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with specified characteristics. Agents choose both private goods and club
memberships, and private goods and club memberships are treated and
priced in parallel fashion.

In most of the club literature (c.g., see Gilles and Scotchmer (1997)
who studied replica economies), prices for memberships are constructed
as willingness-to-pay prices after characterizing the decentralizing prices
for private goods. This technique does not work if consumers can choose
several club memberships. We ireat club memberships and private goods
in a unified manner, integrating private goods and memberships in a single
commodity space.

Despite our unified treatment of private goods and club memberships,
club economies differ in important ways from exchange economies. First,
club memberships are indivisible. This indivisibility leads to an “integer
problem” which is an obstacle both to the existence of equilibrium and
to the decentralizability of core states. Because it seems fo us that the
indivisibility of club memberships is central to understanding clubs, we
address it directly.

Second, club membership choices must be consistent across the popula-
tion. If a third of the population are women married to men, for example,
then a third of the population must be men married to women. Consistency
must hold simultaneously for all types of clubs, and allow for the possibility
that every individual may belong to several clubs.

Third, there is an important difference in the pricing of private goods
and of club memberships: private good prices must be positive, but club
membership prices may be positive, negative or zero.

We assurne that the set of possible clubtypes is finite. Because our com-
modity space accommodates both private goods and club memberships, this
assumption serves the technical purpose of leading to a finite dimensional
commodity space. However finiteness of the set of possible clubtypes could
be derived rather than assumed. The literature following Buchanan as-
sumes that clubs have finite optimal sizes; hence if the economy is larger



than these optimal sizes, there is only a finite collection that could possibly
arise in equilibrium or in an efficient state of the economy. We restrict to
this finite set at the outset. Of course not all the clubtypes in our finite
set need be chosen. The clubtypes that are chosen in equilibrium will de-
pend on the aggregate characteristics, and on consumers’ preferences and
endowments.

Owur work builds on a long tradition in the club literature that seeks to
demonstrate that clubs can arise as an endogenous outcome of competition
in the market. The intuition is that if clubs are “small” relative to the
market, then they have no market power.

In keeping with the view that perfect competition is best demonstrated
in the continuum, our (1997) paper builds a continuum model. In that
paper, we prove that that equilibrium exists and that the core coincides
with the set of competitive equilibrium states.

The continuum is convenient for applications, because it enables the
analyst to ignore the “integer” problem, to treat the economy as competi-
tive, and to assume that equilibrium exists. However, just as for exchange
economies, the continuum would be of little interest if the results did not
hold in an approximate sense for large finite economies. This paper ex-
tends approximation results for large finite exchange economies to club
economies, using the same unrestrictive assumptions as in our paper on the
continuum. We allow for general large finite economies, not just replicas;
we make no convexity assumptions; and we permit each agent to belong to
several clubs.

Our proof that the core can be approximately decentralized follows lines
introduced by Anderson (1978), except that we must also accommodate
the choices of club memberships and the necessity that these choices be
consistent. This is accomplished through a combinatorial lemma which
guarantees that if the club memberships chosen by a coalition are “almost”
consistent, then the coalition contains a large subcoalition whose member-
ships are exactly consistent. The absolute (not proportional) difference in




size between the coalition and the subcoalition is bounded.

In our notion of approximate equilibrium, the consumption of each agent
is in his budget set, and most agents are optimizing. To construct an ap-
proximate equilibrium, we first construct an “equilibrium” for an enlarged
economy, and then, using the Shapley-Folkman Theorem and our combi-
natorial lemma, show that there is a feasible state for the original economy
that is “almost” an equilibrium.

To cement the link between large finite economies and continuum econo-
mies, one must also know that the approximations become better as the
economy grows, and converge quickly. Our theorems give rates of conver-
gence comparable to those known for exchange economies. For the approx-
imate decentralization theorem, the discrepancy between the core and a
Walrasian equilibrium is measured in terms of consumers’ budgets. We
show that the per-capita budget discrepancy shrinks at rate 1/n, where
n is the size of the population. For existence of approximate equilibrium,
the discrepancy from an equilibrium is measured by the number of agents
who are not optimizing in their budget sets. This number is bounded by
a constant, and in particular shrinks at rate 1/n as a proportion of the
population.

The description of the club economy is in Section 2, which also ad-
dresses the First Welfare Theorem. Section 3 presents our approximate
decentralization result, and Section 4 presents our result on the existence
of approximate equilibrium. Proofs are collected in Section 5.




2 Club Economies

In this section we describe a club economy and define Pareto optimality,
the core and equilibrium for such economies.

2.1 Private Goods

We assume throughout that there are NV > 1 private goods, each perfectly
divisible and publicly traded; the space of private goods is therefore RV.
For z,z' € RY, we write £ > z' to mean z; > z! for each 7, £ > 7’ to mean
that z > &' but £ # 2/, and £ >> 2’ to mean that z; > z! for each 1. We
write |z| = SN z,].

2.2 Clubs

We describe a type of club by the number and characteristics of its members
and the activity in which the club is engaged.

Formally, we let 2 be a finite set of external characteristics (of potential
members of a club}. An element w € 0 is (or encodes) a complete descrip-
tion of the characteristics of an individual that are relevant for the other
members of a club. For further discussion of the interpretation of external
characteristics, see Section 2.10.

A profile is a function 7 : @ — Z, = {0,1,...} describing the members
of a club. For w € {1, m(w) represents the number of members of the club
having external characteristic w. For 7 a profile, write {7} = 3 cq m(w) for
the total number of members. We write O for the zero profile (representing
the empty club).

The activities available to a profile of agents belong to a finite set T.
We interpret the elements v € I' as public projects in the sense of Ellickson
(1979) and Mas-Colell (1980), rather than as public goods in the sense of




Samuelson. Activities are not traded.

A club type is a pair ¢ = (1,~) consisting of a profile and an activity. We
take as given a finite set of possible club types Clubs = {(r,~)}. We find
it convenient to treat singleton clubs separately, so we assume that |r| > 2
for all (x,) € Clubs.? Formation of the club (7, +) requires a total input
of private goods equal to inp(r,7) € RY .2

A club membership is an opening in a particular type of club for an
-agent of a particular external characteristic; i.e., a triple m = (w, w, ) such
that (m,v) € Clubs and n{w) > 1. (An agent can belong to a club only if
the description of that club type includes one or more members of his/her
external characteristics.) Write M for the set of club memberships.

Each agent may choose to belong to many clubs or to none. A list is a
function £: M — {0,1,...}; £{w, 7, ~) specifies the number of memberships
of type {w,m,~) chosen by an agent. Write: .

Lists = {£: £is alist }

for the set of lists. We frequently find it convenient to view Lists (which
is a set of functions from M to {0,1,...}) as a subset of R™ (which is the
set of functions from M to R}.

2.3 Agents

A complete description of an agent a € A consists of his/her external char-
acteristics, choice set, endowment of private goods and utility function.* An
external characteristic is an element w, € {1. The choice set X, for an agent

2Since activities are not traded, the choice of activities of singleton clubs can be incor-
porated into preferences.

3More generally, we could assume that each project could be produced from any input
vector from some specified set and incorporate the choice of production technology into
our notion of feasibility.

4We use utility functions rather than preferences as a matter of convenience; under the
assumptions made here, the two specifications are equivalent.
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a € A specifies which bundles of private goods and which choices of club
memberships are feasible, so X, ¢ RY x Lists. For simplicity, we assume
that the only restriction on private good consumption is that it be non-
negative, so that X, = RY x Lists(a) for some subset Lists(a)} C Lists;
we assume O € Lists(a) for each @, so club formation is not necessary
for survival.® We assume that £(w,7,v) = O for every (w,m,v) € M for
which w # w,; that is, no individual may choose membership in any club
type containing no members of his/her external characteristic. We also
assume throughout that there is an exogenously given upper bound M on
the number of memberships an individual may choose, so |¢| < M for each
£ € Lists(a). The utility function for agent e is defined over private goods
consumptions and club memberships and is thus a mapping «, : X, — R.

We assume throughout that utility functions are strictly monotone in
private goods; i.e., uq{z,£) > u,(z',€) fora € A, z,z' € Rﬂf,z > z'. How-
ever, we make no assumption that utility is monotone in the level of any
activity; indeed, in our framework it is meaningless to talk about the level
of an activity. The ranking of activities may be different for different in-
dividuals, and an individual’s ranking of activities may depend on his/her
consumption of private goods.® We take the view that an agent’s prefer-
ences for private goods and for club memberships are interdependent and
cannot be disentangled (except for monotonicity in private goods).

2.4 Club Economies

A club economy € is a finite set A of agents and a mapping @ — (wg, X,, €4, ¥a)
that assigns to each agent ¢ € A his external characteristic, choice set, en-
dowment and utility function. As above, we assume that utility functions
are continuous and strictly monotone in private goods.

5Thus we incorporate into consumption sets various kinds of restrictions on club mem-
berships. For instance, we may forbid membership in 2 marriages. More general specifi-
cations of consumption sets would be easily accommodated.

®See Diamantaras and Gilles (1996}, Gilles and Scotchmer {1997) and Diamantaras,
Gilles and Scotchmer (1996) for further discussion on this point.
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We assume that the aggregate endowment
E=> e
aEA

is strictly positive, so all private goods are represented in the aggregate.

2.5 States

A state of a club economy is a mapping
f=(z,p) : A RY xRM

A state describes choices for each individual agent, ignoring feasibility at
the level of the individual and at the level of society. Individual feastbility
means that (z.,4.) € X,. Social feasibility entails market clearing for
private goods and consistent matching of agents.

We define a property of choice functions u : B — Lists and show that
it is equivalent to a property of aggregate membership vectors 3.5 p,. For
each integer 7 > 0, let

El(w,m,7) ={a € B: po(w,m,v) >0}

This is the set of agents who choose § memberships of type {w,7,v). Write
|E| for the number of agents in E, so that |Ei(w,,v)| is the number of
agents who choose 7 memberships of type (w,r,~) and J']Ef;(w,ﬁr,’y)] is the
number of memberships of type (w,m,~) chosen by these agents. The sum

> 3B, 7)]

i=1

is thus the total number of memberships of type {w,n,~) chosen by all
agents. We say that a function u : B — Lists is integer consistent for B if
for each (7,7) € M there is a non-negative integer a(m,~) such that

iﬂEﬂ(wa 7,9)| = afm,y)m(w)

=1




for every w € 1.7

We say that a club membership vector & € RM is integer consistent if
for every club type {m, <) there is a nonnegative integer a{w,~) such that

B, %) = afm,2) 7(w)
for every w € {). Write
Cons* = {ii € R™ : i is integer consistent }

Write Cons C R™ for the linear subspace of R™ spanned by Cons®*.

The following lemma, whose simple proof is left to the reader, states
the relationship between the two notions of integer consistency.

Lemma 2.1 Let & be a club economy, let B C A be a nonempty subset,
and let u : B — Lists be a funefion. Then p 15 integer consistent for B iof
and only if 3 ,cp . € Cons™.

We say that the state f = (z,p) is feastble for the subset B C A if it
satisfies the following requirements:

(i) Individual Feasibility
(%o, o) € Xy foreachac A

(ii) Material Balance ®

Sr + Y Y —mp(mn) el m) = Y e

achB eER (wry)eM |’H‘| aEB

TWe nse the term “integer consistent” to distinguish the present notion from the related,
but different, notion, termed “consistent,” in our companion (1997) paper.

8Material balance means that the social consumption of private goods (within B) plus
the quantity of private goods used as inputs to club activities (by members of B) is equal
to the social endowment of private goods {within B).
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(iii) Integer Consistency

u is integer consistent for B

We say the state f is feasible if it is feasible for the set A itself.

Our description of feasible states of the economy is different from the
description of feasible states in most of club theory, where the analog of
integer consistency is expressed by a requirement that clubs form a parti-
tition of the set of agents. Our description allows for the possibility that
agents belong to many clubs, that different agents belong to different num-
bers of clubs, and that clubs have overlapping memberships. For instance,
agents may be married, have employment in a firm, belong to a gym, attend
movies and concerts, take meals in a restaurant, and so forth. In the special
case that agents can belong to only one club (M=1), integer consistency
reduces to the assertion that clubs form a partition.

We do not keep track of which person belongs to which club, nor do
we need to do so: every function u : A — Lists assigning memberships to
agents that is integer consistent for A corresponds to an integer consistent
membership vector (and vice versa). Of course, a given membership vector
may correspond to many assignments of memberships to agents, but we do
not need to distinguish them, because we assume that individuals care only
about the external characteristics of their consumption partners, not about
their identities. {See Section 2.10.)

2.6 Pareto Optimality and the Core

As in the exchange setting, we distinguish two notions of Pareto optimality
and the core; the stronger notion allows blocking if some agents (in the
relevant group) are made better off and none are made worse off, the weaker
notion requires that all agents be made better off. For exchange economies,
strict monotonicity of preferences guarantees that the two notions coincide.
Because choices of club memberships are indivisible, however, the notions
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may be distinct, even if preferences are strictly monotone in private goods.
In this subsection we define two notions of Pareto optimality and the core
and give a natural condition that guarantees that they coincide.

Let f be a feasible state. We say that f is weakly Pareto optimal if there
is no feasible state g such that u,(g{a)) > u,(f(a)) foralla € 4; f is strongly
Pareto optimal if there is no feasible state & such that u,(h(a)) > u.(f(a)})
for all a € A and ugx(kh(a)) > uy(f{a)) for all ¢ in some nonempty subset
A" € A. Note that strong Pareto optimalify is a more restrictive notion
than weak Pareto optimality. Similarly, f is in the weak core if there
is no nonempty subset B C A state g that is feasible for B such that
up{g(b)) > uy(f(b)) for every b € B; f is in the strong core if there is
no subset nonempty B C A and state A that is feasible for B such that
up{h(B)) > us(f(b)) for every b € B and up(h{b')} > up(f(¥')) for all &' in
some nonempty subset B’ C B. The strong core is a subset of the weak
core.

In general, weakly Pareto optimal allocations may not be strongly Pareto
optimal, and the weak core may be a proper superset of the strong core.
The following assumption, adapted from Gilles and Scotchmer {1997), guar-
antees that weak and strong Pareto optimality coincide and that the weak
and strong cores coincide.

We say that endowments are desirable if for every agent a and every
list £ € Lists(a)}, ua(es,0) > uo{0,£). That is, each agent would prefer
to remain single and consume his endowment rather than to belong to
any feasible set of clubs and consume no private goods. Desirability of
endowments is weaker than the assumption Mas-Colell (1980} refers to as
essentiality of private goods, which in our framework would be:

a 0,£ = i *’E*
u4(0, ¢) (zfﬁlféxa““(z )
for every £ € Lists(a). We omit the straightforward proof of the following
proposition.®

®For details, see our companion paper (1997).
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Proposition 2.2 If endowments are desirable, then weak and strong Pareto
optimality coincide and the weak and strong core coincide.

When endowments are desirable, we omit the modifiers and refer un-
ambiguously to Pareto optimality and the core.

2.7 Equilibrium

Our notion of equilibrium involves the pricing of private goods and of club
memberships. Private goods prices p liein RY; prices for club memberships
g lie in R™, so the vector of all prices lies in RY x RM. Because we assume
that preferences are monotone in private goods, we will require that private
goods prices be non-negative. However, prices for club memberships may
be positive, negative or zero; prices for club memberships include transfers
between agents in a given club — some agents may subsidize others. For
(z,i) € RY x R™ a vector of private goods and club memberships and
(p,g) € RY x RM a vector of prices, write

(r.¢)- (Z.B)=p Z+q b
for the cost of (Z, fi).

A club equilibrium consists of a feasible state f = (z,p), private good
prices p € RY \ {0} and club membership prices ¢ € R™, satisfying the
conditions:

(1) Budget Feasibility for Individuals

For all @ € A:
p'xa'{'Q'Ju'aSp'ea

(2) Optimization
For all e € A:

(zh,ul) € Xu and ug(z), 1) > valZa, fta) = Pz, g1, > pea
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(3) Budget Balance for Clubs

For each club type (m,v) € Clubs:

Xg m(w)g(w,m,~) = p- inp(r,7)

Thus, at an equilibrium, individuals optimize subject to their budget con-
straint and the total cost of memberships in a given club is just enough to
pay for the inputs to the given activity.

2.8 Pure Transfers

Our formulation of equilibrium requires that the sum of membership prices
in each club type be exactly sufficient to pay for the inputs required for
production of the club activity. An equivalent notion makes clear the role
of membership prices as taxes and subsidies (and will prove to be more
convenient in proofs).

Say that ¢ € R™ is a pure transfer if ¢ € Trans, defined as:
Trans = {g € RM:.g-p=0for each p € Cons}

Thus for each club type (7,7) and g € Trans,

> mw)g(w,m,y) =0

we

A pure transfer equilibrium is a triple (f, p, g) where f is a feasible state,
p € RY \ {0} is a vector of private good prices and g € RM is a vector of
membership prices satisfying the conditions:

(1) Budget Feasibility

For almost all ¢ € A,

1,
p'Ia+Q'Ma+ Z p-—lnp(ir,'y)ya(w,ar,’y) S P-€y
(w79 |7’l’|
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(2) Optimization
For almost all a € 4, if (z!,u]) € X, and

ua(mfp Ju';) > ua(ﬂ:aa Ju'a)

then

1,
prTLh gt Y p-mmp(mv)u;(w,mfv) > preg

(e, 7}

(3) Pure Transfers
g € Trans

The following lemma tells us that equilibrium and pure transfer equi-
librium are equivalent notions; we leave the simple proof to the reader.

Lemma 2.3 Let £ be a club economy. For ¢* € Trans define g € R™ by
. 1.
¢"(w,m,7) = g(w,7,7) +p- ;inp(7,7)

i

Then: (f,p,q) 18 a pure transfer equilibrium if and only of (f,p,q*) is an
equilibrium.

2.9 The First Welfare Theorem and the Core

In our club context, as in the exchange case, we easily obtain the first
welfare theorem. We omit the straightforward proof.l°

. Theorem 2.4 Every equiltbrium state of a club economy belongs to the
weak core, and in particular is weakly Pareto optimal. If endowrnents are
desirable, every equilibrium state belongs to the strong core, and in partic-
ular is strongly Pareto optimal.

H0For details, we again refer to our companion paper {1997).
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2.10 Discussion

In our model, agents care about their own consumption and about the ex-
ternal characteristics of others in their clubs. The characteristics we have in
mind should be observable to others in the club, which is why we call them
external. Such characteristics might include sex, intelligence, appearance,
even tastes and endowments, to the extent that such characteristics can be
observed by others.!! On the other hand, we exclude private characteristics
which are known only to the individual. Because we assume that member-
ships are priced according to external characteristics, our construction can
be viewed as a compromise between the non-discriminatory pricing of com-
petitive equilibrium and the personalized prices of Lindahl. To capture the
essence of club theory, we regard as essential a certain degree of anonymity,
but we also think it important to recognize that clubs offer different types
of membership.1?

Of course we could formulate a model in which preferences for club mem-
berships depend on various characteristics of club partners, but insist that
prices be independent of those characteristics. In that case, however, and
in contrast to the resulfs proved here, core allocations might not be decen-
tralizable by prices, and equilibria could fail to exist. (A similar comment
applies to the possibility of preferences that depend on the consumptions
of club partners.)

11But keep in mind that we assume in this paper that the set of external characteristics
is finite.

12Much of the club literature indexes both the external characteristics and the tastes
and endowments by a single “type;” see Berglas [1976), Gilles and Scotchmer (1997) for
instance. Our use of external characteristics is closer in spirit to Conley and Wooders
(1994}, Engl and Scotchmer (1996) and Scotchmer (1996), where prices are understood
as “externality prices.” However, these latter papers treat only finite TU economies with
a single private good, restrict agents to belong to at most one club, and do not discuss
existence.
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3 Approximate Decentralization

In this section we extend Anderson’s (1978} elementary core equivalence
theorem to the club context, showing that for large finite club economies,
core states can be approximately supported by prices. Because of the in-
teger consistency requirement for blocking coalitions, the extension is not
straightforward.

Following Anderson, we define two measures of how well a given price
system approximately decentralizes a feasible state. Let £ be a finite club
economy, let f = (z,u) be a feasible state, let pc A= {pc RY : T p; = 1}
be a normalized system of private goods prices, and let ¢ € R™ be a club
membership price. For r € R we write

r* = max{r, 0}

for the positive part of r. For ¢ € 4 we define

pa(fipq) = [(p,4) - (ZTarbta) — P €)™

pelfspa) = max{lp-ea— (p0) (2 1)* 1 wale, ) > wa(a, ) }

The number pl{f,p,q) measures how far agent (z,,x,) lies outside agent
¢’s budget set. The number p2(f, p, ) measures how much agent a can save
and still choose something preferred to (z,,u,). Note that pl{f,p,g) =0
if and only if (z,,u,) lies in agent a’s budget set and that p2(f,p,q) =0 if
and only if nothing preferred to (z,,u,) is strictly cheaper. Define:

p(fipq) = Iﬁ—[zpi(f,p,q)
aEA

P (f.pq) = ﬁZpi(f,p,q)
aEA

The number p'(f, p, ) is a measure of the average deviation from individual
budget sets, and the number p*(f, p, ¢) is a measure of the average deviation
from individual optimization.

17




In what follows we fix the set 2 of external characteristics, the set
Clubs of possible club types, the bound M on the number of memberships
that may be chosen by any individual, and the number NV of private goods.
Write Econ((?, Clubs, M, N) for the set of finite club economies sharing
this data.

Our approximate decentralization result is the following:

Theorem 3.1 There is a constant K depending only on (1, Clubs, M, N
such that:

If £ € Econ(Q},Clubs, M,N) is a finite club economy with
|A| > K and f = (z, ) is a core state then there is a normalized
price system (p,q) € A x RM such that

K

p'(f,pq) < mmax{]emizaEA,lgngN}
] K
o*(fipq) < mmax{lem}:aeA,lgngN}

and

> w(w)g(w,m,v) = p-inp(m,~) for each (m,7) € Clubs
well

(Note that the budgets of elub types balance exactly.)

As in Anderson (1978), the proof constructs an approximately decen-
tralizing price by separating the convex hull of the aggregate net preferred
set from a translate of an appropriate cone. There are three subtleties:

(i) In Anderson (1978), the cone from which the aggregate preferred set
is separated is the cone of feasible aggregate net trades, which is the
negative orthant. In our context, the set of feasible aggregate net
trades is the product of the negative orthant with the set Cons” of

18




integer consistent membership choices, but this product is not a con-
vex cone. The convex cone generated by the set of feasible aggregate
net trades is the product of the negative orthant with the subspace
Cons.

(ii) A hyperplane that separates the aggregate net preferred set from a
translate of the convex cone generated by the set of feasible aggregate
net trades will yield prices (p, ¢) # 0, but it need not be the case that
p # 0. To ensure p # 0 we separate from a translate of a slightly
larger comne.

(iii) To show that the comvex hull of the net aggregate preferred set is
disjoint from our cone, we will need to show that, if it were not, we
would be able to construct a blocking coalition. In constructing this
blocking coalition, we must be sure that both private good consump-
tions and membership choices are feasible. Feasibility of private good
consumption will be accomplished by “throwing out” a few agents.
When we do this, however, we may find that the membership choices
of the remaining agents are no longer integer consistent. The lemmas
below show that we can restore integer consistency of membership
choices by “throwing out” still more agents. This is a subtle and dif-
ficult problem because we must deal head on with the indivisibility
and multiplicity of club membership choices.

We first isolate an abstract idea and result. Write Z7 C R” for the
subset consisting of vectors whose coordinates are non-negative integers.
We say that a non-empty subset ¥ C Z% is closed under addition and
relative subtraction if:

(i) z,zel=>z+'e}
(ii) z,2' e H,z—2'>0=>z—2'c ¥

We say that G C ¥ generates ¥ if every element of ¥ can be written as a
non-negative integer combination of elements of §; that is, for every z € ¥
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there are non-negative integers n,(y),y € § with

z=> n.{yy

yES

Lemma 3.2 Every non-empty subset ¥ C ZT which is closed under add:-
tton and relative subtraction is generated by a finite set.

Note that Cons® C Zf is closed under addition and relative subtrac-
tion; let G; be a finite set of generators.

Write
Listsyr = {£ € Lists : |£| < M}

We view Listsys as the unit vectors in RLiStSM, and define a linear map
7 . pListss _, g by T'(é;) = £ for each unit vector ;. Set

J={ze Z%iStsM : T(z) € Cons"}

The set J describes integer consistency in RLIStSM . It is easily checked
that J is closed under addition and relative subtraction; let G, be a finite
set of generators.

Define constants Ky, K; by:
£ = 2 (mxlel +1) (gagle|+ 1)
1 max|g| +1 ) {max |g'| +
Kz o Kl'Mi

Note that K;, K> depend only on the set {1 of external characteristics, on
the set Clubs of possible club types, and on the bound M on the number
of memberships that may be chosen by an individual. As we shall see, the
constant in the statement of Theorem 3.1 is

K= K]_(MN + MiLiStSMJ + 1) + Kg+ N+ }LiStSM|

The following lemma will allow us to “throw out” the right set of agents.
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Lemma 3.3 If B is a finite set and v : B — Listsys 1s a function then
there is a subset B’ C B such that

> v, € Cons*
ben'

and

\B\ B| < Kydist (3 v, Cons) + K,
beD
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4 Approximate Equilibrium

It is not obvious what the “right” notion of approximate equilibrium should
be. Qur approximate decentralization result Theorem 3.1 shows that core
states are approximate equilibria in the sense that, on average, agents are
nearly in their budget sets and nearly optimize in their budgets. In this
section we establish the existence of feasible stafes satisfying a stronger
approximate equilibrium notion: all agents are in their budget sets and
most agents ezactly optimize in their budget sets. (In both cases we require
that budgets of club types exactly balance.)

As in Section 3, we fix O, Clubs, M, N. Write
M* = max{|x{w)|: (x,v) € Clubs,w € 1}
K, K; are the constants constructed at the end of Section 3.
Theorem 4.1 If £ € Econ{{},Clubs, M, N) s a finite club economy in

which aggregate endowment is strictly positive, then there is a feasible state
f = (y,v) and a price system (p, q) such that

e all agents choose in their budget sets

o the set of agents who do not optimize in their budget set has cardinality
at most

N + |Listsy| + K MM (N + [Listsy| + 02]) + K,
o budgets of all club types balance

The argument parallels the proof of existence of equilibrium for con-
tinuum economies given in our (1997) companion paper. In one way the
present argument is a little more delicate because we must work with the
convexified excess demand correspondence {rather than the excess demand
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correspondence) and appeal to the Shapley-Folkman theorem {instead of
to the Lyapunov convexity theorem). In another way the present argument
is a little less delicate, because we do not need to construct equilibria for a
sequence of perturbed economies, adjust the membership prices, and take
limits. We construct a single perturbed economy, find an “equilibrium” for
this economy, and then show that this “equilibrium” is in fact an approxi-
mate equilibrium for the original economy.!® The steps are:

1 Construct a perturbed economy £’ by adjoining to A a few agents of
each external characteristic, with appropriate endowments and utility
functions.

2 Identify a compact set of prices in which an “equilibrium” price will
be found.

3 Construct an excess demand correspondence and a convexified excess
demand correspondence.

4 TFind a fixed point of the correspondence that maximizes the value of
convexified excess demand.

5 Show that, at the corresponding prices, convexified excess demand
for private goods is equal to 0 and convexified demand for club mem-
berships is an element in Cons.

6 Apply the Shapley—Folkman theorem and Lemma 3.3 to find choices
for each agent which are feasible in aggregate and for which most
agents choose in their budget sets and most agents optimize.

7 Apply Lemma 3.3 to find choices constituting an approximate equi-
librium.

13We enclose “equilibrium” in quotes because choices in the perturbed economy lie in
the convexifications of demand sets, not in the demand sets themselves.
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5 Proofs

Here we collect proofs of most of the results in the text. We begin by
proving the abstract result.

Proof of Lemma 3.2 For eachinteger k > 0, write ¥, = {z € ¥ : |z]| < k}.
We first establish the following claim:

Claim There is an integer k such that every element of ¥
dominates some nonzero element of X;. That is, for each z € ¥
there is a y € Xy, y # 0 such that =z > y.

To prove the Claim, suppose not. Then for each integer k£ there is an
z* € ¥ which does not dominate any element of ¥;. In particular, z* ¢ ¥y,
so |z%| > k. For each coordinate 1 < ¢ < n, the sequence (zF) is either
bounded or not. If it is bounded we may use the fact that elements of ¥ have
non-negative integer coordinates to extract a subsequence that is constant
valued; if it is unbounded we may extract a subsequence that is strictly
increasing to infinity. Applying the same reasoning to each coordinate
in turn, we may extract a subsequence (z*7) that is non-decreasing; i.e.,
zki < %71 for each j. Set k* = |z*1|. Because k; — oo, there is an
index j* such that k;» > k*. Because z%i > z** for every j, it follows that
z¥* > %2 On the other hand, z** is an element of ¥~ which is a subset of
H;e s SO z** dominates an element of Hi.. Thisis a contradiction, so we
obtain the Claim.

Now let § = X;; we assert that § generates ¥. We must show that
every element of ¥ can be written as a non-negative integer combination
of elements of §. Note that

Hence it suffices to show that for each r, every element of X, can be written
as a non-negative integer combination of elements of G. To see this, suppose
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not. Then there is a smallest index r such that not every element of ¥,
can be written as a non-negative integer combination of elements of §.
Certainly r > %k because § O X;. Let z € X,. By the Claim, there is
a nonzero element y € § with £ > y. The hyotheses on ¥ guarantees
that z —y € ¥. Because |z — y| < r, minimality of r entails that z — y
can be written as a non-negative integer combination of elements of §.
Since z = (z —y) + y and y € §, it follows that we can also write z as a
non-negative integer combination of elements of G, as desired. B

We now show that, if v is almost integer consistent for B then it is
exactly integer consistent for a large subset of B.

Proof of Lemma 3.3 The proof proceeds through several intermediate
constructions and estimations. Write

SZZL’I,ERM
beB

and .
t=36,¢ glistsy
beB
We will find a z € J such that z < ¢t and estimate |z — t|. Once that is
accomplished it will be easy to constuct a set B’ C B such that |[B\ B'| =
|z — t| and
z = Z by, €J

bEB!
The definition of J and the definition and linearity of the mapping T entail
that

=Y T(,)=T (Z 6,,,,) € Cons®

B! beB! beB'

In order to construct z and estimate |z—1|, we first estimate dist (s, Cons*).
We then construct an z € Cons” for which we can estimate |z — s|; this
estimation is made easier by arranging that z < s. From this £ we construct
a y € J, and estimate ly —¢|. Using y we construct the desired z € J with
z < t, and estimate {z — ¢|. See Figures 1 and 2.
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Step 1 We estimate dist (s, Cons’). To this end, choose an element
v € Couns such that
|s — v| = dist (s, Cons)

Note that v > 0, for otherwise the positive part v™ belongs to Cons (by
the definition) and is closer to s (which is positive) than is v. By definition,
for each club type (#,~) there is a real number a(,~) such that for every
w e (1,

v{w,T,v) = afr,v)r(w)
Since v > 0 and 7 > 0, we may take a(7,+) > 0 for each (m,~). For each
(m,~) let &(x,~y) be the greatest integer less than or equal to am,~) and
let w € Lists,, be defined by

w(w,T,v) = a&(r,y)r{w)

for each club {m,v}. This construction guarantees that w € Cons* and
that
0< ‘U(W,ﬂ',"}‘) - W(W,W,’)‘) <1

for each membership {w,r,7), so
jw — o] < [M]

Hence
dist (s, Cons™) < |s — w| < | M| + dist (s, Cons) (1)

Step 2 We construct an element £ € Cons® that is dominated by s. If
w < s, take z = w. If w £ s, there is a membership m € M such that
w(m) > s(m). Use Lemma 3.2 to write

w=, nu(y)y

yES

Pick y* € G; such that n,(y*) > 0 and y*{m) > O; set

2! = (nw(y") — 1)y* + > ny(y)y € Cons
yFEY*

27




so that ' < w and z'(m) < w(m). Continuving in this way we construct a
decreasing sequence z! > z?... of elements of Cons®. After at most |s —w|
iterations, we obtain a vector z € Cons” with z < 5. Since we subtract an
element of §; at each iteration, we conclude that

w 2| < (max|g])|s ~ vl (2)

Step 3 By definition, s = 3. b € By, and v, € Listsy, for each b We
construct a function n : B — Listsys such that 7, < v for each b € B and

Zm——-x

beB
To accomplish this, write
B={b,...,b,}
Proceed inductively:
M, = min{v,,z}
M, = IIliIl{VbQ, I nbl}

fy, = T— Z Mo, [

1<ign—-1

Step 4 Set
y= Z bny
B
The definition of T implies that T{y) = z so y € J. Write
B"Z{bEB :175:1'/5}
Because 0 < n; <y, foreachbe Band v, — g € Zf, it follows that

!Vb“775| = 0 if beB"
1Vb*—775| > 1 if bEB\B"
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Note that |6,, — 6,,| = 2 whenever v, # ;. Hence

y—t|=2{B\ B (3)
Moreover
ls—z|=> lm—ml= ) |m-—mi>[B\B (4)
bEB LEB\B"

Step 5 Proceeding exactly as in Step 2 we construct an element z € J
such that z <t and

2= vl < (maxle'l) it~ o )

Step 6 For each £ € Lists,,, write
Bg={bE.BZI/b:£}

By construction, z < ¢ so z(£) < #{¢) = |By| for each £. Hence we may
choose subsets B, C B; such that |B}| = z(£). Setting

=B,
z
therefore yields a subset B' C B such that

Zéyb:zej

beB!

As noted at the beginning of the proof, linearity of T implies

> w=>_ T{6,)=T(z) € Cons*

beB! bep!

QOur construction implies that

B\Bl= ) |B\Bl= > [#O-=z0]=t-2 (o)

cLists,, tcLists,,
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Combining (1) — (8), expanding, and substituting the definitions of K, K;
yields the required estimate for {B\ B'|. B

We can now establish our approximate decentralization result.

Proof of Theorem 3.1 Set

N* = N + |Listsay|
K = Kl(N*M-i—l)-f—Kg“l"N*

Let f = (z, ) be a core state. Write

W = max{|e;n] :a € 4,1 <n < N}

Step 1 For each agent a, consider the preferred set
ola) = {(z,8) € X, : ua{z, ) > uo(T0o, 1ta) }
and the net preferred set:
¥(0) = {(z,0) € R¥ x R* : (z + ez — 7(0),4) € p(a)}

Set
¥(a) = ¢(a) U {0}
Define the aggregate net preferred set

Z=> Y(a)

aCA

Step 2 Define
C* = {(z,) € RY x R : 2 < —KW1,dist (g, Cons) < 1}

Note that C* is a convex cone. We want to separate Z from C*; to ac-
complish this, we must show that C* N convZ = §. We suppose not and
construct a blocking coalition.
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Let z* = (z*,u*) € C* Nconv Z. Note that

conv 7 = Z conv ¥(a)
acA

Hence the Shapley-Folkman theorem guarantees that we can choose ele-
ments (2,,V,) € conv ¥(a) for each a € A in such a way that:

(i) 2" = Lseal2a, Vo)
(i) [{a € A (20,0) ¢ T(a)} < V™
Write
B={ac A:(2,v.) € ¥(a)}

Because agents a € A\ B choose in the convex hull of VU(a), and there are
at most N* such agents, it follows that:

dist (> _ vy, Cons) < N*M + dist (u*,Cons) < N*M +1
beB

We can therefore use Lemma 3.3 to choose a subset B' ¢ B such that

> v € Cons®
beB!
and
|B\ B'| < Ki(N*M + dist (1", Cons)) + K,
Thus

JA\B'|<Kiy(NM+ 1)+ K, +N" =K (7)
By assumption, {A| > K, so B' # 0. We assert that B' is a blocking
coalition. To see this, definey: A — R+N by

. zb—eb—l—r(vb) ifbe B
=10 otherwise

and define the state g = {y,v). To see that g is feasible for B' note first
that

|2 e — > &/ <|A\B[(WI) (8)

acA bep!
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Combining (7) and (8) with the fact that (2%, u*) € C* yields the material
balance condition. Since v is integer consistent for B' by construction, g
is feasible for B'. The construction of ¢ guarantees that g(b) is preferred
to f{b) by every agent b € B'; this contradicts the core property of f. We
conclude that C* N conv Z = §, as claimed.

Step 4 We now use the separation theorem to find prices (p, ¢*) € Rf X
R™, (p,q¢*) # (0,0) and a real number o such that

(7,¢") (z,1) S0 for each (z,u) € C”
(p,¢*)- 220 foreach z € Z

Because C* contains a translate of —RY x {0}, it follows that that p > 0.
Because C* contains a translate of {0} x Comns, it follows that ¢* vanishes
on Cons and hence that ¢* € Trans. We claim that p # 0. To see this,
suppose to the contrary that p = 0. By construction, (p,¢*) # (0,0) so
¢* # 0. Hence there is a 7 € R™ such that ¢* - £ > 0. For ¢ > 0 sufficiently
small, (—1,ef) € C*, so that (p,¢*) - (—1,e) < 0. However

(pa q*) : (—'11 Eﬁ’) = (03 q*) - (“13 Eﬁ)
= eq ‘B
which, by our choice of fi, is positive. This is a contradiction, so we conclude
that p # 0, as asserted.

After normalizing, we may assume that p-1 = 1, so that p € A. Finally,
because (—KW 1,0} € C*, it follows that

o>p - (—KW1) = —KW

Define ¢ by

S
dm =qm+mp-mp(m'7)

for each m € M. Note that

(2, 4) - (Tastta) = (£,97) - (T + T(a), 1a)
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for each a.

It remains to verify the claimed estimates for p',p?. To this end, let
E; C A be the set of agents for whom f(a) = (z,,u.) is not their budget
set, and let By = A\ E;. Thus, ¢ € E, if and only if expenditure strictly
exceeds income:

expenditure(a) = (p,q) - (Zq, 1)

> p-e, = income(a)
and a € F, if and only if expenditure is weakly less than income:

expenditure(a) = (p,q) - (24, ita)

< p-e, = income(a)

Because f is feasible, the sum over A of expenditures equals the sum over

> (P ) (Taskta) = D_Prea

acA aEA
Because A = E, U E, , we obtain

0 = Z[(P: q) - (%as o) — P €]

A of incomes:

= é [('P; q) ) (zﬂﬂu'ﬂ-) - P ea] . ; [(pSQ) ' (‘ra:ua) —p 'ea]

Hence

D 1(0:9) - (Tastta) —p-ea] == 3 [(1:9) * (Tartta) — P - ]

acE; acEq

By definition, 0 € ¥(a) for each a, and monotonicity of preferences implies
that (z4,4,) is in the closure of ¥{a) for each a. Using the separation
property of prices we obtain:

Z [(P, Q) * (Iauu'a,) —p- ea] 2 — KW
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Putting these together and keeping in mind that expenditure minus income
is positive for agents in E; and no others vields:

1 jmmang
p*(f,p,q) A %pa f.p,9)

= b, q za Jua.) p-€ N
]A|§4 3 a]

- Z [ P q .'Ea, :ua) P ea]
GEE1

= Z (P> q) - (Ta> a) — P €4

GEEz
K W

S
| 4]
which is the desired result.

To estimate p?, let F; be the set of agents for whom there is a choice
(yasve) € Bla,p,q) that is strictly preferred to {z,,u,). Just as before,
separation implies

Z (, @) - [{Yasva) — (€0,0)] 2 —KW

ecE;y
Rearranging yields
KW
p: eaa ) (ya; Ua) S A
i 5.9 =T

Since this inequality holds for all choices (y,,v,s), we obtain the desired
inequality. B

We now turn to the existence of approximate equilibrium.

Proof of Theorem 4.1 Write
W = max{e;,:a € 4,1 <n < N}

By assumption, aggregate endowment € is strictly positive; say € > wl >>
0.
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Step 1 We construct a perturbed economy &' by adjoining to the agent
set A a single agent of each external characteristic. That is, the agent set
for the perturbed economy is:

A'=AUu{a, we}

External characteristics, consumption sets, endowments and uftility func-
tions for agents in A are as in the original economy £. For agents q, €
A* = A"\ A we define external characteristics, consumption sets, endow-
ments and utility functions by:

We, = W
X,, = RY x {£eListsy: L(w',7,7) = 0if 0 # w}
€, = W1

ug,(2,8) = I

Step 2 Choose a real number € > 0 so small that

- v - el [PULHE  wa ] - v -y + ) > 0

Having chosen ¢, choose a real number R > 0 so big that

1= (N = 1)e] |57 — W (141 + 19| — (¥ ~ )W (4] + 2] > 0

NM*

Define :

A, = {peRf:ana‘-:foreach n}
@z = {g€ Trans:|g, < Rforall me M}

Step 3 We define an excess demand correspondence. Let p € A, g € Qg.
For each agent a € A, write '

Ble,p,q) = {(z, 1) GR‘: x Lists{w,} :p-z+q-p+p-7{u) <p-e}
Let
d{a,p,q) = {(z,u) € Bla,p,q):

uo{z, 1) > uo(z',p) for all (', ") € Bla,p,q)}
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be agent a’s demand set and let

z(a,p,q) = d(a, p,q) — (€.,0)

be agent a’s excess demand set. Excess demand sets are uniformly bounded
(because endowments are bounded, private good prices are bounded away
from 0 and club membership prices are bounded above and below). Define
the aggregate excess demand correspondence

Z:A, xQp — RY xR
to be the sum of the individual excess demand correspondences:

Z(p,q) = > #(a,p.9q)

agcAf
Note that Z{p,q) is bounded but need not be convex.

Step 4 Individual (and aggregate) excess demands for private goods lie
in the compact set

1
X={ze RY: W<z, < —(W + RM) for each n}
£
and individual and aggregate demands for club memberships lie in the set

C={peRM: > p(m)< M}

Define a correspondence
DA XQrXxXxC—-A XQrxXxC
by
8(p, g,2, 1) = |argmax {(p*,¢")-(z,1) : (P, ") € Ac X Qr}| X conv Z(p, )

It is easily checked that ® is an upper hemi-continuous correspondence,
and that its values are non-empty compact convex sets. Hence Kakutani’s
fixed point theorem guarantees that ® has a fixed point. Thus there is
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a price pair (p,g) € A, x Qg and a consumption/club membership pair
(z,B) € conv Z(p, q) such that

(p,9) (2, ) = max{(p*,4")-(2", ") : (1", 4") € A X Q. (27, 7) € Z(p,q) }

Step 5 We show that 2 = 0 and & € Cons. The argument is in several
parts. Keep in mind throughout that

(2’ ﬁ) = Z {(xm #’ﬂ) - (6250)}
acA’
where, for each a, the choice {z, u,) is a convex combination of demands —
optimal choices at prices (p, q).

Step 5.1 We show first that

g-p=0

Suppose that this is not so; we obtain a contradiction by looking at
excess demands (at prices p,q) of agents in 4* = A"\ A. Maximality and
the definition of ® entail that ¢ > 0 (because 0-Z = 0). Maximality entails
that ¢ € bdy Qg so that ig%| = R for some m € M. The budget balance
condition for clubs means that if some price has large magnitude and is
positive then some other price must have large magnitude and be negative.
Thus there is a membership m* = (w*,7*,~*) such that ¢, < —R/M*
The agents a,- £ A' whom we have adjoined to the original set of agents,
and whose external characteristic is w*, could obtain a subsidy of R/M*
by choosing the membership m* (and no other). Because this agent does
not care at all about club membersnips and finds all private goods to be
perfect substitutes, it follows that his {convexified) excess demand for one
of the least expensive private goods — which we may as well suppose to be
good 1 — is at least

b >
a(b,p,q) > M

Keeping in mind that the {convexified) excess demand of every agent in A'
is bounded below by —W 1 and that the number of agents in 4’ is | 4] +|(2|,
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the aggregate (convexified) excess demand for good 1 and for other private
goods satisfy:

) R
5 2 s - WlAl+ )

Z, = —W(l4]+[9)

Define p € A, by:

_J1={(N-1) if n=1
= e if n>1

Calculation shows that
R
pe2 21— (N = 1)e] | — WAl = [0])] — (¥ — )W (4] +|0))
Our choices of R, e guarantee that this is strictly positive so

(p,0) - (2,2) > 0 = (p,q) - (2, 11)
which contradicts maximality. We conclude that ¢ - & = 0, as desired.

Step 5.2 We show next that 7 € Cons. If not, we could find a pure
transfer ¢* € Trans such that ¢* - 7 > 0 and hence could find a ¢** € Qg
such that ¢** - & > 0, contradicting maximality.

Step 5.3 We claim that p, > ¢ for each n. Suppose not; we once again
obtain a contradiction by considering the excess demand of agents in A* =
A"\ A. Every agent in A* finds all commodities to be perfect substitutes, and
therefore demands only the least expensive commodities. Because agents
in A* have endowment W1 and hence wealth W, there is at least one
comodity, say commodity 1, for which the excess demand of each agent
in A* is at least

-
§1(G,p,Q) = Ng

Summing over all agents and keeping in mind that individual excess de-
mands are bounded below by —W1 , we conclude that

; WA +10])
z > T‘W(1A|+|Q|)
z, > —-W(l4|+|al)
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Define p € A, by
_J1-(N-1) if n=1
Pn = € if n>1

Calculation gives

w4l + 2]

ve WA+ 9] -e(N-1)W(jA[+]Q])

Pz 1= (- 1)
Our choice of € guarantees that this is strictly positive and hence that

(pso) : (ziﬁ') >0= (p: Q) ' (zaﬁ)
which again contradicts maximality. We conclude that p, > & for each n.

Step 5.4 We show that 2 = 0. If 2 # O there are indices 7,7 such that
Z < 0 and 2 > 0. Since {p,q)-2,5) = 0 and ¢ - g = 0 it follows that
p- 2 = 0. Since p; > ¢, we can construct a price p € A, by setting

Pi_%(Pi"E) fn=2
Pr=19 pi+ipi—c) fn=j
Dn otherwise

Since p+ Z = 0, it follows that 5-Z > 0, a contradiction. We conclude that
z=0.

Step 6 Applying the Shapley-Folkman theorem, we find choices (z,, 4.} €
conv d{a, p,q) and a set A" C A’ such that

. EaeA'(Ia:p'a) = (Eaﬁ)
o (z,,u,) € d{a,p,q)ifac A"
o A"\ A"| < N + |Listsy|
Set B = AN A"; note that
4\ Bl < N + |Listsy] 9
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and
A"\ B] < N + |Listsp| + |

By construction,

Z e = fi € Cons’
acA'
$0

dist (D pta, Comns™) < MM*(N + |Listsp| + |Q)
acB

Apply Lemma 3.3 to find a subset B' C B such that

> pe € Cons’
eEB

and

|B\ B'| < Kdist (> g, Cons*) + K,
acB

Define a state f = (y,,%s) by

(Zoyve) f a€ B

(s %) z{ (0,00 if a¢ B

(10)

(11)

The state f is feasible for A and has the property that all agents choose in
their budget sets and agents in B’ optimize. Combining equations (9), (10}
and (11) yields the desired estimate on the cardinality of the set of agents

who do not optimize in their budget sets. M
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