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ABSTRACT

Network screening techniques are widely used by state agencies to identify locations with high
collision concentration, also referred to as hotspots. However, most of the research in this regard
has focused on identifying highway segments that are of concern to automobile collisions. A major
difference between pedestrian and automobile hotspots is that pedestrian-based conflicts are more
likely to arise in localized regions, such as near intersections, mid-blocks, and/or other crossings,
as opposed to along long stretches of roadway. Hence, in order to address this issue, a dynamic
programming-based hotspot identification approach is proposed which provides efficient hotspot
definitions for pedestrian crashes. The proposed approach is compared with the sliding window
method and the results reveal that the dynamic programming method generates more hotspots with
a higher number of crashes, while covering fewer miles.
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INTRODUCTION

Pedestrians, along with bicyclists, represent some of the most vulnerable users of the transportation
system. In a comparison of all the crashes to have taken place in the state of California between
2005 and 2009, Grembek (/) found that pedestrians were 53 times more likely to get injured in a
crash with a passenger vehicle, than the travelers in the vehicle itself. The relative vulnerability of
pedestrians in traffic conflicts becomes even more worrisome given the recent trends in pedestrian
fatalities. Between 2009 and 2012, the relative share, as well as the overall number, of pedestrian
fatalities in the United States has consistently increased, even as the total number of all traffic
fatalities exhibited a non-monotonic trend in the same time period (2). Such a trend is disconcerting
as it seems to indicate that the safety concerns of pedestrians are not being adequately addressed.

One of the ways to suggest potential safety improvements to the transportation infrastruc-
ture is to identify the locations where pedestrians are most at-risk. However, individual crashes
can be spatially dispersed due to natural variation in crash locations. Hence, in order to iden-
tify potentially hazardous segments of the road network, it is common practice, especially in state
departments for the purpose of on-site investigation, to aggregate individual crashes to identify
“hotspots” or high collisions concentration locations. The highway traffic safety literature dis-
cusses a wide variety of frameworks to identify hotspots, also referred to as network screening
techniques. The objective of network screening, especially in the context of highway segments,
is to identify the appropriate start and end points for hotspots along a road segment containing
homogeneous traffic and similar built environment attributes.

A popular network screening technique among transportation agencies is the sliding win-
dow (SW) approach (3, 4, 5, 6), wherein a window of fixed length is moved along the road network
in small increments until a pre-specified hotspot selection criteria, such as a critical crash count/rate
threshold, is satisfied. The peak searching (PS) method involves dividing entire network into a fi-
nite number of windows of fixed length, and testing for the statistical significance of the crash
count/rate within these segments by estimating the coefficient of variation (3). Chung et al. (7) de-
veloped a continuous risk profile (CRP) method to empirically determine hotspot segments based
on collision data. Herein, a risk profile is generated for the entire road segment by computing a
weighted moving average of collisions taking place around each location of the road segment. The
resulting smoothened risk profile is compared against a baseline risk threshold, and the regions of
the curve lying above this threshold are identified as the hotspots.

However, since the aforementioned techniques were primarily developed for automobile
collision-based hotspots, their efficacy vis-a-vis identifying pedestrian hotspots has not been in-
vestigated in the literature yet. A major difference between pedestrian and automobile hotspots
is that pedestrian-based conflicts are more likely to arise in localized regions, such as near inter-
sections, mid-blocks, and/or other crossings, as opposed to along long stretches of roadway. For
instance, if a mid-block or an intersection is an at-risk location for pedestrians, it is unlikely that a
moving segment of 0.2 miles can provide a meaningful hotspot specification under such a scenario.
As a result, pedestrian hotspots are more likely to be shorter and more dense in nature.

Hence, the objective of this paper is to develop a new network screening approach which
can provide denser hotspot definitions for pedestrian crashes. Prior to providing a detailed descrip-
tion of the proposed network screening method, the next section first discusses the sliding window
approach, so as to highlight the limitation of this approach for pedestrians, and consequently, better
inform the formulation of the proposed framework.
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SLIDING WINDOW APPROACH

The first step towards hotspot identification is to select the input parameters which define a hotspot.
In the sliding window method, there are two parameters of interest which are required to be defined
by the user: the hotspot window length and the minimum number of crashes per hotspot. The
hotspot window length is a fixed road segment length which is used to aggregate pedestrian crashes.
It is assumed that The hotspot window will have homogeneous pedestrian and road infrastructure
elements so that all the crashes covered by that road segment can be expected to have occurred
under similar conditions. The minimum number of crashes per hotspot defines a critical threshold
which determines whether a road segment should be a hotspot or not. While frequency-based
identification of hotspots does not account for the pedestrian volumes at a location, crash rates
associated with any given road segment were harder to quantify since pedestrian exposure data
was not available for the entire state highway system.

Once the inputs are defined, the sliding window method works as follows: a window of
fixed length is moved across the entire road network so as to identify locations which meet the
critical crash threshold criterion. In a slightly modified version of the traditional implementation of
the sliding window approach, the window can also be moved in a manner that the starting location
of a potential hotspot window is always a crash. The rationale for such an implementation is that
a pedestrian hotspot should be as dense as possible. Hence any empty space, either at the start or
at the end of a hotspot is excessive. Once a hotspot satisfying critical crash threshold is identified,
the search for other hotspots continues from the next available crash that does not overlap with any
hotspot.

The limitations of the sliding window approach, as described above, are two-fold. Firstly,
owing to the fixed window length assumption, even if the hotspot is forced to be begin with a crash,
it cannot be guaranteed that the hotspot definition will end with a crash as well. Consequently,
there may be an arbitrary length of road segment at the end of the hotspot definition which does
not cover any collision. The second limitation of the sliding window method, which has not been
well documented in the literature, is that it selects hotspots on a first-come-first-serve basis. In
other words, the method selects the first segment along the highway which matches the selection
criteria. Such an assumption may impact the selection of more/better hotspots further downstream
of that location. For instance, an overlapping hotspot which can be observed after sliding the
window slightly further downstream may include more crashes.

In order to address these issues, it is important to relax the fixed window length assumption,
and subsequently identify an overarching objective to guide the selection of hotspots. In the subse-
quent section, a dynamic programming-based algorithm is proposed which relaxes the assumption
of a fixed window length, and instead interprets it as the maximum possible window length.

DYNAMIC PROGRAMMING
Dynamic programming (DP) is a decision-making framework used to solve problems involving
multiple, sequential sub-problems (8). It involves generating and storing the solutions of each
intermittent sub-problem before identifying the overall optimal solution. In the case of the sliding
window method, the sub-problems are generated when a window of fixed length is moved from
one crash to another as a starting point.

In proposing a dynamic programming-based hotspot identification algorithm, it is neces-
sary to define an overarching goal for hotspot selection. In this paper, the objective of the proposed
hotspot identification approach is defined to maximize the total number of crashes covered by the
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hotspots which are eventually chosen based on the minimum number of crashes per hotspot cri-
terion. In addition, the proposed approach also relaxes the fixed window length assumption, and
instead imposes a constraint that the size of each hotspot should be no bigger than the maximum
window length prescribed by the user. An outcome of relaxing the fixed hotspot length assumption
is that a hotspot can begin and end with a crash. In other words, the crashes can now be defined to
be as dense as possible.

The dynamic programming approach breaks down the task of optimally identifying the
hotspots across the entire road network into smaller sub-problems of identifying whether a crash ¢
(at postmile d;) should form an end point of a hotspot or not. In terms of the mathematical notation,
let the maximum hotspot window length be defined as w, and let the minimum number of crashes
per hotspot be n,,,;,,. Let V; be defined as the maximum number of crashes that can be covered by
hotspots from the start of the road network up to the given crash, ¢. Finally, let a; be a variable
that defines whether crash 7 represents an end point of a hotspot or not. If crash 7 indeed lies at the
end of a hotspot, a; identifies the location of the corresponding crash situated at the beginning of
that hotspot, which can be a value between 1 (the first crash) and ¢ — n,,,;,, + 1 (the closest crash
location which meets the minimum crash number criterion). On the other hand, if a; is chosen by
the algorithm to not be a hotspot end point, it is attributed a value of zero. Using this notation, the
optimization problem can be formulated as follows:

v = dmaxigiionpm e [Viey, Vier + (0= 5+ 1], if (di — dj) < w, 0
' Vie1, otherwise,

P MaX < (in, i Vit + (@ =g+ 1)), ifV;> Vi, )
’ 0, otherwise,

i=1,2,...,N.

Equation 1 states that if there does not exist any candidate hotspot with crash 7 as an end
point, then V; is equal to V;_;. In other words, the maximum number of crashes that can be covered
by hotspots from the start of the network up to crash ¢ remains the same as the maximum number
of crashes covered by hotspots up to crash 7 — 1. In comparison, if there exists a candidate hotspot,
(7,1), such that d; — d; < w, then the total number of crashes covered by the addition of this hotspot
is computed, which is equal to the number of crashes contained within the newly defined hotspot,
v — j + 1, plus the maximum number of crashes that can be covered by hotspots from the start of
the network up until crash j — 1, which is equal to V;_;. If such a combination yields more crashes
than V;_;, which represents the maximum number of crashes covered until crash 2 — 1, then a; = J,
else a; = 0. Finally, in the case that there are multiple hotspot combinations which yield the same
objective function, V;_1, then the optimization chooses the smallest hotspot created by the addition
of crash 1.

It is important to note that the algorithm introduces an element of recursion, wherein the
calculation of V; requires knowing the value of all V}, 7 < 7. Hence, in order to implement the
dynamic programming algorithm, V; is first computed for crash ¢ = 1 (the first crash of the net-
work), followed by ¢« = 2,3, ..., N (the last crash of the network). Once all the computations are
completed, the value of V) indicates the maximum number of crashes that can be covered using
hotspots. Thereafter, all the hotspots identified by the approach can be recreated by evaluating the
values of a; from¢ = N to 1.
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At this point, it is necessary to explain the reason behind the objective of the proposed
query algorithm, which is to maximize the number of crashes covered by the selected hotspots. It
is assumed that the inputs chosen by the user satisfy the minimum requirements for a region to be
classified as a hotspot. Hence, it is important that chosen objective ensures that the algorithm can
produce as many non-overlapping hotspots as possible that satisfy the selection criteria. However, a
performance measure based on identifying the most number of hotspots cannot distinguish between
the variable numbers of crashes per hotspot. Consequently, a more objective metric, which is to
maximize the total number of crashes covered by the chosen hotspots, is chosen.

COMPARISON BETWEEN SLIDING WINDOW AND DYNAMIC PROGRAMMING US-
ING TASAS CRASH DATABASE

The crash data for this study consists of non-fatal crashes involving pedestrians during the years
2005-2010, extracted from California Department of Transportation’s Traffic Accident Surveil-
lance and Analysis System (TASAS). Since the data corresponding to pedestrian and/or traffic
exposure were not available for the study, the state highway system was divided into homoge-
neous segments on the basis of the route number, county, route suffix and prefix. For each of those
segment, both sliding window and dynamic programming were used to identify the hotposts.

In order to illustrate the difference between the two approaches, different combinations
of threshold levels and the hotspot window lengths were selected. Unlike the hotspot analysis for
automobile collisions, where the window length is typically chosen to be 0.2 miles, this study com-
pares the performance of sliding window and dynamic programming using w = 0.025,0.05 and 0.1
miles. For each given value of w, the value of the minimum crash criterion is varied, starting from
Nmin = 2, until both approaches produce identical results.

Tables 1a and 1b show the total number of crashes and hotspots identified by sliding win-
dow and dynamic programming approaches, respectively. The results indicate that across all win-
dow lengths, for small values of n,,;,, the dynamic programming framework initially yields more
hotspots and crashes than the sliding window approach. However, as the threshold is increased,
the difference in the two approaches decreases. It can also be inferred that for a given a window
length, increasing the minimum crash threshold decreases the total number of crashes covered by
hotspots. Similarly, for a given crash threshold, it is expected that increasing the window length
provides greater coverage to include more crashes within the hotspot.

In order to further quantify the differences between the two approaches, table 2 provides
some additional statistics with regard to the average number of crashes per hotspot, average length
of the hotspots as well as the total number of miles covered by the hotspots. In table 2 (a), the
values in the parenthesis indicate the average hotspot length and the total number of miles covered
by sliding window hotspots when excluding any extra unutilized space at the end of a hotspot. The
extra space is defined as the region between the end of the hotspot and the last crash within the
hotspot.

Table 2 shows that in spite of identifying a greater number of hotspots, the total miles cov-
ered by the hotspots of dynamic programming are fewer in number than the hotspots of sliding
window. The same relationship largely holds with the trimmed hotspot lengths of the sliding win-
dow method, but it can be observed the difference greatly diminishes as the threshold is increased.
In addition, by comparing the lengths of the trimmed sliding window hotspots (in parenthesis) with
the fixed hotspot lengths, it can be observed that a large fraction of the fixed hotspot length goes
unutilized in the sliding window approach. Hence, it can be argued that the dynamic program-
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TABLE 1 Sliding window and dynamic programming results
(a) Sliding Window

Fixed hotspot window length, w

Minimum number of crashes per - -
0.025 miles | 0.05 miles |

|
hotspot, 7,in |
|

0.1 miles

#crashes ‘ #hotspots ‘ #crashes ‘ #hotspots ‘ #crashes ‘ #hotspots

2 2369 936 2873 1110 3522 1272
3 1122 309 1416 377 2040 523
4 592 130 797 168 1156 225
5 277 50 421 73 785 129
6 132 20 202 29 476 66
7 73 10 112 14 351 44
8 - - - - 200 22
9 - - - - 120 12
10 - - - - 68 6
(b) Dynamic Programming
Maximum hotspot window length, w
Minimum number of crashes per - - -
hotspot, Tmin 0.025 miles 0.05 miles 0.1 miles
#crashes | #hotspots | #crashes | #hotspots | #crashes | #hotspots
2 2383 1088 2912 1329 3569 1634
3 1137 332 1439 418 2080 625
4 604 135 801 176 1175 254
5 281 50 428 77 812 143
6 133 20 205 30 494 71
7 73 10 112 14 359 46
8 - - - - 202 22
9 - - - - 122 12
10 - - - - 68 6

TRB 2015 Annual Meeting

Paper revised from original submittal.



Medury and Grembek 7

TABLE 2 Additional summary statistics
(a) Sliding Window

Minirlrjlum | Fixed hotspot window length, w
number
of | 0.025 miles | 0.05 miles 0.1 miles
crashes
Average Average Total Average Average Total Average Average Total
per number . number . number .
hotspot, of hotspot miles of hotspot miles of hotspot miles
) length covered length covered length covered
Nimin crashes . crashes . crashes .
(in by (in by (in by
pet miles) hotspots pet miles) hotspots pet miles) hotspots
hotspot hotspot hotspot
0.025 234 0.05 55.5 0.1 127.2
2 2.53 (0.0093) | (8.713) 2.58 (0.018) (20.54) 277 (0.044 ) (55.61)
0.025 7.725 0.05 18.9 0.1 52.3
3 3.63 (0.0123) | (3.811) 376 (0.023) (8.706) 39 (0.055) (28.97)
0.025 3.25 0.05 8.40 0.1 22.5
4 4.55 (0.0142) | (1.845) 4.74 (0.026) (4.392) >14 (0.061) (13.69)
0.025 1.25 0.05 3.65 0.1 12.9
> 554 (0.0152) | (0.759) 377 (0.027) (1.99) 6.09 (0.069) (8.87)
0.025 0.5 0.05 6.60 0.1 6.6
6 06 (0.0166) | (0.333) 6.97 (0.030) (0.881) 721 (0.076) (5.05)
0.025 0.25 0.05 4.4 0.1 4.4
7 73 (0.0175) | (0.175) 8 (0.031) (0.43) 7:98 (0.080) (3.51)
0.1 22
8 ) ) ) ) ) ) 9.09 (0.086) (1.88)
0.1 1.2
0 ) ) ) ) ) ) 10 (0.085) (1.02)
0.1 0.6
10 i i i i ) i 1133 (0.082) (0.49)
(b) Dynamic Programming
Minimum Maximum hotspot window length, w
numfber 0.025 miles 0.05 miles 0.1 miles
0
crashes ﬁzziii Average Total ﬁ:;:ljif Average Total ﬁzzlii: Average Total
per hotspot miles hotspot miles hotspot miles
hotspot of of of
otspot, length covered length covered length covered
) crashes . crashes . crashes .
Nmin (in by (in by (in by
per miles) hotspots per miles) hotspots per miles) hotspots
hotspot P hotspot P hotspot p
2 | 219 | 00077 | 839 | 219 | 0015 | 2052 | 219 | 0037 | 5498
3 | 342 | 00117 | 3906 | 344 | 0022 | 909 | 332 | 0049 | 3033
4 \ 4.47 \ 0.0139 \ 1.873 \ 4.55 \ 0.025 \ 4.34 \ 4.63 \ 0.055 \ 14.01
5 \ 5.62 \ 0.0154 \ 0.769 \ 5.56 \ 0.026 \ 2.04 \ 5.68 \ 0.067 \ 9.65
6 \ 6.65 \ 0.0166 \ 0.333 \ 6.83 \ 0.031 \ 0.93 \ 6.96 \ 0.074 \ 5.25
7 | 73 | 00175 | 0175 | 8 | 0031 | 043 | 78 | 0078 | 3.6l
s | - | - | - | - | - | - | 918 | o008 | 1s8
o | - | - | - | - | - | - 11017 | 0085 | 102
10 \ - \ - \ - \ - \ - \ - \ 11.33 \ 0.082 \ 0.491

TRB 2015 Annual Meeting Paper revised from original submittal.



Medury and Grembek 8

ming approach provides more efficient hotspot definitions than the sliding window method while
identifying more crashes with a smaller footprint.

On the other hand, a comparison of the average number of crashes per hotspot indicates that
the sliding window method yields a higher number of crashes per hotspot. This is to be expected
since the dynamic programming method has a flexible window length. However, the difference is
further exaggerated by the fact that the dynamic programming gives preference to smaller hotspots
if two hotspot combinations yield the same crash coverage.

CASE STUDIES

To better illustrate the dynamics of the two network screening approaches, two illustrative case
studies from the TASAS results are selected. Firstly, a short segment from US 101, as shown in
figure 1, is selected. It contains 18 pedestrian crashes as indicated in the figure in the form of black
dots.

i
> &
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US 101 SF
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»
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I | ! ! I
! ' ‘ ! Postmile !
/\?'d’ )?'d’ );? %S.\O ):s_‘o
5 > % % L ¥ 2
< KO o 3, 3
& 4 2 253

FIGURE 1 Section of 101SF involving eighteen pedestrian crashes

Figure 1 indicates that a hotspot length of 0.2 miles, and even 0.1 miles, can be too long for
pedestrian collisions, as they can cover multiple intersections. Consequently, consider the hotspot
identification scenario, w = 0.05 miles and n,,,;,, = 4. The results of implementing the two hotspot
identification techniques on the road segment illustrated in figure 1 are shown in figure 2. Fig-
ure 2(a) shows the three hotspots identified using the sliding window approach as [T4.85,T4.90],
[T4.96,T5.01] and [T5.02,T5.07]. The underlying process of the sliding window method can be
understood as follows: the sliding window is first placed on crash 1 as the starting point. The result-
ing 0.05 mile segment satisfies the minimum crash criterion and is thereby selected as a hotspot.
Subsequently, the window is moved to crashes 7 and 8 as starting points, but the resulting 0.05
mile segment can only accommodate crashes 7, 8 and 9. As a result, the window moves to crash
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Number of hotspots identified: 3 Method: Sliding window
Total number of crashes covered: 14 Fixed window length (w): 0.05 miles
Total coverage of hotspots: 1.5 miles (1.2 miles) Minimum number of crashes (n;,): 4
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(a) Sliding Window
Number of hotspots identified: 3 Method: Dynamic Programming
Total number of crashes covered: 15 Maximum window length (w): 0.05 miles
Total coverage of hotspots: 0.046 miles Minimum number of crashes (n,.): 4
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(b) Dynamic Programming

FIGURE 2 Comparison between dynamic programming and the sliding window method
for a case study involving a section from U.S. Route 101
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9, which yields four crashes, and is selected as a hotspot. After the second hotspot is identified,
the window is moved to crash 13 as a starting point, which yields the third hotspot. The remaining
crashes 17 and 18 do not satisfy the minimum crash criterion.

In comparison, figure 2(b) shows the hotspots identified by the dynamic programming ap-
proach. Herein, it can be seen that even though both approaches identified three hotspots, the
dynamic programming approach covered more crashes with a smaller hotspot coverage length.
The primary contributing factors for the difference between the two results is the sliding window’s
first-come-first-serve assumption. In this case, since the sliding window approach first came across
the hotspot [T4.96,T5.01], it overlooks a more significant clustering of crashes around Hayes St.,
as it partially overlapped with the already chosen hotspot.

g
=1
©
<
o
w
=

\ 4

7 Postmile

FIGURE 3 Section of California State Route 1 involving seven pedestrian crashes

Figures 3 and 4 provide another illustration of the limitations of the sliding window’s first-
come-first-serve hotspot selection approach. In figure 3, a short segment of California State Route
1 is selected from the results corresponding to w = 0.025 miles and n,,;, = 5. Herein, figure
4(a) shows that the sliding window method selects the segment between 2.48 and 2.49 miles as the
hotspot. However, as figure 4(b) reveals, there are a greater number of crashes present between
2.49 and 2.51 miles which is not recognized by the sliding window approach.

In the two case studies described above, a useful by-product of the dynamic program-
ming approach was a hotspot definition which was better aligned with the underlying intersections.
While it is also possible that the dynamic programming method identifies some hotspots which do
not overlap with the underlying intersections/mid-blocks, such instances are more likely to be a
consequence of the chosen objective function, which is to identify hotspots with the maximum
crash coverage. Hence, it can be argued that under circumstances which involve multiple overlap-
ping hotspot definitions, the dynamic programming method is more likely to provide hotspots that
cover more crashes and are also spatially more meaningful.
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Number of hotspots identified: 1
Total number of crashes covered: 5
Total coverage of hotspots: 0.025 miles (0.01 miles)

Method: Sliding window
Fixed window length (w): 0.025 miles
Minimum number of crashes (n,;,): 5

CALSF
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I I | |
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% 2 S
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(a) Sliding Window

Number of hotspots identified: 1
Total number of crashes covered: 6
Total coverage of hotspots: 0.02 miles

Method: Dynamic Programming

Maximum window length (w): 0.025
miles

Minimum number of crashes (n,,;,): 5

0o
e O O

CA1SF

‘J5 |eAele]

Y

° Postmile

(b) Dynamic Programming

FIGURE 4 Comparison between dynamic programming and the sliding window method
for a case study involving a section from California State Route 1
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CONCLUSIONS

Based on the results of the case studies and the overall TASAS pedestrian crashes comparison, it
can be argued that dynamic programming is a more efficient hotspot identification algorithm than
the sliding window approach. It provides shorter hotspot lengths with greater crash coverage, and
is also more likely to allow hotspots to be identified in meaningful locations. In comparison, the
sliding window approach is shown to be inflexible due to its first-come-first-serve hotspot selection
approach and the fixed window length assumption.

An important benefit of having dense hotspots is that it allows the field engineers to focus
only on regions that are relevant to the hotspot. In fact, the TASAS pedestrian crashes comparison
reveals that, across all maximum window lengths and minimum crash threshold combinations,
even though the dynamic programming approach produced more hotspots than the sliding window
method, the total number of miles covered by the hotspots were fewer in the case of dynamic
programming. This implies that the sliding window method provides inefficient hotspot definitions,
as illustrated by the comparison with the trimmed hotspot lengths in table 2.

In terms of future work, the dynamic programming approach can be extended to include
multiple constraints and/or other objective functions. For instance, constraints pertaining to the
crash density within each hotspot can be introduced so as to differentiate between a hotspot with
all crashes occurring at a single location and a hotspot with all the crashes at different locations.
Since the DP approach provides a general hotspot identification framework, its efficacy can also
be investigated in the context of automobile collision-based hotspots. Finally, while this study
indicates that the dynamic programming framework improves upon the sliding window method, it
is important to compare it with other hotspot techniques introduced in the literature, especially the
continuous risk profile method.
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