury (CMT) rates published by the Federal Reserve in the H-15 release
for maturities of two, three, five, and ten years. These rates are based on the yields
of on-the-run Treasury bonds of various maturities and reflects the Federal Reserve’s
estimate of what the par or coupon rate would be for these maturities. CMT rates are
widely used in financial markets as indicators of Treasury rates for the most-actively-
traded-bond maturities. Since CMT rates are based heavily on the most-recently-
auctioned bonds for each maturity, CMT rates provide accurate estimates of yields
for liquid on-the-run Treasury bonds. As such, these rates are more likely to reflect
actual market prices than quotations for less-liquid off-the-run Treasury bonds. Note
that since CMT rates are based on more-recently-issued bonds, however, they may
incorporate the effects of any special repo financing that may be associated with these
bonds. The possibility that these bonds may trade special in the repo market is taken
into account explicitly in the estimation of the model. The sources of this data are
the same as for swaps. Finally, data on three-month general collateral repo rates are
provided by Salomon Smith Barney, who also provided us with a set of term special
repo rates for June 30, 2000. Data for three-month Treasury bill rates are obtained
from the Federal Reserve.

Table 1 presents summary statistics for the swap and Treasury data, as well as
the corresponding swap spreads. In this paper, we define the swap spread to be the
difference between the CMS rate and the corresponding-maturity CMT rate. Figure
1 plots the two-year, three-year, five-year, and ten-year swap spreads over the sample
period. As shown, swap spreads average between 35 and 60 basis points during the
sample period, with standard deviations on the order of 20 to 25 basis points. Thus,
swap spreads have been fairly stable over time. The standard deviations of weekly
changes in swap spreads are only on the order of five to seven basis points. Note,
however, that there are weeks during which swap spreads narrow or widen by as
much as 35 basis points. In general, swap spreads are less serially correlated than
the interest rates. The first difference of swap spreads, however, displays significantly
more negative serial correlation. This implies that there is a strong mean reverting
component to swap spreads.

4. ESTIMATING THE TERM STRUCTURE MODEL

In this section, we describe the empirical approach used in estimating the term struc-
ture model and report the maximum likelihood parameter estimates. The empirical
approach closely parallels that of the recent papers by Duffie and Singleton (1997)
and Dai and Singleton (2000a). This approach also draws on other papers in the
empirical term structure literature such as Longstaff and Schwartz (1992), Chen and
Scott (1993), Duffee (1999, 2000) and others.

In this four-factor model, the parameters of both the objective and risk-neutral
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dynamics of the state variables need to be estimated. In addition, we need to solve for
the values of each of the four state variablesW , X, Y , and Z for each of the 650 weeks
in the sample period. At each date, the information set consists of observations of four
points along the Treasury curve and five points along the swap curve. Specifically,
we use the CMT2, CMT3, CMT5 and CMT10 rates for the Treasury curve, and
the three-month Libor, CMS2, CMS3, CMS5, and CMS10 rates for the swap curve.
The use of this extensive time series of data makes possible accurate estimation of
the parameters of the objective dynamics of the state variables. In addition, since
the model involves only four state variables, using nine observations at each date
provides us with significant additional cross-sectional pricing information from which
the parameters of the risk-neutral dynamics can be more precisely identified.

We focus first on how the four values of the state variables are determined. Similar
to Chen and Scott (1993), Duffie and Singleton (1997), Dai and Singleton (2000a) and
others, we solve for the values of W , X, Y , and Z by assuming that specific rates are
observed without error each week. In particular, we assume that the Libor, CMS10,
CMT2, and CMT10 rates are observed without error. These four rates represent
the shortest and longest maturity rates along both curves and are typically among
the most-liquid maturities quoted, and hence, the most likely to be observed with a
minimum of error. Note that Libor is given simply from the expression for a risky
zero-coupon bond,

Libor =
a

360

∙
1

C(1/4)
− 1
¸
, (9)

where a is the actual number of days during the next three months. Since CMT and
CMS rates represent par rates, they are also easily expressed as explicit function of
the values of riskless and risky zero coupon bonds,

CMTT = 2

"
1−D(T )P2T
i=1D(i/2)

#
, (10)

CMST = 2

"
1−C(T )P2T
i=1C(i/2)

#
. (11)

Given a parameter vector, we can then invert the closed-form expressions for these
four rates to solve for the corresponding four values of the state variables using a
standard nonlinear optimization technique. While this process is straightforward, it
is computationally very intensive since the inversion must be repeated for every trial
value of the parameter vector utilized by the numerical search algorithm in maximizing
the likelihood function.
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For each of the four state variables, the parameters to be estimated are the α,
β, and σ terms for the objective dynamics, and the µ and κ terms defining the drift
of the risk-neutral dynamics. Along with the parameter γ in equation (4), this gives
a total of 21 parameters to estimate. In actuality, however, not all parameters can
be identified from the data. For example, Dai and Singleton (2000a) show that only
a linear combination of the µ terms can be identified from zero-coupon bond prices
in a Gaussian framework. To avoid identification problems, we impose the constraint
µX = µY = 0. It is easily shown that this constraint has no effect on the properties
of the estimated values of r and λ. With this constraint, the total number of model
parameters to be estimated is 19.

To define the log likelihood function, let S0t = [Wt, Xt, Yt, Zt]. Furthermore, let
R1,t be the vector of the four rates assumed to be observed without error at time t,
and let R2,t be the vector of the remaining five observed rates. Using the closed-form
solution, we can solve for St from R1t

St = h(R1,t,Θ), (12)

where Θ is the parameter vector. The conditional log likelihood function for St+∆t is

ft+∆t(S) = −1
2
(St+∆t −Mt)

0 Σ−1S (St+∆t −Mt)− 1
2
ln | ΣS |, (13)

where

Mt =


e−βW∆tWt + αW (1− e−βW∆t)
e−βX∆tXt + αX(1− e−βX∆t)
e−βY∆tYt + αY (1− e−βY∆t)
e−βZ∆tZt + αZ(1− e−βZ∆t)

 ,
and where the covariance matrix ΣS is diagonal with diagonal elements

σ2W
2βW

(1− e−2βW∆t)
σ2X
2βX

(1− e−2βX∆t)
σ2Y
2βY

(1− e−2βY∆t)
σ2Z
2βZ

(1− e−2βZ∆t)

 .
Let ²t+∆t denote the vector of differences between the observed value of R2,t+∆t and
the value implied by the model.9 The log likelihood function for ²t+∆t is given by

9We assume that the ² terms are independent. In actuality, the ² terms could be
correlated. As is shown later, however, the variances of the ² terms are very small

11



gt+∆t(²) = −1
2
²0t+∆t Σ

−1
² ²t+∆t − 1

2
ln | Σ² |, (14)

where Σ² is a diagonal matrix with diagonal elements σ
2
1,σ

2
2, σ

2
3,σ

2
4, and σ

2
5. Since

St+∆t and ²t+∆t are assumed to be independent, the log likelihood function for
[St+∆t, ²t+∆t]

0 is simply

ft+∆t(S) + gt+∆t(²). (15)

The final step in specifying the likelihood function consists of changing variables from
the vector [St, ²t]

0 of state variables and error terms to the vector [R1,t, R2,t]0 of rates
actually observed. It is easily shown that the determinant of the Jacobian matrix is

given by | J |=| ∂h(R1)
∂R0

1
| . This then implies that the log likelihood function for the

data is

X
t

(ft+∆t(S(R1)) + gt+∆t(²(R1, R2)) + | J |). (16)

With the introduction of the five parameters for the variance of the ² terms, σ2i , i =
1, 2, . . . , 5, the log likelihood function now depends explicitly on 24 parameters.

From this log likelihood function, we now solve directly for the maximum like-
lihood parameter estimates using a standard nonlinear optimization algorithm. In
doing this, we initiate the algorithm at a wide variety of starting values to insure that
the global maximum is achieved. Furthermore, we check the results using an alter-
native genetic algorithm which has the property of being less susceptible to finding
local minima. These diagnostic checks confirm that the algorithm converges to the
global maximum and that the parameter estimates are robust to perturbations of the
starting values.

Table 2 reports the maximum likelihood parameter estimates and their asymp-
totic standard errors. As shown, there are clear differences between the objective and
risk-neutral parameters. These differences have major implications for the dynamics
of the key variables r and λ which we consider in the next two sections.. The differ-
ences themselves reflect the market prices of risk for the state variables and also have
important implications for the expected returns from bearing credit and liquidity risk.
We note that the β and κ parameters are all estimated to be positive; the estimation
procedure does not constrain these parameters to be positive.

and the assumption of independence is unlikely to have much effect on the estimated
model parameters.
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One key result that emerges from the maximum likelihood estimation is that the
four-factor model fits the data extremely well. At the maximum likelihood parame-
ter estimates, the RMSE taken over all of the data points in the sample is only 6.08
basis points. The fact that the model captures the market rates within a few basis
points is particularly impressive when one considers that we are estimating the pa-
rameters of both the swap and Treasury term structures simultaneously. In addition,
the magnitude of the pricing errors is less than those reported in previous studies.10

This suggests that that the use of four factors results in an improved description of
the term structure. Furthermore, these results imply that the joint estimation of
both term structures may provide more accurate estimates than when the two term
structures are estimated individually.

5. THE IMPLIED FINANCING RATE

The instantaneous riskless rate r plays a central role in many continuous-time term
structure models. In addition to being the shortest-maturity rate, r can also be
viewed as the cost of borrowing on short-term riskless loans such as those fully secured
by riskless Treasury bond collateral. Traditionally, the cost of riskless borrowing is
often interpreted as the Treasury-bill rate since this is the rate at which the U.S.
Treasury can borrow short-term funds. Among practitioners, however, the Treasury-
bill rate is generally viewed as a contaminated measure of the true riskless rate. The
reason for this is the widespread belief that the extreme liquidity of Treasury bills
makes them worth slightly more than the present value of their cash flows, and hence,
that Treasury-bill rates are downward biased estimates of the true cost of riskless
borrowing. In a recent paper, Longstaff (2000) suggests considering general Treasury
collateral repo rates as an alternative measure of the riskless rate. The rationale for this
measure is that repo loans that are overcollateralized by default-free Treasury bonds
are essentially riskless short-term loans. Because repo loans are financial contracts
rather than securities, however, they are not as affected by liquidity effects as actual
Treasury securities.11

An important advantage of our approach is that we can solve for the value of
r endogenously and then contrast it with market rates. This allows us to examine
directly whether the implied value of r obtained from longer-term Treasury bonds more
closely resembles Treasury-bill rates or repo rates. In this model, the implied rate r has
the interpretation as the cost of carrying a position in the longer-term Treasury bonds
defining the CMT rates. If these longer-term bonds do not have special liquidity value,
then r should represent the riskless interest rate for the market. On the other hand, if

10For example, see Duffie and Singleton (1997) and Duffee (2000).

11For a discussion of special and general collateral repo rates, see Duffie (1996) and
Longstaff (2000).
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longer-term Treasury bonds have liquidity value, then the estimated value of r takes
on the interpretation of a special repo rate in the sense of Duffie (1996). Specifically,
since r is implied from the cross section of CMT rates, r represents the average or
typical short-term special repo rate for the on-the-run bonds in the sample.12 In this
case, r may then be less than the true riskless rate. Thus, r should represent a lower
bound on the true riskless rate. To reflect the role that r plays in this model, we
designate r the implied financing rate.

From equation (3), r is the sum of the values of the state variables W , X, and Y .
To make estimates of the implied finance rate comparable with the three-month general
collateral repo and Treasury-bill rates in the sample, we redefine the implied finance
rate slightly to be the yield implied by a three-month zero coupon bond D(1/4). Using
the maximum likelihood parameter values, the values of the state variables are implied
from the data as described previously. Given the values of the state variables, D(1/4)
is obtained directly from the closed-form expression in equation (3). Table 3 reports
summary statistics for the three-month general collateral repo rates, implied finance
rates, and Treasury-bill rates along with the spreads between these rates. Figure 2
graphs the difference between the implied finance rate and the Treasury-bill rate, and
difference between the repo rate and the implied finance rate.

As shown, the implied finance rate typically lies between the general collateral
repo rate and the Treasury-bill rate. On average, the implied finance rate is 5.9 basis
points below the repo rate, but 31.9 basis points above the Treasury-bill rate. The
median implied finance rate is 1.7 basis points below the median repo rate, but 30.8
basis points above the median Treasury-bill rate. Since the implied finance rate can be
viewed as a lower bound on the actual riskless rate, these results strongly suggest that
the general collateral repo rate is closer to the actual riskless rate than the Treasury-
bill rate. In particular, the difference between the repo rate and the implied finance
rate is typically positive, but there is an extended period when the implied finance
rate essentially equals the repo rate. Thus, the general collateral repo rate appears to
roughly represent an upper bound on the implied finance rate.

The spread between the implied finance rate and the Treasury-bill rate can be

12Note that we are using a slightly broader interpretation of the special repo rate
since special repo rates are typically associated with a specific Treasury bond. An
advantage of this approach, however, is that by using a common special short-term
repo rate r for all on-the-run bonds, we can solve for the implied specialness premia
for individual bonds by integrating the difference between the short-term special and
general collateral repo rates over the appropriate horizon. This is equivalent to solving
for the implied longer-term special repo rates for individual Treasury bonds. Because
these specialness premia or implied term special repo rates are based on the dynamics
of r, they reflect not only the current liquidity of the bonds, but also the possibility of
future increases in their liquidity. In contrast, term special repo rates quoted in the
market may be for horizons that are too short to fully capture the effect of specialness
on the value of a bond throughout its life.
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interpreted as a measure of the relative liquidity of Treasury bills and on-the-run Trea-
sury bonds. As shown, Treasury bills appear to be much more liquid than Treasury
bonds during much of the sample period. During the 1990-93 period, however, the
liquidity of Treasury bonds and bills appears to converge. During this period, the
spread between the repo rate and the implied finance rate also converges to near zero.
This suggests that there is little liquidity component in the prices of either Treasury
bonds or bills during this period. After the hedge fund crisis of 1998, the implied fi-
nance rate actually dips below the Treasury-bill rate, which suggests that longer-term
on-the-run Treasury bonds may actually have become more liquid that Treasury bills.
This may be related to the fact that the U.S. Treasury no longer auctions one-year
Treasury bills on a regular basis.

If we equate the general collateral repo rate with the riskless rate, then the differ-
ence between the repo rate and the implied finance rate has the simple interpretation
of the average implied specialness of the on-the-run Treasury bonds used to compute
CMT rates. Figure 2 shows that this implied specialness varies significantly over time.
During the first part of the sample period, the implied specialness is as high as 45 basis
points, suggesting that the prices of Treasury bonds have a large liquidity component.
During the 1995-1998 period, the implied specialness of the Treasury bonds essentially
disappears and the implied finance rate closely mirrors the general collateral repo rate.
After the hedge-fund crisis of 1998, however, the implied specialness of the bonds in-
creases dramatically, reaching a high of 78 basis points near the end of the sample
period.

To quantify the size of the liquidity or specialness component in the prices of on-
the-run Treasury bonds, we do the following. First, we denote the implied specialness
(general collateral repo rate - the implied finance rate) by It, and assume that It
follows a standard Ornstein-Uhlenbeck process. Estimating the parameters of this
process by maximum likelihood gives the following dynamic specification for It,

dI = 7.14896 ( .000636 − I ) dt + .00789 dBI , (17)

where BI is a standard Brownian motion. For a zero-coupon Treasury bond with
maturity T , the present value benefit or specialness premium from being able to borrow
at the special repo rate rather than the general repo rate equals

D(T ) − D(T ) E

"
exp

Ã
−
Z T

0

It dt

! #
, (18)

under the assumptions that BI is independent of the other Brownian motions in the
term structure model and that the market price of I risk is zero. Evaluating this
expectation gives the following expression for the liquidity premium,
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D(T ) (1−AI(T ) exp(−BI(T )I)) , (19)

where AI and BI are defined as in equation (7) with the corresponding parameter
estimates in equation (17) substituted in for κ, µ, and σ. Based on this approach,
Table 4 provides estimates of the size of the liquidity or specialness premia in the prices
of the Treasury bonds. Figure 3 graphs the estimated premia during the sample period.

As shown, the value of liquidity or specialness premium in the prices of on-the-
run Treasury bonds can be substantial. For the two-year Treasury note, the premium
ranges from about 10 cents to 20 cents during the sample period per $100 notional
amount, which translates roughly to a 4 to 9 basis point effect on the yield. Thus, there
is significant time variation in the value of the premium. For the ten-year Treasury
note, the premium was typically in excess of 50 cents per $100 notional or roughly 6.7
basis points in terms of yield to maturity. yields). During the latter portion of the
sample period, the premium was as high as 66 cents, or 8.8 basis points of yield. These
results indicate that the value of liquidity can represent an important time-varying
component of the value of a Treasury bond. These estimates of the liquidity premia
in bond prices are generally consistent with those reported by Amihud and Mendelson
(1991), Boudoukh and Whitelaw (1993), Kamara (1994), Longstaff (1995), Jordan
and Jordan (1997) and others.

As an additional diagnostic for the estimated specialness premia, we also use a
set of term special repo rates provided to us by Salomon Smith Barney. This data set
reports the longest term special repo rates for individual Treasury bonds available in
the market as of June 30, 2000, along with the general collateral repo rate for the same
term. The implied premium per $100 value of the bond is given by simply taking the
difference between the general collateral and special repo rates and multiplying by the
term of the repo measured in years. This makes clear that the value of the specialness
premium can be viewed as the interest savings an investor who finances his purchase
of the bond would receive by being able to finance at the special repo rate rather than
the general collateral repo rate. Table 5 reports the special and general collateral rates
for the bonds with maturities of ten years or less along with the implied specialness
premia. The two-year, five-year, and ten-year on-the-run bonds are denoted by an
asterisk.

As shown in Table 5, a number of Treasury bonds trade special in the repo
market. For many of these bonds, the difference between the term special and general
collateral repo rates is small, and the implied specialness premium is likewise small.
For the on-the-run bonds, however, the value of the specialness premia is substantial.
In particular, the specialness premia for the two-year, five-year, and ten-year on-the-
run bonds given in Table 5 are 8.0 cents, 50.5 cents, and 64.3 cents respectively.13

13There is no on-the-run three-year bond on June 30, 2000 because the Treasury
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This agrees well with the average implied specialness premia reported in Table 4.14

6. THE SPREAD PROCESS

The spread process λ plays a particularly important role in the Duffie and Singleton
(1997) credit modeling framework. Recall that in this framework, the spread λ may
consist of both default-risk and liquidity components. Since the Libor rate is fitted
exactly in the maximum likelihood estimation, the implied spread λ can be thought of
as the difference between the Libor rate and the implied finance rate. From equations
(3) and (4), λ is a function of all four state variables. Table 2 reports that the
maximum likelihood estimate of the parameter γ is -.07017, which implies that there
is a strong negative relation between the level of λ and the level of the riskless rate r.
This relation is consistent with the negative relation between rates and spreads implied
by a number of fundamental models of credit spreads including Merton (1974), Black
and Cox (1976), and Longstaff and Schwartz (1995).

Figure 4 graphs the time series of λ for the sample period. As illustrated, the
spread λ varies significantly over time. For example, at the beginning of the sample
period, the spread is on the order of 80 basis points. During the latter 1990s, however,
the spread decreases significantly and at one point becomes nearly zero. The period
during which the spread is nearly zero coincides with the period during which there
is little apparent liquidity component in Treasury bonds as measured by the implied
specialness estimate. This suggests that this period may represent a time when the
market viewed both the liquidity of the swap market as identical to that of Treasury
bonds and the probability that banks quoting Libor rates could default as essentially
zero. Although the model allows the spread to become negative, only two observations
are actually (slightly) negative.

The maximum likelihood parameter estimates provide a complete specification
of both the objective and risk-neutral dynamics of the state variables. From these
dynamics, it is straightforward to solve for the objective and risk-neutral dynamics of
the spread. Perhaps the best way to illustrate the differences between the objective
and risk-neutral dynamics of the spread is by contrasting its expected value under
the two measures. Figure 5 graphs the expected value of λ five years in the future
conditional on the current value of the state variables. As shown, the expected value
of the spread under the objective measure is nearly constant. The reason for this is
that under the objective measure, all of the state variables display significant mean
reversion. For example, the objective mean-reversion parameter for the Z component

recently stopped auctioning three-year bonds.
14Conversations with market practitioners indicate that there are occasionally periods
during which the specialness premia for some on-the-run Treasury issues implied by
market term special repo rates are on the order of twice those shown in Table 5.
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of the spread is .878, implying that shocks in Z dissipate within several years. In
contrast, the risk-neutral mean-reversion parameter for the Z component of the spread
is .002, implying that Z is essentially a random walk under the risk-neutral measure.
Similar results hold for the state variable Y . Because these state variables display little
mean reversion under the risk-neutral measure, the expected value of the spread five
years in the future is virtually the same as its current value, and the expected value
of the spread is much more variable under the risk-neutral measure. An important
implication of this is that the market acts as if shocks to credit spreads were permanent
when pricing securities, despite the fact that actual spreads are rapidly mean reverting.

In theory, the spread λ could include both default-risk and liquidity components.
This raises the question of whether the separate components can be identified. From
equation (4), the spread λ consists of a component that is proportion to r, and an
orthogonal component Z. Clearly, however, there is no way in which these two com-
ponents could be mapped directly into the default-risk and liquidity components. For
example, one could argue that default risk for banks quoting Libor could be related
to the level of r. Alternatively, one could just as easily argue that default risk may be
orthogonal to r.

An alternative and more promising approach to identifying the default-risk and
liquidity components of the spread is suggested by the results in the previous section.
Observe that the spread λ can be decomposed into the difference between Libor and
the general collateral repo rate, and the difference between the general collateral repo
rate and the implied finance rate. This first component can be given the interpreta-
tion as a pure default-risk spread since it measures the difference between Libor and
generic Treasury bonds which are not on special, and presumably, have little or no
liquidity component to their value. The second component is directly a measure of
the specialness of the bonds used in our sample and can be viewed as a pure liquidity
spread since the spread between on-the-run Treasury bonds and generic or general
collateral Treasury bonds should not include a default-risk component.

Adopting this approach to decomposing the spread λ into default-risk and liquid-
ity components, Table 6 reports summary statistics for the spread and its components.
As can be seen, the liquidity component is typically much smaller than the default-risk
component. In particular, the mean of the liquidity component is .059 which is only
15.7 percent of the average value of the spread. On the other hand, however, the
liquidity component is significantly more volatile that the credit component.

While the liquidity component is smaller than the default-risk component on av-
erage, the liquidity component may become larger. To illustrate this, Table 6 also
reports summary statistics for the ratio of the liquidity component to the default-risk
component.15 Figure 6 graphs the default-risk and liquidity components as well as the

15We compute this ratio rather than the liquidity to spread ratio because the spread
can become negative.

18



the ratio of the liquidity to default-risk components. As shown, the liquidity com-
ponent is typically fairly small relative to the default-risk component. Occasionally,
however, the liquidity component can represent a much larger portion of the total
spread than the default-risk component. This is particularly true after the hedge-fund
crisis of 1998 where the liquidity component is often twice or three times as large as
default-risk component.

Although the liquidity component tends to be a smaller part of the total credit
spread, it is important to recognize that it is responsible for a disproportionately large
portion of the total variation in the credit spread. To see this, Figure 7 presents
scatterdiagrams of the credit spread against its default-risk and liquidity components.
As illustrated, the correlation between the spread and the liquidity component is
much higher than the correlation between the spread and the default-risk component.
In particular, the correlation of the spread with the default-risk component is .346
while the correlation of the spread with the liquidity component is .786. Furthermore,
the correlation of weekly changes in the spread with changes in in the default-risk
component is .064 while the correlation of weekly changes in the spread with changes
in the liquidity component is .418. Taken together, these results suggest that most of
the variation in spreads is driven by liquidity rather than changes in the probability
of default. An immediate implication of this is that if there are any credit premia
in market prices, these credit premia are more likely compensation for liquidity risk
rather than default risk.

7. THE MARKET PRICE OF CREDIT RISK

The primary objective of this paper is to examine how the market prices the credit risk
in interest rate swaps. To this end, we focus on the premia that are incorporated into
the expected returns of bonds implied by the estimated term structure model. These
premia are given directly from the differences between the objective and risk-neutral
parameters of the model.

To provide some perspective for these results, however, it is useful to also examine
the implications of the model for the term premia in Treasury bond prices. Applying
Ito’s Lemma to the closed-form expression for the value of a riskless zero-coupon bond
D(T ) given in equation (7) results in the following expression for its instantaneous
expected return

r + ((βW − κW )W + µWκW − αWβW ))BW (T )
+ ((βX − κX)X + µXκX − αXβX))BX(T )
+ ((βY − κY )Y + µY κY − αY βY ))BY (T ).

(20)

The first term in this expression is the riskless rate and the sum of the remaining terms
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is the instantaneous term premium for the bond. This term premium is time varying
since it depends explicitly on the state variables. To solve for the unconditional term
premium, we take the expectation over the objective measure of the state variables
which gives

κW (µW − αW )BW (T ) + κX(µX − αX)BX(T ) + κY (µY − αY )BY (T ). (21)

Now applying Ito’s Lemma to the closed-form expression for the price of the risky
zero-coupon bond C(T ) given in equation (8) leads to the following expression for the
instantaneous expected return

r + λ+ ((βW − κW )W + µWκW − αWβW ))B∗W (T )
+ ((βX − κX)X + µXκX − αXβX))B∗X(T )
+ ((βY − κY )Y + µY κY − αY βY ))B∗Y (T )
+ ((βZ − κZ)Z + µZκZ − αZβZ))BZ(T ).

(22)

The sum of the first two terms r+λ in this expression represents the instantaneous risky
rate. The sum of the remaining four terms can be interpreted as the combined term
premium and credit premium. To identify the credit premium separately, we subtract
the term premium for a zero-coupon riskless bond with the same maturity from the
combined term and credit premium in the risky bond. Thus, the credit premium
equals the difference between the expected return of a risky zero-coupon bond (minus
r+λ) and the expected return on a riskless zero-coupon bond (minus r) with the same
maturity. As before, the credit premium is time varying through its dependence on
the state variables. Taking the expectation with respect to the objective measure for
the state variables and subtracting the expression for the unconditional term premium
gives the following expression for the unconditional credit premium

γκW (µW − αW )BW (T ) + γκX(µX − αX)BX(T )
+γκY (µY − αY )BY (T ) + κZ(µZ − αZ)BZ(T ). (23)

Focusing first on the unconditional premia, Table 7 reports the unconditional
term premia for riskless zero-coupon bonds with maturities ranging from one to ten
years. Table 7 also reports the unconditional credit premia for risky zero-coupon
bonds with the same maturities. These unconditional premia are also graphed in
Figure 8. As shown, the mean term premia are positive and monotonically increasing
functions of time to maturity. Mean term premia range from about 64 basis points for
a one-year horizon to about 237 basis points for a ten-year horizon. These estimates
of unconditional term premia are similar to those reported by Fama (1984), Fama and
Bliss (1987), and others.
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Table 7 also shows that unconditional credit premia are positive and increasing
functions of maturity. The mean credit premium for a one-year horizon is only about
2 basis points. Thus, there is very little compensation on average for bearing short-
term credit risk. At longer horizons, however, the mean credit premium is much
larger. For example, the mean credit premium for a ten-year horizon is 45 basis
points. The convex shape of the unconditional credit premium curve indicates that
investors require sharply higher credit premia as the maturity of the bond increases.
This pattern contrasts with that observed for the unconditional term premia.

To give some sense of the time variation in term and credit premia, Figure 9
graphs these premia for a one-year maturity zero-coupon bond. As illustrated, the
term premium displays a significant amount of variation. The term premium is usually
positive, but has generally tended downward throughout the sample period. During
the latter part of the sample period, the estimated term premium is occasionally as
negative as -150 basis points. The gradual decline in term premia throughout the
sample period is consistent with the recent tendency of the Treasury term structure
towards flatter shapes.

The time series of the credit premium displays a number of surprising features.
Recall that the average credit premium for a one-year horizon is only about two basis
points. Figure 9 shows that while the average is small, the actual credit premium
varies significantly over time and is often large in absolute terms. Most surprisingly,
the credit premium is significantly negative for nearly one half of the sample period.
During this timeframe, the credit premium appears relatively stable at a level of about
-20 basis points. The credit premium first becomes negative in approximately 1992
and remains negative until the summer of 1998. This is about when the Russian
government defaulted on a large issue of its ruble-denominated debt. The credit
premium ranges from a high of about 59 basis points to a low of about -35 basis
points. Despite the variation, however, the credit premium appears to be much more
predictable and less volatile than the term premium.

8. CONCLUSION

This paper examines how the market prices the credit and liquidity risk inherent
in interest rate swaps relative to Treasury bonds. A number of key results emerge
from this analysis. First, we find that on-the-run Treasury bonds have a significant
liquidity component to their value. This liquidity component can be as much as .66
percent of the notional amount of a ten-year Treasury bond. The value of this liquidity
component varies significantly over time. Second, we find that most of the variation
in swap spreads is due to changes in the liquidity of Treasury bonds rather than to
changes in the default risk associated with the swap curve. This implies that swap
spread risk premia built into swap rates should be viewed primarily as compensation
for liquidity risk. Finally, we find that the market prices the credit risk of swaps.
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The market price of credit and risk, however, varies over time and was significantly
negative for much of the 1990s.

There are a number of possible extensions to this research. For example, the ap-
proach of solving for the implied financing rate could be applied to the term structures
for corporate bond issuers and then used to identify the liquidity components of their
spreads.16 One major puzzle is why the credit premia implicit in swap spreads was
so negative during the 1990s, and only became positive again after the hedge-fund
crisis of Fall 1998. Certainly, these results are difficult to reconcile with a view of the
market in which investors are aware of the historical variability in swap spreads and
where expected returns compensate investors for their exposure to risk. A possible
resolution of this puzzle may be that most of the credit risk reflected in swap spreads
may actually represent the liquidity risk of Treasury bonds. From this perspective,
Treasury bonds may be subject to a unique risk which does not affect pure contracts
such as swaps, and may be priced accordingly in the market. Clearly, further research
is necessary to resolve this issue.

16Huang and Huang (2000) focus on the estimation of the liquidity components in
corporate bond prices.
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Table 1

Summary Statistics for the Data. This table reports the indicated summary statistics for both the level and first difference of the indicated data
series. The term ρ represents the first-order serial correlation coefficient. The data consist of 650 weekly observations from January 1988 to June
2000. Libor denotes the three-month Libor rate, CMS denotes the swap rate for the indicated maturity, CMT denotes the constant maturity Treasury
rate for the indicated maturity, and SS denotes the swap spread for the indicated maturity where the swap spread is defined as the difference between
the corresponding CMS and CMT rates.

Levels First Differences

Standard Standard
Mean Deviation Minimum Median Maximum ρ Mean Deviation Minimum Median Maximum ρ

Libor 5.984 1.733 3.188 5.719 10.560 .998 -.001 .109 -.505 .000 .563 .090

CMS2 6.599 1.558 3.840 6.255 10.750 .995 -.002 .154 -.540 .000 .560 -.012
CMS3 6.841 1.475 4.230 6.453 10.560 .994 -.003 .151 -.510 .000 .540 -.041
CMS5 7.155 1.371 4.800 6.840 10.330 .994 -.003 .145 -.460 .000 .480 -.057
CMS10 7.529 1.286 5.170 7.245 10.130 .995 -.004 .134 -.420 .000 .530 -.069

CMT2 6.224 1.434 3.710 5.965 9.840 .995 -.002 .143 -.440 .000 .470 -.008
CMT3 6.404 1.361 4.040 6.165 9.760 .994 -.003 .144 -.450 .000 .480 -.012
CMT5 6.670 1.260 4.040 6.430 9.650 .993 -.004 .143 -.460 -.010 .450 -.039
CMT10 6.965 1.214 4.310 6.730 9.490 .994 -.005 .132 -.380 .000 .460 -.056

SS2 .375 .191 .040 .363 .940 .932 .000 .071 -.340 .000 .350 -.396
SS3 .436 .200 .100 .418 .900 .949 .000 .064 -.300 .000 .340 -.403
SS5 .485 .226 .120 .435 1.043 .965 .000 .059 -.290 .000 .270 -.362
SS10 .565 .235 .155 .503 1.343 .977 .000 .050 -.230 .000 .220 -.340



Table 2

Maximum Likelihood Estimates of the Model Parameters. This table reports the maximum like-
lihood estimates of the parameters of the four-factor term structure model along with their asymptotic
standard errors. The α and β terms define the drift of the objective dynamics of the state variables, while
the µ and κ terms define the drift of the risk-neutral dynamics of the state variables. The σ terms denote
the instantaneous volatilities of the state variables and γ denotes the sensitivity of the credit spread to the
riskless rate. The terms σi, i = 1, 2, . . . , 5 denote the standard deviations of the difference between model
and observed values of the CMS2, CMS3, CMS5, CMT3, and CMT5 rates respectively. The asymptotic
standard errors are based on the inverse of the information matrix computed from the Hessian matrix for
the log likelihood function.

Parameter Value Std. Error

αW .11363 .00686
αX -.01657 .03966
αY -.04158 .01694
αZ .00763 .00127

µW .11391 .00686
µX − −
µY − −
µZ .33941 .46019

βW 2.56874 .60167
βX .24633 .23571
βY .35665 .22794
βZ .87755 .39172

κW 5.25031 .62448
κX .38516 .00907
κY .01912 .00197
κZ .00186 .00262

σW .02658 .00110
σX .01623 .00049
σY .01186 .00045
σZ .00359 .00008

γ -.07017 .00506

σ1 .00115 .00007
σ2 .00088 .00006
σ3 .00068 .00003
σ4 .00042 .00001
σ5 .00060 .00002



Table 3

Summary Statistics for the Three-Month General Collateral Repo Rate, the Implied Three-Month Finance Rate, and the Three-
Month Treasury-Bill Rate. This table reports the indicated summary statistics for the level and spreads of the data series. The term ρ represents
the first-order serial correlation coefficient. The data consist of 650 weekly observations from January 1988 to June 2000.

Standard
Mean Deviation Minimum Median Maximum ρ

General Collateral Rate 5.668 1.682 2.900 5.480 10.150 .998
Implied Finance Rate 5.609 1.672 2.894 5.484 10.274 .997
Treasury-Bill Rate 5.289 1.491 2.690 5.080 9.903 .998

General Collateral Minus Implied Finance Rate .059 .205 -.620 .017 .782 .857
Implied Finance Minus Treasury-Bill Rate .319 .315 -.442 .308 1.534 .933

General Collateral Minus Treasury-Bill Rate .378 .265 -.200 .330 1.410 .931



Table 4

Summary Statistics for the Liquidity or Specialness Premia in On-The-Run Treasury Bond Prices. This table reports the indicated
summary statistics for the estimated liquidity or specialness premium incorporated into the values of the Treasury bonds. The premium is estimated
from the spread between the general collateral repo rate and the implied finance rate. The premia are reported in units of dollars per $100 dollar
notional amount. The data consist of 650 weekly observations from January 1988 to June 2000.

Standard
Mean Deviation Minimum Median Maximum ρ

Two-Year Treasury Bond .1256 .0285 .0312 .1200 .2260 .8571

Three-Year Treasury Bond .1870 .0282 .0932 .1814 .2871 .8570

Five-Year Treasury Bond .3032 .0277 .2097 .2987 .4047 .8608

Ten-Year Treasury Bond .5364 .0355 .4356 .5331 .6555 .9308



Table 5

Special and General Collateral Term Repo Rates and the Implied Specialness Premia for Treasury Bonds as of June 30, 2000. This
table reports the longest quoted term special repo rates for the indicated Treasury bonds along with the corresponding term general collateral repo
rate. The implied specialness is computed by multiplying the difference between the two rates by the term of the repo rates measured in years and
represents the specialness premium per $100 value. The on-the-run issues are denoted by an asterisk.

Longest Repo General Collateral Special Term Implied
Coupon Maturity Term in Days Term Repo Rate Repo Rate Difference Specialness

5.875 30-Nov-01 92 .06461 .06450 .00011 .003
6.625 31-May-02 78 .06424 .06050 .00374 .080
6.375∗ 30-Jun-02 32 .06346 .05550 .00796 .070
5.250 15-Aug-03 92 .06461 .06400 .00061 .016
4.250 15-Nov-03 286 .06714 .06650 .00064 .050
4.750 15-Feb-04 92 .06461 .06350 .00111 .028
6.000 15-Aug-04 92 .06461 .06400 .00061 .016
5.875 15-Nov-04 92 .06461 .06300 .00161 .041
6.750∗ 15-May-05 358 .06765 .06250 .00515 .505
6.500 15-May-05 93 .06462 .06350 .00112 .029
5.625 15-Feb-06 93 .06462 .06400 .00062 .016
6.875 15-May-06 93 .06462 .06400 .00062 .016
7.000 15-Jul-06 93 .06462 .06350 .00112 .029
6.500 15-Oct-06 93 .06462 .06400 .00062 .016
6.250 15-Feb-07 92 .06461 .06400 .00061 .015
6.625 15-May-07 93 .06462 .06400 .00062 .016
6.125 15-Aug-07 93 .06462 .06400 .00062 .016
5.500 15-Feb-08 93 .06462 .06400 .00062 .016
5.625 15-May-08 93 .06462 .06400 .00062 .016
4.750 15-Nov-08 183 .06592 .06500 .00092 .046
5.500 15-May-09 259 .06687 .06600 .00087 .062
6.000 15-Aug-09 298 .06724 .06600 .00124 .101
6.250∗ 15-Feb-10 354 .06763 .06100 .00663 .643



Table 6

Summary Statistics for the Credit-Spread Process and its Default-Risk and Liquidity Components. This table reports the indicated
summary statistics for the spread process λ and its default-risk and liquidity components. The default-risk component is defined as the difference
between three-month Libor and the general collateral repo rate. The liquidity component is defined as the difference between the general collateral
repo rate and the implied financing rate. The data consist of 650 weekly observations from January 1988 to June 2000.

Standard
Mean Deviation Minimum Median Maximum ρ

Credit-Spread Process .375 .208 -.058 .333 1.086 .968

Default-Risk Component .316 .135 .055 .280 1.063 .728

Liquidity Component .059 .205 -.620 .017 .782 .857

Liquidity/Default-Risk Ratio .293 .850 -1.214 .050 6.638 .731



Table 7

Unconditional Term and Credit Premia. This table reports unconditional values of the term premia in zero-coupon Treasury bond prices implied
by the model. Also reported are the unconditional values of the credit premia in zero-coupon risky bonds implied by the model.

Maturity in Years

1 2 3 4 5 6 7 8 9 10

Term Premium .636 1.074 1.295 1.636 1.822 1.971 2.094 2.199 2.291 2.373

Credit Premium .017 .048 .087 .131 .180 .230 .283 .336 .391 .446
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Figure 1. Swap Spreads. Weekly time series of swap spreads measured in

basis points. The sample period is from January 1988 to June 2000.
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Figure 2. Implied Finance Rate Spreads. Weekly time series of the

spread between the implied �nance rate r and the Treasury-bill rate, and of the

spread between the general collateral repo rate GC and the implied �nance rate.

Spreads are measured in basis points. The sample period is from January 1988

to June 2000.
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Figure 3. Specialness Premia. Weekly time series of the estimated special-

ness premia in Treasury-bond prices. The specialness premia are measured in

units of dollars per $100 notional amount. The sample period is from January

1988 to June 2000.
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Figure 4. The Implied Credit Spread. The weekly time series of the

implied credit spread. The credit spread is measured in basis points. The

sample period is from January 1988 to June 2000.
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Figure 5. Expected Credit Spreads. Weekly time series of the expected

value of the credit spread �ve years in the future, conditional on the current

values of the state variables. The dashed-dotted line is the expectation under

the objective measure. The solid line is the expectation under the risk-neutral

meausre. Expected spreads are measured in basis points. The sample period is

from January 1988 to June 2000.
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Figure 6. Components of the Implied Credit Spread. Weekly time

series of the components of the implied credit spread. The top graph shows

the default-risk component. The middle graph shows the liquidity component.

The bottom graph shows the ratio of the liquidity component to the default-risk

component. The default-risk and liquidity components are measured in basis

points. The sample period is from January 1988 to June 2000.
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Figure 7. Scatterdiagrams of the Credit Spread and its Components.

The top graph plots the implied credit spread against the default-risk compo-

nent. The bottom graph plots the implied credit spread against the liquidity

component. The credit spread and the default-risk and liquidity components

are measured in basis points.
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Figure 8. Unconditional Premia. The top graph plots the unconditional

term premium of a riskless zero-coupon bond against the maturity of the bond in

years. The bottom graph plots the unconditional credit premium of a risky zero-

coupon bond against the maturity of the bond in years. Premia are measured

in basis points.
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Figure 9. Conditional Premia. The top graph plots the conditional term

premium for a riskless one-year zero-coupon bond. The bottom graph plots the

conditional credit premium for a risky one-year zero-coupon bond. Premia are

measured in basis points. The sample period is from January 1988 to June 2000.




