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Abstract

Modeling and Simulation of the Automated Highway System

by
Farokh Hassanzadeh Eskafi

Doctor of Philosophy in Engineering - Electrical Engineering and Computer Sciences

University of California at Berkeley

Professor Pravin Varaiya, Chair

We present the hierarchical structure for the control design of the Automated Highway

System (AHS). This control hierarchy has four layers: network, link, coordination, and

regulation. The network layer routes vehicles from their origin to their destination. The

link layer provides the immediate path a vehicle should follow. The network and link layer

controllers are on the roadside. The coordination layer supervises a vehicle’s activities and

engages the vehicle in different maneuvers as needed. The regulation layer executes the

maneuvers by providing the control inputs to the vehicle actuators. We show that this

control hierarchy can be used to model different AHS proposals.

The next step is to provide the controllers for the control layers. We follow the

PATH-AHS proposal of platooning as the means to reduce congestion and increase highway

capacity. A platoon is a group of vehicles traveling in close proximity to each other with large

inter-platoon distance. In the PATH-AHS proposal vehicles are under automatic control.

We describe the internal structure of each control layer and the interfaces between them.

There are three basic maneuvers: join, split, and change lane. In the join maneuver two

platoons join together to form one platoon. In the split maneuver one platoon is divided into

two platoons. In the change lane maneuver a single vehicle changes lane. Since the vehicles

are automated, each maneuver use a communication protocol to acquire the permission

from the surrounding vehicles to perform the maneuver. The communication protocols are

designed to ensure maneuver safety and efficiency.

In order to observe the behavior of any specific proposal and to test, evaluate, and

compare different proposals, we simulate the design. We have developed the SmartPath

simulation tools for AHS scenarios. SmartPath demonstrates that our modeling approach

is sound. SmartPath  is a visual simulation package. It provides a graphical interface to

view the simulated data (vehicles and highway) in a natural way. SmartPath  is a micro-

simulation: the behavior of each functional element of the vehicle and highway is individually
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modeled and simulated. SmartPath is also a distributed simulation, so that different sections

of the highway network can be simulated in different processors.

!f16&y*
Professor Pravin Varaiya, C lr
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Chapter  1

Introduction

Traffic congestion is an everyday problem for many people commuting to and

from work in metropolitan areas of the United States. In 1995 the average speed of vehicles

during peak hours was 35 mph and is expected to drop further to 11 mph by the year

2005. This will increase fuel consumption and air pollution[l]. The traditional solution

of constructing more highways to meet growing demand is no longer possible in many

urban areas. Telecommuting opens a new approach to the congestion problem by keeping

people out of the urban centers, but for the telecommuting to be implementable across

the workforce, affordable high speed communication links should be available, and more

importantly the business control structure which relies on direct supervision has to change.

The expansion of public transportation cannot provide a cost-effective solution in areas

facing dispersion of the workforce, and the vast majority of commuters continue to use

private automobiles. There is a growing research effort worldwide in the use of technology

to improve the throughput of the highway system. This research has two main threads:

l Increase the throughput by providing reliable traffic information which helps drivers to

make better decisions regarding their route selections [2, 31.  This approach is limited

to the “behavioral law” that with human drivers, there is a limit to the maximum

achievable traffic flow (about 2000 vehicles/hour/lane).

l Increase the throughput by automating the decision-making for route selection and

control of the vehicle which effectively removes the human driver from the driver seat.

This approach claims dramatic improvements in capacity, safety, and energy efficiency

and leads to the concept of the Automated Highway System (AHS).

My focus in this dissertation is on the AHS approach to increasing throughput.
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1.1 Automated Highway System

Planning an Automated Highway System is a huge task. It involves the design

and integration of the intelligent vehicles and intelligent highways to increase throughput

without compromising safety.

There are several proposals about the structure of an AHS and its elements. At

one extreme lie proposals in which a centralized controller determines the position of every

vehicle similar to the way trains are controlled. These designs were studied by TRW, GM,

Rohr Industries and some other groups, and are reviewed in [4]. At the other extreme

are proposals that are inspired by robotics and AI-based approaches to the control of an

autonomous vehicle navigating in an unstructured and even hostile environment [5, 61.

These approaches emphasize recognition, learning, and trajectory planning in the face of

diverse threats and obstacles. Proposals in between these extremes include the PATH

(Partners for Advanced Transit and Highways) proposal for AHS (PATH-AHS), which I

describe in the next Chapter.

We would like to be able to test and evaluate every AHS proposal. For example,

we would like to answer the the following questions for each proposal: Is it feasible? Is it

safe? Does it perform as claimed? How would the public react to such a system? What

is the difference between this proposal and the others with respect to some measure of

performance?

In order to test, evaluate, and compare these proposals, we must build a model of

the proposed AHS design and simulate the design. Simulation provides a cost effective tool

that can be used to model different strategies and configurations; therefore, it is suitable

for AHS planning, modeling, and testing. But one has to be careful in interpreting the

simulation results. A simulation environment simulates what is modeled; if the model is

far from reality, the simulation will not represent the reality. Therefore, it is essential to

validate the simulated model. Also, due to the discrete nature of any simulation, one can

only approximate the continuous elements of the system, and when the approximation is

too coarse, it may diminish the reliability of the simulation results. Note that the discrete

approximation may lead to unreasonably pessimistic or optimistic estimates, depending on

the system being simulated and on what can be expected. We will see in Chapter 3, how

we use discretization to simulate AHS scenarios.

This dissertation present an approach to the modeling of the Automated Highway

System and describes the SmartPath simulation tools for AHS scenarios. SmartPath  is
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used to demonstrate that our modeling approach is sound. The SmartPath  project started

in Spring of 1991, and its first and second releases were used by AHS researchers within

universities and industry. We are now in the process of releasing SmartPath3.0.

SmartPath  provides an environment for testing various controller designs, evalu-

ating their performance, and observing the interaction between the vehicle controllers and

the highway. It effectively responds to the questions of feasibility, safety, and performance.

SmartPath  is a micro-simulation, i.e., the functional elements and the behavior of each

vehicle with regard to normal operations or the anomalies that may occur in the highway

are individually modeled. The output of SmartPath is a comprehensive state description of

each vehicle on the highway throughout the simulation.

SmartPath  is also a visual simulation package. It provides a graphical interface to

view the simulated data (vehicles and highway) in a natural way. Figure 1.1 shows four views

of the highway from different angles which are available through the graphical interface to

SmartPath  users. This interface can ultimately be used to respond to the question of public

reactions toward a given scenario or AHS architecture.

In Chapter 2, I will give the detail design of an AHS control architecture which is

general enough to cover a wide array of scenarios. I will also give the description of a set of

specific controllers needed to model the PATH-AHS design.

In Chapter 3, I will discuss the detailed design of SmartPath,  the structures and

functions it provides, and the performance of the simulator when a specific set of controllers

are employed.

Chapter 4 presents the extension of SmartPath to a distributed environment.

Chapter 5 discusses load balancing and a simple heuristic for dynamic load bal-

ancing of the distributed SmartPath simulation.

In Chapter 6, I will discuss briefly the on-going projects that use SmartPath  as

their primary simulator and some concluding remarks.
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Figure 1.1: Four Views from the Graphical User Interface of SmartPath



Chapter  2

AHS Control Architecture

2.1 Introduction to AHS Controllers

The Automated Highway System consists of two elements: the automated highway

and the automated vehicle. The technical challenge facing any AHS proposal is the design,

development, and testing of a set of controllers in both highway and vehicle that enable the

AHS to produce performance superior to today’s. In general, the controllers on the highway

should help the driver choose the route with the shortest travel time, and the controllers on

the vehicle should be able to drive the vehicle safely and efficiently. We can, therefore, group

the controllers in loosely coupled control layers according to their function and domain of

operation. This allows for independent design and development of controllers by different

groups of control engineers, so long as we can define a robust interface among the layers.

A hierarchical control design proposed originally in a 1991 PATH report [7] and

later extended in [8] has four layers: network, link, coordination, and regulation layers. The

first two layers are on the highway and the last two on the vehicle. This proposal, though

originally designed for the PATH-AHS proposal, is the most elaborate proposal in terms

of generality and completeness. It only specifies the control layers and not any specific

controller, and it encompasses both the highway and the vehicle.

In what follows, I will describe each control layer in detail, the interactions among

them, and show how we can accommodate in this control hierarchy other AHS strategies

and scenarios. I will also present the specific controllers that can implement the PATH-AHS

proposed structures and maneuvers.



2.2 AHS Control Hierarchy

I start this section with the highway model, since it is the connecting structure

between the highway and the vehicle controllers; therefore, all controllers have to agree on

it. As we will see later, the controllers use the highway model to create their own internal

structure. This is particularly true for the network and link layer controllers, which comprise

the “intelligence” of the highway.

2.2.1 Highway Model

A highway topology is divided into sections. A section has a specific length defined

as the length of the inner most lane within that section (lane 1 or the high speed lane). The

only requirement for a section is that it should have the same number of lanes throughout

its length, and all the lanes within a section have the same geometry. However, the number

of lanes from one section to another can change. Every section comprises a number of

segments. A segment can be either a line or an arc; in the former case its only attribute

is its length, but in the latter case it has length, the arc radius, and the direction of turn

which can be left or right.

The connections between the sections needs to be defined only at the level of the

lanes, i.e., the sections are connected together via their lanes. For every lane of a section

we need to know whether the lane has a barrier to its right or left, or whether the lane

is open. Barriers are one-foot long structures through which a vehicle cannot pass. There

are also other structures beside the barriers that may be present on the highway like stop

lights, check-in and check-out stations, and gates. Their positions along the lane should be

specified in the lane structures. The lane also can be a Source (an entrance to the highway)

and/or a sink (an exit). These data structures are shown in the bottom of figure 2.1. The

top diagram in figure 2.1 is an example of a highway topology and the corresponding data

model shown graphically.

In this example the highway splits and merges back again. There are barriers

between two of the lanes and at some point there are gates though which the vehicles can

move to the other side of the barrier. Also note that section 4 consists of three segments;

all of them are arcs but with different radius and turn direction. For example, the first

segment is an arc 400  meter long, radius of 200 meters, and turns to the right.

With this highway model in mind, I will describe each layer beginning from the

top of the hierarchy.
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Highway Topology

Ir
Highway model

‘section 4

line:600m line:400m

____i
line500m

A
arc:400m:  radius 200m,R
arc500m:  radius 4OOm,L
arc:400m:  radius 200m,R

Figure 2.1: Modeling the Highway and the Data Structure

2.2.2 Network Layer

The network layer controller provides routing information from any point on the

AHS to any exit of the AHS that may be the destination of the vehicles. The routing

information must be logical and unambiguous, in the sense that the vehicles should be able

to comply with the suggestions and should be able to choose a route when they reach a

junction or a point in the highway where there is a possibility of traffic splits. For example

in figure 2.1, a vehicle in section 2 should not be routed to section 4, and when a vehicle

is in section 1, the network layer’s information should be sufficient to enable the vehicle

to choose the correct direction (section 2 or 4). The same should be true for a vehicle in

section 2, where it can enter through the gate or otherwise continue straight. As we see

from figure 2.1, the choices that a vehicle has can depend on the lanes that it happens to

occupy. For example the vehicle in lane 1 of section 1 only can go to the section 2, but the

vehicle in lane 2 can go to either section 2 or section 4.

To describe the routing choices, the network layer decompose the highway into

patches. A patch is a collection of lanes that have open access to each other, i.e., a vehicle

traveling in one lane can freely move to the adjacent lanes within the same patch. Patches

are derived from sections of the highway as follows. Every section is inspected; if there is no

barrier between the lanes, a patch will be created with the same length and number of lanes

as the section. Therefore, when there is no barrier between the lanes of a section, the patch
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and the section are identical. Note that by definition of a section, we cannot encounter a

highway split within a patch.

The identity between the section and the patch is violated for sections that contain

barriers. For these sections we create a set of adjacent patches, such that each patch contains

the lanes with open access to each other.

As an example let us look at the highway of figure 2.1. We can derive the network’s

patch model as follows: (figure 2.2) Section 1 has three lanes with a barrier between lanes

1 and 2. Therefore, we create two patches. Patch 1 has only one lane (lane 1) and patch 2

has two lanes (lanes 2 and 3). In this way we continue until all sections are inspected and

all patches are created.

Highway model

t

Network Patches
(with connections)

section 4

patch 1
-

patch 3 patch 5
+li”““““““““bmj

- -

Figure 2.2: Modeling the Network Patches

The next step is to connect the patches. Two patches are connected if either

the lanes that they contain are connected together, or there is a gate between the lanes.

Therefore, into connect the patches together, we inspect the connections of every lane within

the patch and if the lane is connected to another lane, we connect the patch to the patch

which contains the next lane. To continue with our example (figure 2.2), we see that lane 1

of section 1 is connected to lane 1 of section 2, which translates to lane 1 of patch 1 to lane

1 of patch 3, so patches 1 and 3 are connected. Also we see a gate between lane 1 and 2 of

section 2 (figure 2.1), which translates to a connection between patch 3 and 4, as shown in

the bottom diagram of figure 2.2.

Now we can formulate more precisely the function of the network layer controller:

it is to provide a sequence of patches that in shortest time leads a vehicle to the patch
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in which its destination is located. Let R;j be the routing from patch i to patch j, the

destination of the vehicle. Then R;j = {pl~}~?.~ where pk is the index of the kth patch

through which the vehicle should travel. Note that pe = i and p, = j.

In this manner, we have effectively changed the highway topology to a directed

graphG=(N,E)whereNEl;.a, n is the set of patch indices, and E E N x N is the set

of connections between the patches: each member of E is a pair (i, j) where i and j are the

indices of the beginning and end of the edge, respectively. The problem of routing is then

transformed to finding the shortest path between the nodes of the graph, where the length

of a path is the sum of the length of the edges in the path, and the length of edge (i, j) is

the average travel time of the vehicles in patch i.

We can reduce the size of the graph by observing that some of the patches can

be excluded from the routing path, since they have only one next patch and one previous

patch. For example, we have the patch configuration shown in the top diagram of the

figure 2.3, we immediately can derive the graph G (middle diagram) where for every patch

a node is assigned and there is an edge between two nodes if the corresponding patches are

connected. However, as we see from the graph a vehicle in patch 5 can only go to the next

patch, and the same is true for a vehicle in patch 6. Therefore, we can eliminate all the

nodes that are not necessary for routing and we get the Network graph G’, shown in the

bottom diagram of the figure 2.3.

Network Patches
(with connections)

Networ-,Graph

uatch 3

Figure 2.3: Modeling the Network graph

We can construct the graph G’ = (N’, E’) directly from the network patches, by

categorizing the patches as follows:
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1. patches with sink

2. patches with source

3. patches with more than one next patch

4. patches with more than one previous patch

5. patches with gates

6. patches which do not have any of the above characteristics.

Then we can assign the nodes to the categories l-5 as follows:

l for sinks, splits (category 3), and gates, we assign a node to the patch and its next

patch(es).  Note that in the case of gates, one of the next patches is adjacent to the

current patch;

l for sources, and merges (category 4) we assign a node only to the current patch. The

node assignment for these categories is not necessary; however, since it terminates the

two arriving edges, e.g., edges 1 and 2 in figure 2.3, every patch has one and only one

edge through it; therefore, the computation and bookkeeping of the weights on the

edges are reduced;

l for other patches we do not assign any nodes.

This categorization and the resulting node structures is shown in figure 2.4.

In this manner we can derive the graph G’ = (N’, E’) where N’ c N is the set of

patches pj j = l,**+, m, m 5 n, such that pj is the index of the patch to which a node is

assigned, and E’ E N’ x N’. The length of any e’ E E’ is the sum of the average travel time

in all the patches through which e’ passes.

We now show that for all patches, we can find a shortest route.

Proposition 2.1 Let us assume that we have constructed the graph G’ as described above,

and we can find the shortest route Rik from any node j to any node k on the graph. Then

for every node i such that (i, j) E E’ and any patch pl # p; such that the edge (i,j) passes

through it, the route & = pr R’.{ ’ 34 is the shortest path from patch pl to node k in patch

Pk.



11

Gates

Figure 2.4: Modeling the Network graph

Proof: By construction of the graph G’ if the patch is not assigned a node, only one edge

passes through a patch, i.e., for the patch pl where edge (i, j) passes through it, the next

node where there is a possibility of route selection is j. Therefore, all vehicles in patch pl

have to travel through patch pj. Since Rik is the shortest path from node j to node Ic, it

will be the shortest path from patch pl if we append pl to the Rik. 0

This approach of organizing the highway in patches, provides several advantages:

l The vehicle will receive a list of patches that it should follow, and since the list is

broadcasted periodically (the period depends on the controller design), the network

layer can provide the best expected routing at any time during the travel time of the

vehicle.

l Since the information is based on the patches (not vehicles), another control layer can

receive this routing information and provide micro-routing information (e.g., to travel

in a particular lane), to the vehicle. This point is discussed in the link control layer.

l The approach is scalable for large metropolitan areas like the Los Angeles basin or

nationwide networks, where the number of nodes in the network is so large that

real time computation of the edge weights and shortest path is not possible. In

this case, we create small subnetworks, each with the routing described earlier for
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destinations within their domain, and for other destinations they provide the routing

to pre-specified entry points of the appropriate next subnetworks. In this way, by

providing a mapping from the destinations in other domains to the patches that

are the entry points to the neighboring networks, we can treat those patches as the

destination of the vehicles.

In the present software implementation of the network layer, the shortest path is

obtained by the distributed Bellman-Ford shortest path algorithm (see [9]).  Note that since

the weight on the edges are average travel times, they should be adjusted both periodically

and on demand (for emergency or unpredictable cases like an accident), Whenever there is

a significant change in the weights, the shortest path should be re-calculated.

To obtain the above formulation we made three implicit assumptions:

1. The highway topology is such that given a sequence of patches the vehicle can indeed

follow the route. This means that if the next patch is a downstream patch, the vehicle

is indeed able to carry out the required maneuvers to follow the path. Let us look at

an example.

SECTION 1 1 SECTION 3 1 SECTION 4
_------- --

_----- --

Network Graph

A possible modification ’
to the network grapn \

”

Figure 2.5: Modeling the routing inconsistency

Figure 2.5 shows the highway and its network graph. A vehicle in section 3 can go to

either section 4 or 5. However, a vehicle in section 2 may not be able to reach section

4, perhaps due to the short length of section 3 or the number of lanes that connect

2 to 3 and 3 to 4. This problem can easily be solved if we know what the capability

of the vehicles are, i.e., how many lane changes per kilometer are possible, and what

the traffic condition is in the sections. One possible solution when the traffic is heavy,

is to connect the edge that passes through section 2 to the node in section 5 directly,

as shown in the bottom diagram of figure 2.5. This will result in a path which does
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not go through section 3 for vehicles in the sections upstream of section 2 with a

destination downstream of section 3.

Another possible solution which does not require a change in the graph topology is

to introduce switching costs at nodes. Switching cost is defined as the cost (in terms

of travel times) associated solely with the reduction of the traffic flow as a result of

change lane. Every node has a table that assigns a cost to every connection from an

incomming edge to an outgoing edge. The switching cost is set to zero if the traffic

condition is normal, and the required change lane associated with the connection does

not reduce the traffic flow. The shortest path algorithm includes the costs of the

switching in calculation of the path cost. In the example of figure 2.5 when the traffic

is heavy, the node assigned to section 3 increases the switching cost in its table for

connection between the edge in section 2 and the edge in section 4.

2. The network layer assumes equal average travel time for lanes within a patch. This

allows us to treat the patch as a homogeneous block. This assumption may not hold

for short durations, for example, an accident blocks one lane.

3. The last assumption is that when a vehicle reaches its destination patch, it can reach

its destination lane. In other words, as the vehicle nears its destination, it moves

toward the outer lanes.

These assumptions make it clear that the network layer is not concerned with the

routing within a patch. The responsibility of choosing a lane within a patch for a given

vehicle is relegated to the link layer, which I consider next.

2.2.3 Link Layer

The link layer controllers are responsible for the smooth flow of traffic within the

AHS. Its tasks are to balance the traffic among the lanes by determining the immediate

path every vehicle should follow while traveling in the AHS. It provides micro-level routing

commands to a vehicle traveling in a given section. The routing commands are a function

of the actual traffic flow within the section the vehicle is traveling on and its neighbors, the

destination of the vehicle, and the route provided by the network layer.

The link layer controller uses the highway model described before. However, it

organizes the highway in interconnected lanes, each lane being connected to the front,

right, and left lanes (figure 2.6). Also each lane may have two next lanes as is the case for
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the second lane of section 1 in figure 2.6. The interconnection among the lanes also limits

the behavior of vehicle in a lane. For example, a vehicle in section 1 lane 1 (figure 2.6) can

only stay in the same lane.

nc.#x4:rr~ 1 ,.-se&b2 section 3 section 5

Highway model

Link layer’s lane
connections

section 4

Figure 2.6: Link layers highway model

Since a lane can at most connect to two next lanes and two adjacent lanes, it

is clear that the most basic commands to route a vehicle are: change right, change left,

straight, stay right, and stay left. The last two commands are for cases when the present

lane splits into two lanes. These commands are the most basic, since they require only

simple maneuvers, if any, from the vehicles.

The highway model allows the link layer controllers to be distributed across the

highway, such that each controller serves a number of sections and the vehicles on them.

However, for the proper routing of vehicles, it is necessary that an overlapping region exists

between two neighboring link layer controllers. Also, the amount of information that has to

be passed between the controllers depends on the design of the controllers, but in general

every controller should know about the downstream expected travel time, and the upstream

expected incoming flow. The distribution of the controllers allows the link layer to respond

to the highway condition in real time, which is crucial, especially when there is an incident.

A controller design for link layer is developed in [lo, 11, 121.

Now let us examine how the network and link layers can be used in different AHS

settings.

l For a proposal which is based on in-vehicle routing advice and decision making, the

network layer can be used as the routing guide; however, depending on the available

information, we can use either a static router, in which all the weights are fixed

(perhaps proportional to the distances along the highway), or a dynamic router of
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the network layer, whenever there is a possibility of updating the routing information

within the vehicle. The link layer can now be ignored, since no micro-router is needed,

and the driver is the decision maker. In this case, the design of the vehicle and its

controllers are more complex, as we will see later in this chapter.

l For an AHS proposal which is based on centralized planning (like the PATH proposal),

the network and link layer controllers are of paramount importance. The information

that the two layers send to each other is shown in figure 2.7.

1 NETWORK1

Figure 2.7: Network-Link Interface model

The network layer uses the travel time estimates from the link layer to calculate the

weights on the edges of its graph. In turn, the link layer will receive for each lane the

routing table from the network layer. This routing table, as explained earlier, consists

of a sequence of patches which connects that lane to any exit which is reachable

(reachabi l i ty  f  d  to a es ination means that a vehicle can travel to that exit, or the exit

lane is in a downstream patch). The link layer controllers also receive from the highway

sensors the traffic flow information in each lane and from vehicles the information

regarding the destination of vehicles (i.e., highway number and exit number) that are

traveling on that lane. The latter information can be transmitted to the link layer by

the vehicle via transmitters installed on vehicles, or it can be acquired using special

sensors on the highway. The information may be aggregate and statistical in nature.

Using this information, the link layer issues near-term routing commands to the vehi-

cles that should be executed by the vehicles. As the vehicle travels along the highway,

it receives a sequence of link layer commands, guiding the vehicle toward its destina-

tion in the shortest possible time.
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A point of caution: if the amount of information needed for decision-making is high,

one should thoroughly analyze the feasibility of acquiring that information. For ex-

ample, if the controllers require the exact position of each vehicle at every second,

then the highway should be either instrumented with new high-precision sensors, or a

very high bandwidth communication channel should be provided, so that the vehicles

can transmit their positions to the roadside controllers.

We now turn to the vehicle and describe the lower two control layers, namely the

coordination and regulation layer controllers.

2.2.4 Coordination Layer

The coordination layer determines which maneuver to undertake and coordinates

the movement of the vehicle with neighboring vehicles. When the vehicle has to do a

maneuver (e.g., change lane), this layer acquires permission from neighboring vehicles. This

activity can be done explicitly, by sending radio messages asking for permission, or implicitly,

using the vehicle sensors. When permission is obtained, this layer instructs the regulation

layer to execute the maneuver (e.g., move the vehicle from one lane to the adjacent lane).

The decision about which maneuver to undertake and when to start it is based on safety,

the shortest path to the destination of the vehicle, and the local traffic condition. Aside

from safety, these considerations can be made by the coordination layer itself or by the

link layer, if there exist a path planning controller on the highway. In the latter case, the

coordination layer receives the commands left, right, straight, and so on, from the link layer

and proceeds to perform the appropriate maneuvers.

We can further split the coordination layer into two distinct sublayers: supervisor

and maneuver sublayers. The supervisor sublayer ensures that the vehicle performs the

appropriate maneuver. If a maneuver becomes inappropriate at any time, the supervisor

sublayer aborts the maneuver and initiates the appropriate one. The appropriateness of a

maneuver is determined by the AHS strategy being modeled. When a vehicle is engaged

in a maneuver, it activates a protocol machine, which is a structured exchange of messages

between the vehicle and the neighboring vehicles. As stated before, this protocols can be

as simple as turning on the vehicle’s signal, or as complex as coordinating all neighboring

vehicles. The maneuver sublayer contains the protocol machines for all the maneuvers a

vehicle can perform.

We would like to be able to model the supervisor and maneuver sublayers and to
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answer such questions as: Does the maneuver as modeled result in the desired behavior?

How can we guarantee that the desired behavior is the only behavior the maneuver can

produce? Is there a possibility of deadlock between the initiator of the maneuver and its

respondent? There are many methods of modeling; we found the model and the syntax of

Finite State Machines (FSM), which are finite automata with output, the simplest and the

most convenient. I will explain briefly the general FSM model and syntax, and then show

how it is used to model the coordination layer controllers under different AHS strategies.

Finite State Machine (FSM) The finite state machine is a generalization of

the finite automaton, which is a mathematical model of a system with discrete inputs and

outputs. The system has many internal configurations or “states”; each state is a summary

of all the past history needed to determine the next state upon arrival of an input. We can

therefore characterize a finite state machine by:

0 Q: finite set of states

0 qo: an initial state

l C: set of input symbols

l X : Q x C -+ Q: the transition function

l A: set of output symbols

l y : & + A or y : Q x A -+ A: the output generating function

We define a finite state machine M as the six-tuple (Q, qo, C, X, A, y). The function X takes

as input the pair (q, 0) E Q x C and outputs the next state q’ E Q. There are two distinct

approaches to specify the function y. If the argument of y is the state alone, the FSM is

called a “Moore” machine; if the argument is the pair (q, 0) E Q x C, the FSM is called a

“Mealy” machine. Moore and Mealy machines are equivalent and have the same expressive

power. We use the Mealy model to model the coordination layer, since it is more convenient

to describe the communication protocols using the Mealy machines.

We can associate a directed graph with a finite state machine by assigning the

states of the system to the nodes of the graph, and whenever for any two nodes i and j,

there exist a o such that X(i, 0) = j, there is an edge from i to j, denoted by the pair (i, j),

and the label on the edge (i,j) is, in the Mealy machine representation, a/S where S E A,

and for the Moore machine representation, the label is CY.
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Figure 2.8: An Example of the Mealy FSM

An example of a three-state Mealy FSM is shown in figure 2.8. As we see from

the figure, the input (sometimes called the event) evl causes the system to move from state

A to state B and generates the output oul. To create a large system, it is easier to create

system modules first and later connect them, This is down by coupling (sometimes called

synchronizing) different FSMs by using the output of one machine as the input to another,

as we will see in the description of protocols we employ in the coordination layer.

The behavior of a Mealy-FSM is defined by the states that it can traverse and

the outputs it can generate. Therefore, we can answer the question of the desirability of

the system behavior by analyzing the FSM and tracing its states and outputs. This can be

done by manually analyzing the FSM when the number of states is small, which I have done

for a relatively small system in section 4.2.3; however, this becomes difficult as the state

space increases. For large state spaces there are some formal methods and programs that

can be used to analyze the system. Assume that the behavior of the system is F and the

desired behavior of the system is A. Then one way to show that the modeled system will

not generate any undesired behavior is by checking the intersection of F and A’ which is the

complement of the desired behavior, F II .A’, and if the intersection is empty, we conclude

that F c ,A, so the modeled system can not generate any undesirable behavior. Among

the formal verification software packages are COSPAN [13]  and HSIS [14],  which follow the

above procedure. For example in COSPAN, A is called a monitor, which is an automaton

specified to define those sequences of (state, event) pairs produced by the FSM algorithm

which constitute the performance of the stated task. Both packages allow modular design

of the FSMs,  and have been extensively used to verify VLSI designs.
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Now, let us return the coordination layer. I will describe next the supervisor FSM

and the maneuver FSM.

l Supervisor Sublayer- The supervisor sublayer can be abstractly regarded as a two-

state machine. In the first state it waits for the occurrence of an event. When the

event occurs, the supervisor initiates the appropriate action. In the the second state,

it waits for the completion of the action it started. The events that the supervisor

awaits are of three types:

1. Events related to changes in the position of the vehicle on the highway. For

example, if the vehicle is at the end of an exit ramp, at a place in the highway

where changing lane is illegal or unsafe (like the places where solid lines are

drawn between lanes), or if another vehicle is in the proximity of the vehicle,

the supervisor should be notified. The events of this type are detected by the

vehicle’s sensors, which in turn notify the supervisor. Accordingly as it is a

manual or an automated vehicle, the sensors are the human driver’s eyes and

ears or a set of radars and detectors.

2. Arrival of a message or signal from another vehicle requesting a maneuver or

from the link layer relaying a specific instruction. The communications module

receives the message and forwards it to the supervisor for a reply.

3. Arrival of a message from the maneuver module indicating successful or unsuc-

cessful completion of a maneuver (maneuver-done).

An example is shown in figure 2.9, where ev-typei-j is the jth event of type i and

initiate-i is the initiation of the ith maneuver (a request or a response).

Figure 2.9: A Supervisor Sublayer FSM model
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The system is initially in the IDLE state. The next state is any of several WAIT

states. In figure 2.9, there are two WAIT states, WAIT-l and WAIT-2, that can

be reached by the two events, ev-typel-1 and ev-type2-1, and the system will then

generate the outputs, initiate-i and initiate-2, respectively.

We can reduce the complexity of the supervisor by adding the requirement that the

supervisor sublayer can only participate in one maneuver at a time, either as initiator

or as respondent. With this simplifying assumption we can see that when the system

is in any of the WAITstates,  and another vehicle requests a maneuver, ev-type2-1,  the

supervisor generates the output send-busy, interpreted as the rejection of the request.

A specific design for the supervisor sublayer of the automated vehicles will be discussed

later.

l Maneuver Sublayer- The maneuver sublayer contains the protocol machines for

maneuvers. The two basic maneuvers every vehicle should be able to perform regard-

less of the underlying AHS strategy, are lane keeping and lane changing. The former

does not require the coordination layer, since there is no need to reach an agreement

with neighboring vehicles; the vehicle only uses its sensors and checks the relative

velocity and the distance between vehicles to avoid collision. However, completing a

change-lane maneuver requires an empty space in the adjacent lane, and if the space

is occupied by another vehicle then the lane-changing vehicle should either wait, de-

celerate, or ask the neighbor to decelerate, by using some form of communication

(signaling, direct radio communication, or just turning in front of the other vehicle

and hoping that there is no collision!).

Although maneuvers can be very different from each other, their structure should

follow the following four-step general algorithm:

1. When initiated by the supervisor sublayer, activate the communication proto-

col specific to the maneuver and secure the agreement of all vehicles that are

involved. If successful, go to step 2; otherwise, go to step 4.

2. Ask the regulation layer to implement the maneuver.

3. Wait until the regulation layer returns the outcome of the maneuver. If the

regulation layer was successful, do the bookkeeping and notify other vehicles

involved, if necessary.

4. Notify the supervisor layer of the outcome of the maneuver.
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When the initiated maneuver has notified the supervisor layer, it can terminate.

2.2.5 Regulation Layer

The regulation layer implements and executes the maneuver. The controllers at

this layer should provide the appropriate inputs to the vehicle’s actuators in order to perform

the maneuver started by a coordination layer controller. An example of-such inputs is the

jerk or acceleration value that the vehicle should implement. Regulation layer controllers

are in general time-driven systems, since they are heavily dependent on the sensors. The

sensors on the vehicle have their own sampling time, i.e., the sensors provide the surrounding

information every T seconds, where T can be as short as 20 milliseconds; therefore, the

regulation layer can at most observe the outside world and the effect of its commands every

T seconds. For example, when the vehicle has to change lane the information regarding

where the vehicle with respect to the lane marker is can be obtained every T seconds,

and when the regulation layer issues a tire angle or lateral acceleration to the engine, the

amount of the vehicle movement can be assessed at every T seconds. We still can model

the regulation layer as a FSM, if we assume that whenever the new sensor values are ready,

the sensors module within the vehicle will issue an event to the regulation layer. So let us

look at the general model of the regulation layer, see figure 2.10.

Figure 2.10: General Model for Regulation Layer Controller

The initial state for the regulation layer is WAIT-SENSORS-UPDATE-l. When

the new set of updated values from the sensors is available, the regulation layer checks the

requests from the coordination layer. If there is no request from the coordination layer, the

regulation layer should only do the safety maneuver, the controller which makes sure the

vehicle will not run into a vehicle in front of it. This is shown as the SAFETY-MANEUVER
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state from which the regulation layer takes the edge back to WAIT-SENSORS-UPDATE-

1, the initial state, with the output do-safety-maneuver. However, when there is a request

from the coordination layer, shown in the figure as the event req-maneuver-l, the regulation

layer first should check the safety conditions and if the maneuver does not violate the safety

constraints, it performs the maneuver. The state CHECK-SAFETY-COMP checks both

the safety and the completion of the initiated maneuver. When the maneuver is safe and

not completed as of the current time, the regulation layer outputs do-maneuver and moves

to the WAIT-SENSORS- UPDATE-2 state, until the next update from sensors is available.

In the case that the maneuver is not safe to perform, it aborts the maneuver and moves to

the SAFETY-MANEUVER state. When the maneuver is completed, the regulation layer

still moves to SAFETY-MANEUVER state but its output is maneuver-successful, which

also notifies the coordination layer of the outcome of the maneuver. In general, there may

be many requests from the coordination layer, which increases the number of states in the

regulation layer; however, the overall design of this layer remains the same.

The coordination layer together with the regulation layer comprise the intelligent

vehicle.

Now that we have the FSM tool and some general models for the coordination

layer and regulation layer, we can be more specific and show the design of the coordination

layer and regulation layer controllers within the PATH-AHS control architecture.

2.3 PATH-AHS Control Architecture

The PATH-AHS proposal is built on the premise that if we can decrease the dis-

tance between the vehicles moving in the highways, we can accommodate more traffic within

the existing highway network. Therefore, it proposes to organize the traffic in platoons: a

group of vehicles traveling in close proximity with each other with the intraplatoon distance

of one to three meters. There is no requirement on how many vehicles can belong to one

platoon; however, through simulation the average platoon size is about 10 vehicles when the

flow of traffic is about 8000 vehicles per hour per lane. In order to maintain close spacing

within the platoon, the driving is done automatically.

Let us see how you will “drive” on an AHS structured and built according to the

PATH proposal.
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You drive your vehicle through an entrance to the highway and push a button

on the dashboard, enabling the Automatic Vehicle Driving System (AVDS), which in turn

registers the vehicle and its pre-entered destination with the highway controllers. The AVDS

activates the vehicle’s radio transmitters and receivers and listens to the messages that come

from roadside. The messages are divided into two parts: destination and command; the

command part can be change-lane-right, change-lane-left, or keep-lane. If the destination

is the same as the the vehicle’s destination, The AVDS tries to comply with the command.

When the command is keep-lane, the AVDS, using its sensors, looks for other vehicles in

front of it, in order to create platoons or responds to other vehicle’s requests; when the

command is change-lane, the AVDS checks the adjacent lane with its lateral sensors, and

if there is a vehicle there, it asks for permission to change lane; otherwise, it calculates a

trajectory starting from its present position and ending in the adjacent lane, and sets the

vehicle’s throttle, brakes, and steering actuators to follow that trajectory. When the vehicle

reaches its destination, the AVDS sounds an alarm, and asks you to take over the control

of the vehicle. During the travel, you may be drinking coffee and reading a newspaper. If

at the end of travel, you are not able to take the vehicle’s control, the AVDS will park your

vehicle in a designated place at the end of the exit lane.

2.4 Design of the Coordination and Regulation Layer Con-

trollers for PATH-AHS Proposal

The first vehicle in a platoon is called the leader and the other vehicles are followers.

A platoon with one vehicle is called a free agent. Network and link layers controllers are

operating on the highway broadcasting commands and information to the vehicles.

The basic maneuvers required of an automated vehicle in this environment are:

join to form platoons, split to break up the platoons, and change lane to move a vehicle from

one lane to another. The coordination layer can combine these basic maneuvers to produce

more complex maneuvers like exit or free agent maneuver. In designing these maneuvers,

we are assuming certain sensing and communication capabilities. Every vehicle is equipped

with a transmitter and receiver that can send and receive messages to and from other

vehicles and road side controllers. Within a platoon, there is an established communication

link for periodic message transmission. Vehicles have longitudinal and lateral sensors that

can calculate the intervehicle distance, and the relative velocity. The lateral sensors can

sense vehicles in the adjacent lane and next-to-adjacent lane (two lanes away).
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In what follows, I describe the maneuver sublayer, the supervisor, and then the

regulation layer controllers.

2.4.1 PATH-AHS Maneuver Sublayer

The maneuver sublayer contains the primary maneuver and the free agent maneu-

ver protocols, which I describe next. In the description of the primary maneuvers, I first

identify the involved vehicles, then the protocol machine, and finally the required updating

and bookkeeping.

l Join Maneuver
The join maneuver creates one platoon from two platoons. Leaders of both platoons

are involved in the maneuver; however, only the leader of the rear platoon is responsi-

ble to execute the required trajectory to reach the front platoon. The join maneuver

is initiated by the leader of a platoon when the following conditions are satisfied:

1. The vehicle is in its assigned lane.

2. The platoon leader is not engaged in any other maneuver.

3. The sensors detect another platoon in the same lane.

Let us assume that platoon A is in front of platoon B, and A; and B; are the ith

followers of A and B, respectively. Figure 2.11 shows the sequence of events, and

figure 2.12 shows the FSM for the join maneuver. Br is the leader of the rear platoon

which initiates join and Al is leader of the platoon A.

If the above conditions are met and the size of the platoon B is smaller than the

platoon size allowed in that section, Br transmits a request-join message to the platoon

A. The size of the B platoon is also encoded within the message. Depending on how

the communication module is built, the vehicle that receives the message may be the

leaser Al or a follower of the platoon A, in which case it forwards the message to its

leader, Al.

Al checks the conditions 1 and 2 above, and also adds up the sizes of the two platoons,

and if the total size is less than the maximum platoon size specified by the link

layer controller, it sends an acknowledgement, ack-request-join. Otherwise it sends a

negative acknowledgement, nack-request-join, which causes Br to terminate the join

maneuver.
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B, establishes link with A’s platoon
sends request-join and sets the busy flag

no

At adds two platoon sizes and checks if > optsize

no

A, sets busy flag and sends
ack-request-join to Br

yes

Br asks its regulation layer to merge

f

I Bt checks the regulation layer flag

Success

B sends camp-join to A,
cance is busy, becomes a follower

I

1
A, sends nack to Bt

Figure 2.11: Sequence of Events in Join Maneuver

Figure 2.12: The FSM for Join Maneuver



26

Upon receiving ack-request-join, Br’s coordination layer controller instructs its regu-

lation layer to execute the join feedback law. The regulation layer controller causes

the B platoon to follow the trajectory needed to reach a pre-specified distance (the

intraplatoon distance) from the tail car of A’s platoon. During this time, the distance

from the tail car of the A’s platoon is continuously sensed, and if another vehicle has

moved between the two platoons, the execution of the maneuver is aborted by the reg-

ulation layer, the coordination layer of Br then sends an abort-join-maneuver message

to the platoon A. While Br is accelerating, the rest of its platoon, under the follower

feedback law, maintain platoon formation. When Br’s regulation layer has completed

the maneuver, it notifies the coordination layer, which transmits join-complete to Al.

Al then updates its own state information regarding its new platoon, and sends a

message to its followers (which now include the vehicles in platoon B) to update their

states. At the end of the update, the two platoons are joined, and the maneuver is

completed.

From the state diagram of figure 2.12 one can see that the supervisor may issue

an Sup:abort-maneuver when the vehicle is accelerating (in WAIT-REGULATION-

RESPONSE state); when this happens, the regulation layer is notified, but the ma-

neuver cannot be aborted, until the regulation layer aborts the maneuver and issues

maneuver-successful or Reg:abort-maneuver.

The members of platoon A must update the size of the platoon in their state infor-

mation. The tail car of platoon A also has to update the back car communication id;

the members of platoon B have to update their position in the new platoon and the

platoon leader information.

l Split Maneuver

The split maneuver splits a platoon to the two platoons. There are two types of

split: fast-split and slow-split. In fast-split, the maneuver is completed as soon as

the platoons are logically separated which occurs when the updatings of the platoons

are completed; in slow-split, the maneuver is complete when the platoons are at a

safe distance from each other. Fast-split is used mainly for emergency purposes.

Depending on which vehicle in the platoon initiates the maneuver, we can also classify

the split maneuvers as follows:

1. The leader of the platoon wants to become a free agent. In this case the vehicles

involved in the maneuver are the leader and the second car in the platoon.
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2. A follower wants to split from the platoon. The involved vehicles are the splitting

vehicle and the leader of the platoon.

3. The leader of the platoon asks a follower to split from the platoon. The involved

vehicles are the splitting vehicle and the leader of the platoon.

The third split type is needed to accommodate a change lane maneuver by a vehicle

in an adjacent lane or in emergencies; however, except in the initiation phase, it is

the same as the second type; thus, I will only describe the first two of the above

types. Figure 2.13 summarizes the sequence of events for both cases, and figure 2.14

illustrate the FSMs for the initiator’s communication protocol.

A, sends request-split to A2 A,sends request-split to Al

f
A, checks if71 yes

A, sets busy &
sends ack-request-split to A,,,

A2 IA, sets busy

t
I I I

AZ/A, broadcasts its own ‘state’ info,
to its followers. After the update is complete

A2 sends ack-request-split to Al or
A,,, sends begin-split to Al

A1 sends nack to A, 1

A I asks A,- 1 to disconnect the communication link
A, broadcast the new platoon size

t
AZ/A, asks the regulation layer to split
AZ/A, check the regulation layer tlag

A, unsets  busy

Figure 2.13: Sequence of Events in Split Maneuver

Let us assume that A, is the mth follower in platoon A with Al as its leader. If A1

wants to split, it sends the message request-split to AZ. Follower AZ then updates its

state (replacing the platoon id by its own id), and sends a message to all other vehicles
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in the platoon to update their state, and to follow the AZ’s lead from then on. When

A2 receives the update-complete message from the tail car of the platoon, it sends the

message a&request-split to Al and activates the split regulation layer controller. As

soon as the regulation layer completes the maneuver, AZ sends the split-complete to

Al. The vehicle Al in turn updates its own state to reflect the fact that it is now a

free agent (one-car platoon). The maneuver is now complete. Note that AZ always

accepts the split maneuver initiated by the leader.

Figure 2.14: The FSM for the Split Maneuver: Follower Splitting

If a follower, say A,, in the A platoon wants to split, it sends the message request-

split to Al. Upon receiving this message, Al checks its busy flag, and if it is not

set, it replies with the message ack-request-split, and waits until it receives the begin-

split from A,, after which it instructs A,-1 to change its back car id to 0 a n d

disconnects the communication link of its own platoon with the platoon with A, as

its lead vehicle. A,-1 is now the tail car of A’s platoon. When A, receives the

acknowledgement from A r, it updates its state (since it is now a leader) and instructs

its followers to update their states and follow the vehicle A,. When the tail car of the

platoon has updated its state, it returns update-complete to A,. A, then transmits

the message split-begin to Al and instructs its regulation layer to execute the split

feedback law, which causes A, to decelerate until it is at a safe distance from platoon

A. When that distance is reached, A, transmits the message split-complete to Al,

and the maneuver is complete.

The members of the new platoon have to update their states regarding the size of

the platoon, their position in the new platoon, and the lead vehicle information, if

applicable.
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If a vehicle within a platoon wants to change lane, it must first become a free agent.

The free agent maneuver is built on top of the split maneuvers. The free agent

maneuver requires one split, if the vehicle is first or last in the platoon, and two splits,

if it is a follower in the middle of the platoon.

l Change Lane Maneuver

The change lane maneuver is initiated by a free agent when the lane assigned by the

link layer is different from the vehicle’s current lane. If the vehicle is not a free agent,

the required split(s) should be initiated at the end of which the vehicle is a free agent.

Now suppose that A is a free agent in lane 1 of a three-lane highway and wants to

change its lane to lane 2. It can do so only if there is adequate space in lane 2 and

no vehicle in lanes 2 or 3 is planning to move into that space. Therefore, the vehicles

that are involved in the change lane maneuver are vehicle A, the nearest platoon to

the vehicle A in lane 2, and if there is no platoon in lane 2 in the lateral sensor range

of the vehicle A, the nearest platoon in lane 3, if any. The sensors on the vehicle

determine the presence or absence of a vehicle within some detection range in the

the adjacent lanes. Vehicle A can change its lane under one of the following three

conditions:

1. No vehicle is detected in lanes 2 and 3; the vehicle can move to lane 2.
2. No vehicle is detected in lane 2, but a vehicle is detected in lane 3;

vehicle A then sends a message to that vehicle, asking whether the
vehicle wants to move into lane 2.

3. A vehicle is detected in lane 2. A then conducts a protocol exchange
with the platoon in the manner described below.

Figure 2.15 describes the sequence of events that must occur before A changes lane.

Suppose A has detected vehicle B, in lane 2. It sends request-change-lane to B,

which the latter forwards to its leader, BI. If B1 is busy, it sends a nack-request-

change-lane to A. If it is not busy, it returns ack-request-change-lane. At this point

B1 determines how to create a space in lane 2 in order to accommodate A’s request.

There are three options:

1. Vehicle A can decelerate until it reaches the safe distance behind the platoon

B. If this option is chosen, B1 sends the message decelerate-your-platoon to the

vehicle A. Vehicle A then activates the appropriate regulation layer feedback law

to create the trajectory for moving the vehicle to a safe distance behind platoon
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l a n e  2  oypied $,

A, when “change lane” true, sets
busy & checks lateral sensor

---I lane 2 clear

lane 2 and 3 arc clear

----Ilane 3 occupied

I B, decides by A’s relative
posltlon and speed I

sends ln# and

Tail car of platoon B transmits
position and velocity updates to A

A request decelerate to change
A check the regulation layer flag

-I-

ntot-success success

v ye!

B 1 request decelerate to change
B 1 check the regulation layer flag

t t
B t sends B t sends

decelerate-complete abort-tty
to A

--T--
A request move to adjacent lane
A check the regulation layer flag-A lsuccess I

C sends nack to A not-w

A resets the link command

A check the regulation layer flag

uccess
#

promise-not-to-move

1
I

7 7

A unsets the busy flag

cess

Figure 2.15: Sequence of Events in Change Lane Maneuver. A is the vehicle that wants to

change lane, B is the platoon in the adjacent lane (lane 2), and C is the vehicle in the next

to the adjacent lane (lane 3).



31

B. During the deceleration, the tail car of the platoon B sends information

regarding its velocity and position along the highway to the vehicle A, since

acquiring this information by direct line-of-sight detection may not be possible.

If the deceleration is successfully completed, A activates the lateral controller

to move the vehicle to the adjacent lane. Depending on the outcome of the

maneuver, A sends either of the messages change-lane-complete or abort-change-

lane to B1.

2. Platoon B can decelerate until it reaches a safe distance behind the vehicle A .

At the end of the deceleration, the leader B1 sends the message deceleration-

complete to the vehicle A, which causes A to activate its lateral controller of the

regulation layer. The rest is the same as the previous option.

3. Platoon B can split at a suitable position. In this case B1 initiates the split

maneuver and asks the follower B, to split where n is the appropriate index. Note

that the split distance between the two platoon could be as large as twice the

safe distance, since presumably vehicle A will move in between the two platoons.

When split maneuver is completed, B1 sends the message split-complete to the

vehicle A which causes A to activate its lateral controller. The rest is the same

as the previous options.

In the first approximation, Bl’s  decision is based on the location of A relative to the

platoon B and the safe distance, and one of the above options is chosen depending on

the minimum distance of the deceleration, i.e., if vehicle A is almost at the head of

the platoon B, and B is a large platoon, platoon B decelerates, and if A is at the tail

of the platoon B, vehicle A decelerates. Option three is chosen whenever the platoon

is a large platoon and vehicle A is almost at the middle of the platoon B.

In this maneuver, excluding the split maneuver that may occur, there is no state

change beside the new lane for vehicle A.

2.4.2 PATH-AHS Supervisor Sublayer

A simple and general supervisor FSM for the above maneuver sublayer is shown

in figure 2.16. The striped line in the middle divides the supervisor for maneuvers for

traveling in the AHS ( above the line) from the maneuvers for termination of the trip and

the release of the vehicle control by the AVDS (be ow the line). In the figure the letters A1

to K correspond to the events to which the supervisor will respond. These events are:
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Figure 2.16: A Supervisor Sublayer FSM Model

l A: The maneuver sublayer notifies the supervisor that the initiated maneuver was not

successful.

l B: The maneuver sublayer notifies the supervisor that the initiated maneuver was

successful.

l C: Vehicle receiver notifies the supervisor of a message from another vehicle.

l D: Vehicle receiver notifies the supervisor of a message from roadside controller (link

layer controller).

l E: Vehicle sensors notify the supervisor that the vehicle is at the end of an exit lane

and entering the surface street.

l F: Vehicle sensors notify the supervisor that the vehicle is not in the correct lane (the

lane the link layer controller has assigned).

l G: Vehicle sensors notify the supervisor that at this position on the highway the

change lane maneuver is illegal.

l HI Vehicle sensors notify the supervisor that there is a vehicle in front.
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l I: Vehicle sensors notify the supervisor that at this position on the highway the join

maneuver is illegal.

l J: The release of the control maneuver was not successful.

l Ii: The release of the control maneuver was successful.

The events A, B, J, and K are from the maneuver sublayer, C and D are generated from

the communication module, and E through I are from sensors module. The release-control

and park-vehicle maneuvers are not yet modeled.

The action that any of these events causes depends on the state of the supervisor,

since, as described earlier, the output of a Mealy machine is a function of both the state

and the event. For example, if C (arrival of a message from another vehicle) occurs, the

supervisor will either initiate a response maneuver (initiate-response) or send a busy message

back (send-busy), depending on whether it is in the IDLE state or one of the WAITstates,

respectively.

The system starts in the IDLE state; when the event H or F occurs, it initiates

the corresponding maneuver, join or change lane, and moves to the state WAIT-CHANGE-

DONE or WAIT-MERGE-DONE, respectively. In either state there is a possibility of

aborting the maneuver. For example, when event I or F occurs and the supervisor is in

state WAIT-MERGE-DONE, the output will be abort-join, but the system will not change

its state, until it gets either of the A or B events, which tells the supervisor that the

maneuver sublayer has successfully or unsuccessfully ended the maneuver. This is for the

purpose of safety, since the supervisor does not know how the maneuver has progressed,

and it is possible that completing the maneuver is safer than aborting it. When the sensors

notify the supervisor that the vehicle is at the end of an exit, the supervisor activates the

release-control maneuver and awaits its result. If the maneuver is successful, the supervisor

terminates itself; otherwise, it parks the vehicle in a pre-determined parking lot and, then,

terminates itself.

2.4.3 PATH-AHS Regulation Layer Controllers

After the supervisor chooses the maneuver that the vehicle should engage, and the

maneuver sublayer acquires permissions from the other vehicles and successfully executes

its communication protocol, it is the regulation layer’s task to execute and implement the

maneuver. For example, when the join command is issued from the maneuver sublayer,
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the regulation layer should devise a trajectory that accelerates and decelerates the vehicle

appropriately, so that at the end of the trajectory the vehicle is within the intraplatoon

distance of the tail vehicle of the front platoon.

From the description of the maneuver sublayer we see that we need the following

controllers within the regulation layer to successfully drive the vehicle in AHS:

l Accelerate to join is used by a leader that wants to join the platoon ahead. The

controller calculates an acceleration and deceleration trajectory which results in the

joining of its own platoon to the front platoon. The primary inputs to the controller

are the relative velocity of the front platoon and the distance to the tail vehicle of the

platoon. This is the only maneuver that accelerates the vehicle beyond the maximum

velocity allowed in the highway, and therefore it is very important that the controller

be tested thoroughly in software and hardware to avoid high-speed collisions. The

maneuver may be aborted in three cases:

1. If from one sample time to the next there is a step change in the intervehicle

distance, which means that another vehicle has changed lane in between the two

platoons. This dangerous condition may cause an accident, depending on the

velocity of the joining vehicle and the distance to the lane-changing vehicle.

2. If the maneuver is not safe to perform, which may happen if the platoon in front

is decelerating rapidly.

3. If the coordination layer requests an abort of the maneuver. In this case, the

regulation layer will abort the join maneuver, if it is safe to do so, i.e., the

maneuver is not almost completed.

l Decelerate to split, which is used by a follower that is splitting from its platoon. The

controller designs a deceleration and acceleration trajectory, which causes the vehicle

to be at the safe distance from the platoon ahead of it. This controller uses only the

difference of the speed and distance between itself and the platoon ahead of it.

l Decelerate to change lane, used by a free agent that is supposed to move behind the

platoon in the adjacent lane. This controller is similar to the decelerate to split, but

instead of tracking the vehicle in front of it, it tracks the tail vehicle of the adjacent

platoon. In order for this controller to be safe, it also has to track the velocity and

distance of the vehicle in front of it.
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l Move to adjacent lane, used by the change lane maneuver. When the vehicle is in the

position to move to the desired lane and the sensors do not see any threat from other

vehicles, it activates this controller. The inputs to this controller are the sensors value

of the relative speed and distance of the vehicles in the vicinity.

We have to add the following two controllers for the default cases, i.e., when the vehicle is

not involved in any maneuver.

l Lead control is the default controller for the leader of the platoon. Lead control is

active whenever the vehicle is not involved in a maneuver. This controller operates in

one of the following two modes: safety or follow the specified maximum speed.

In the first mode the sensors have already detected a vehicle within the safety domain

of the vehicle and traveling slower than the specified speed; this causes the lead con-

trol to calculate a deceleration and acceleration trajectory according to the distance

between the vehicles and the velocity difference, at the end of which, the vehicle is at

the safe distance from the vehicle in front.

In the second mode, the sensors may have detected another vehicle, but it is not

within the safety domain. The input to the lead control is either the difference of the

distance and velocity of the vehicle ahead, if applicable, or the optimum velocity set

by the link layer for that lane.

l Follower control is the default controller for the followers in the platoon. Since the

vehicles are traveling in close proximity to each other (one to three meters), the

follower law depends not only on its sensors to track the velocity and the distance

to the front vehicle, but also on the acceleration information transmitted to it from

the regulation layer of the front vehicle. We will specify the required communication

link later in this chapter. The inputs to the controller, therefore, comprise the sensor

information and the acceleration of the front vehicle. The communication link is a

crucial part of the regulation layer, since, to guarantee safety, as soon as the required

information from the front vehicle is not received, the regulation layer informs the

supervisor sublayer, which in turn initiates the split maneuver.

Figure 2.17 gives the state diagram for the regulation layer.

Since vehicles enter the AHS as free agents, the initial state of the regulation layer

is LEAD-CONTROL, which implements the lead-control controller and waits for the next
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Figure 2.17: Regulation Layer Controller Layout for PATH-AHS



37

update of the sensors. As soon as the update is available, the regulation layer checks the

maneuver requests that may have been issued by the coordination layer. The request can

be either req-join or request-move-to-adjacent (only req-join is shown in the figure). In

either case the regulation layer checks the safety or completion of the maneuver each time

sensors updates are available. When the join maneuver is successfully performed the state

moves to the FOLLOWER-CONTROL, since at this point the vehicle is a follower. In the

FOLLOWER-CONTROL the only acceptable maneuver is req-split, which moves back the

state of the regulation layer to the LEAD-CONTROL state, whether the split maneuver is

successful or not. The reason is that after the platoon is split, a join maneuver is needed

to join them back.

For a full description of the longitudinal controls (Accelerate to join, Decelerate

to split, and decelerate to change lane see [15, 16, 171; for lateral controls see [18],  and for

follower control see [19, 201).

2.4.4 Interfaces Among Control Layers

In this section, I summarize the interfaces among the control layers.

Network-Link The network layer provides the routing table to the link layer controllers.

The routing table can be accessed by the pair (patch-i, destination-j) where patch-i is the

current location of the vehicle and destination-j is its destination patch. The link layer

provides the average travel time for each patch. The average is taken over the travel times

of the lanes in the corresponding patch.

Link-Supervisor The link layer broadcasts a command (change right, change left, straight,

stay right, and stay left) periodically to every lane of a section for every reachable destination

from that lane. The vehicles receive the command list and using their destination as the

key, decode the command specific to their destination. The supervisor submodule also

periodically transmits its position (lane and section number) and its destination address to

the link layer controller.

Supervisor-Maneuver The supervisor initiates the maneuver that should be performed.

It also may request the termination of the maneuver by notifying the maneuver sublayer.

However, the maneuver may not be aborted because of safety or other factors involved in the

maneuver. The maneuver sublayer notifies the supervisor when the maneuver terminates

successfully or unsuccessfully.

Supervisor-Regulation The supervisor sublayer initiates the regulation layer controller

and request its termination when necessary. The regulation layer notifies the supervisor
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sublayer when the termination is successful.

Maneuver-Regulation The maneuver sublayer request the execution of a maneuver from

the regulation layer. The regulation layer notifies the maneuver sublayer of the outcome

(successful or unsuccessful) of the maneuver execution.

2.5 PATH-AHS Extension for Mixed Traffic, Mixed Lane

Assignment

In order to implement an AHS design incrementally, i.e., to deploy the AHS on

part of an existing highway such that some lanes are converted to the AHS use and others

are used by the manual traffic as before, we need to provide the necessary controllers for

transitions from manual lanes (ML) to automated lanes (AL) and vice versa. One of the

proposals for highway configuration which can safely utilize the mixed traffic is the island

configuration which was shown above in figure 2.1. For safety purposes [Zl] there are

barriers between the manual and automated lanes. Since in the AL the vehicles are driven

automatically, a portion of the roadway called transition lane, TL, is assigned for transfer

of the control from the human driver to the computer on the vehicle. The barriers between

the TL and AL are breached by gates at specific points to permit the movement of the

vehicles from the TL to AL and vice versa. For other proposed highway configurations

and the quantitative analysis in terms of traffic flow improvement, control complexity, and

construction costs see [22].

In this section, I will describe the coordination and regulation layer controllers

required for the entry and exit maneuvers for an automated vehicle that wants to join the AL

or wants to exits the AL, the network layer controller extension, and the extra infrastructure

needed to facilitate the entry and exit maneuvers. We do not need an extension of the link

layer controllers; however, the link layer controllers have to be designed such that it does

not require the periodic message transmission from the manual vehicles, and when some

specific vehicle information is needed that cannot be acquired through highway sensors, the

link controller has to rely on statistical prediction.

2.5.1 Extended Highway Infrastructure

Check Station At beginning of every TL a check station is installed to test if the vehicles

that enter the TL in order to enter the AL are automated and in proper working condition

with the capabilities necessary for the AL. The testing can be with the sensors installed on
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the check station and a series of message transmissions to verify the state of the controllers

on the vehicle. If the vehicle fails any of the test, it is not permitted to enter the AL. The

actual enforcement method has yet to be determined.

Stop Light A stop light is installed on the TL at a point where all automated vehicles

after passing the check station test stop. The stop light can be used to meter the inflow

to the AL, synchronize vehicles waiting to enter and the gaps in the AHS, and initiate the

maneuvers between the a platoon in the AL and the vehicle. To perform these tasks, the

stop sign is connected to a highway sensor which detects vehicles and gaps in the AL at

some distance upstream. The stop sign notifies the vehicle in the TL of the available gap

and the communication id of the platoon in the AL in front of the gap, if any.

2.5.2 Extended Network Layer

Recall that the network layer provides the routing table for the AHS. Since the

highway is used by both human drivers and automated vehicles (though they are segre-

gated), the network layer provides two routing tables-manual table and an automated

table. Routes in the manual table consist solely of the patches which contain the manual

lanes, but the routes in the automated table can consist of any patch. In this manner the

network layer can also be used as a centralized electronic route guidance for the human

drivers driving in the manual lanes. The structure of the network layer as described in 2.2.2

can support both manual and automated vehicles.

2.5.3 Extended Coordination Layer

In the PATH-AHS we defined the behavior of a vehicle to be the following: as

leader a vehicle keeps a safe distance from the vehicle in front, and it can change lane,

accelerate to join another platoon, and split to create two platoons. A follower keeps a

fixed intraplatoon distance and can perform the split maneuver. However, when a vehicle

is in a transition lane and in transit from manual to the automated mode and from manual

lanes to the automated lanes or vice versa, its behavior is different and we need to add a

new set of controllers to the maneuver sublayers and a new set of states to the supervisor

sublayer.

l Extended Maneuver sublayer There are two new maneuvers added to the maneu-

ver sublayer, entry and exit. Each of the maneuvers is a sequence of phases that the

controller should go through, as I describe next.
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Entry Maneuver When a car enters the transition lane, it should have the ability

to become automated and engage in the entry maneuver. The entry maneuver consists

of five states, as shown in figure 2.18, which are:

start
Entry

D
a Close-up(I’---,in AL

Figure 2.18: Entry Maneuver State Diagram

Check Station Before a vehicle can engage in the entry maneuver, it has to be-

come automated. As was explained above, if the car is automated, it receives

the permission to enter the TL and move to its next state, i.e., the stop-l ight

zone state. Before reaching the check station the vehicle should be under the

automatic control of its coordination and regulation layer controllers.

Stop Light Zone A car in the TL after the check station may halt either behind

another car or at the stop light.

In the first case, the car either gets a message from the vehicle in front of it,

to become a follower and enter the AL as part of a platoon with the vehicles in

front of it, or as the vehicles in front of it depart, its regulation layer, eventually,

will notify the it that it is at the stop light.

The state diagram for the second case is shown in figure 2.19. When a car is at

the stop light, it transmits a message to the stop light, registering its presence; it

then waits for the response from the stop light. The stop light, in turn, activates

the roadside sensor on the AL. The roadside sensor, at regular intervals, sends

the length of the available gap in the AL to the stop light, and if it exceeds

the space needed for a vehicle to change lane to AL, the stop light notifies the

waiting vehicle.

The message that the vehicle receives from the stop light has the information

about the length of the available gap and the communication id of the platoon
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Figure 2.19: Detail of Stop Light State Diagram

nearest to that gap. Depending on the available space, the vehicle decides how

many vehicles can enter along with it, and if more than one, it initiates a pre-

platooning maneuver which is similar to the join maneuver described in the

previous section; if the space is not adequate for more than one vehicle, the vehicle

remains a free agent. At this point, the entry maneuver issues the command

accelerate-to-enter to its regulation layer and waits until the regulation layer

controller completes the acceleration and reaches the turn-marker at the gate.

While the vehicle accelerates, it requires the velocity and the position of the tail

car of the platoon in the AL relative to the entry gate. This information can be

acquired through periodic messages that the tail car of the platoon transmits to

the entering vehicle (or the leader of the pre-platoon). It may as well be possible

that there is no vehicle within the range of the roadside sensor; in this case, the

returned communication id is zero.

Turn-Marker As the car reaches the turn-marker, its velocity matches the velocity

of the platoon on the AL, if any, or the average speed on the AL. At the turn-

marker, the vehicle checks the gate sensors to make sure that the required gap

is still available. If the gap is occupied, the entry maneuver is aborted, and

the unsuccessful car either proceeds on the TL to retry at the next entry gate

or returns to the ML. In either case, the vehicles in the pre-platoon split and

become free agents which is the same maneuver as the split maneuver explained

before.

When the gap is available, the coordination layer issues a command to its reg-

ulation layer to change lane to the AL. The maneuver enters the next state as
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soon as the regulation layer completes the change lane.

Close-up In AL After successfully entering the AL, the vehicles perform a close-

up maneuver, which causes the pre-platoon members to become followers of the

platoon in the AL. After the close-up is completed, i.e., the entering vehicle is at

the intraplatoon distance from the tail car of the platoon in the AL, the leader

of the platoon in the AL updates the state of the platoon (size of the platoon

and new tail car communication id), and requests all followers to update their

state, too. At this stage the entry maneuver is completed.

Exit Maneuver When a car wants to exit from AL and enter the TL, its coordina-

tion layer controller initiates the exit maneuver protocol machine. The exit maneuver

is symmetric to the entry maneuver. If there is more than one vehicle in a platoon

that wants to exit, they will eventually form another platoon in the TL. Figure 2.20

shows the informal state diagram of the exit maneuver for leader of a platoon, and

figure 2.21 is the state diagram for an exiting follower.

Figure 2.20: Exit Maneuver State Diagram- Leader

Gray Zone At the start of every section that contains exit gates is a zone in which

every platoon leader accepts the exit  request messages from its followers. We call

it the gray zone. At the end of the gray zone, the leader assigns to each exiting

vehicle in its platoon a gate number, if there are enough gates in that particular

section. The leader also compares the number of requests with the number of

gates to determine whether there is a possibility of reassignment for an exiting
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follower, if it fails to exit at its assigned gate. If the leader itself is among the

exiting vehicles, it should notify the second vehicle in the platoon to become a

leader. This transfer of leadership is required every time the current leader wants

to exit.

Coordination with TL Before each gate, the lead vehicle on the AL communicates

with the leader on the TL, if any, to determine if the next exiting vehicle will

be a leader or a follower upon entering the TL. The leader on the TL may

be a vehicle from an entry section (if the exit section follows an entry section)

which had aborted its entry maneuver, or a vehicle previously belonging to the

platoon and exited from a previous gate. The platoon leader on TL requires the

information regarding the position of the exiting vehicle in the platoon to execute

the catch-up maneuver, the maneuver that aligns the head or tail of the platoon

in the TL with the exiting vehicle. This maneuver ensures that each exiting car

will remain in the “shadow” of the platoon in AL, which is an important factor

in the safety criteria [22].

The leader of the platoon notifies each exiting vehicle in the platoon of its as-

signed gate before the platoon reaches the gate. Upon receiving the assignment,

the vehicle will direct its regulation layer to initiate a change lane maneuver;

the regulation layer waits until the turn-marker on the gate appears and then

initiates the move to adjacent lane regulation layer controller.

Figure 2.21: Exit Maneuver State Diagram- Follower

In the interim , the platoon on the TL has executed a catch-up maneuver and is

ready to accept this newly exiting car. When the vehicle enters the TL success-

fully, it will send the exit complete message to both leaders in the AL and TL.
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The AL platoon leader then asks the vehicle behind the exiting vehicle to initiate

a close-up maneuver which closes the gap created by the exiting vehicle. If the

vehicle is unsuccessful in exiting, which is possible if the vehicle has not started

the move to adjacent lane controller, the leader on AL may reassign a new gate,

if one is available, and this vehicle may retry the exit maneuver later. At the

turn-marker, the exiting vehicle checks the gate sensors to find out if the the

space it wants to move into is vacant. If the space is not free, the exit maneuver

is aborted.

The above procedure is repeated until either no gate or no exiting car remains.

At the end of the exit section, the platoon on the TL decelerates to match the

average velocity on the ML. By the end of the TL, the members of the platoon

have already executed the required split maneuvers, and all are free agents. A

final change lane and switching of modes from automated to manual brings the

vehicles back on the ML and successfully concludes the exit maneuver.

l Extended supervisor sublayer The extension to the supervisor sublayer is shown

in figure 2.22 where the letters A-E are events already described in in section 2.4.2.

When the vehicle is in the TL, it initiates the supervisor sublayer in the IDLE-TL

state. The supervisor then checks the position of the vehicle, and if it is in an entry

section, it initiates the entry maneuver and awaits its outcome. If the maneuver

is successfully completed which means that the vehicle is in the AL, the supervisor

sublayer moves to the IDLE-AL state. If the entry maneuver is not successful, the

vehicle should be prepared to reenter the manual lanes.

The exit maneuver is initiated when the vehicle has to change lane to an adjacent

transition lane. If the exit maneuver is successful, the next state of the supervisor

is to prepare the vehicle to reenter the manual lane; otherwise, the supervisor moves

back to the IDLE-AL state.

2.5.4 Extended regulation Layer

A vehicle in the transition lane, in addition to the lead controller, follower con-

troller, and move to adjacent lane which were described above, have the following controllers

in its regulation layer:

l Stop-light controller is activated when the vehicle is in the stop light zone. This

controller designs the trajectory so that the vehicle stops when it reaches the stop



Figure 2.22: The Supervisor Sublayer  for the Extended PATH-AHS Proposal

light. This feedback controller is similar to the lead controller. If there is a queue at

the stop light, the vehicle stops at the intraplatoon distance behind the last car in the

queue. This maneuver requires the relative distance between the vehicle and the stop

light.

l Accelerate-to-enter controller is initiated after the stop light notifies the vehicle of

an acceptable gap in the AL. The controller calculates a trajectory for the stopped

vehicle to accelerate so that by the time the entering vehicle reaches the gate it has

the same velocity as the platoon in the AL (or the average speed of the AL) and is

behind the platoon in the AL at the intraplatoon distance. It requires the velocity

and the relative distance of the AL platoon and its own distance from the gate during

the execution of the controller. The controller aborts, if the alignment of its vehicle

to the target platoon in the AL is not within the specified safety tolerances.
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l Accelerate-to-close-up controller executes a trajectory at the end of which the vehicle

is at the intraplatoon distance of the platoon ahead of it. It is activated by the

vehicle entering the AL and by the vehicles behind an exiting vehicle when the exit is

completed. This controller requires the velocity of the platoon ahead. The controller

may abort, if the platoon ahead is dangerously close and has smaller velocity.

l Accelerute-to-catchup controller aligns the platoon in the TL to the platoon in the

AL so that the exiting vehicle from the AL upon finishing the change lane maneuver

becomes either the leader or the tail car of the platoon in the TL. The controller

requires the relative position and the velocity of the exiting vehicle, and it is aborted

whenever the exiting vehicle is dangerously close to the platoon.

l Prepare-manual controller of each vehicle is activated when the vehicle is in the tran-

sition lane and eventually will enter the manual lanes of the highway. When executed,

the controller decelerates the vehicle until it is at the manual safe distance from the

vehicle ahead of it.

2.6 Support Modules for PATH-AHS Design

At the beginning of this chapter we made a set of assumptions regarding the

availability of appropriate sensors and communication facilities for vehicles and highways.

I will now quantify the minimum sensor and communications requirements for deployment

of the PATH-AHS proposal.

2.6.1 Vehicle Sensors

The sensors on the vehicle are mainly used for detection; however, in some cases

they may be used to decode the information (usually the vehicle’s distance from some

feature on the highway) that is provided from the roadside; in the latter case, the type of

encoding determines what types of sensors are needed.

Detection The vehicle should be able to detect the following:

l Sensors should provide the relative velocity and the distance of the nearest vehicle in

front and in adjacent lanes. There are two sets of sensors on the vehicle, longitudinal

and lateral, shown in figure 2.23.

The longitudinal sensors are used for safety purposes and join maneuver; therefore,
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they should be able to detect any object which is in the path of the vehicle. The range

of detection depends on the maximum allowable speed, the maximum deceleration,

and the rate at which the vehicle can achieve such deceleration. For example, if the

speed is 25 m/see, maximum deceleration is 5 m/sec2,  and the vehicle can achieve

the maximum deceleration in one second, then the distance needed to stop a vehicle

is about 75 meters1 Thus, the detection range for the sensors should be at least 75

meters, which allows a vehicle to stop before it hits a disabled vehicle or any other

non-moving object on the highway.

The lateral sensors are mainly used in the change lane maneuver. As we said earlier

the change lane checks both the adjacent lane and next-to-adjacent lane, so as not to

move in between two joining platoons, and not to have a collision with another vehicle

that is changing into the same lane close by. Therefore, the lateral sensors should be

able to detect vehicles in adjacent lanes in front and in the back of the vehicle with at

least the same range as in the longitudinal sensors; otherwise, there is the possibility

of high speed crash between a joining vehicle and the changing-lane vehicle.

I+
Lateral range ) 1I

- -
,,,,, ::.:7:~“‘. ::;;;:: ,,,,,.,

r+ Long. range ) ’

Figure 2.23: Required Longitudinal and Lateral Sensors on the Vehicle

l Sensors should provide the following information regarding the highway and the lane

the vehicle is traveling on: section number, lane type (automated, transition, or man-

ual) and the lane number which are used by the coordination layer to access the

routing provided by the link layer, existence of barriers and the beginning and end

of the gates used in the entry and exit maneuvers by the extended version of PATH-

AHS plan and end-of-exit notification to the coordination layer in order to disable the

‘During the one second it takes for the vehicle to achieve the maximum deceleration of 5 m/s2, the
vehicle’s acceleration follows o = -5t, the vehicle’s velocity is u = 25 - St2 = 22.5 m/ s after the one second
transition time, and the distance the vehicle has traveled is z = 25t - St3 = 24.2 meters. After the first

transient, the vehicle deceleration is a constant (5 m/s2), and it takes g = q = 50.63 meters for the
vehicle to stop. Therefore, the total stopping distance is 74.8 meters.
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automatic vehicle controller and hand over the vehicle to the human driver.

Information Decoder In the entry and exit maneuvers, the regulation layer of the ve-

hicle on different occasions needs to know the distance of the vehicle from the stop light,

entry gates to the automated lanes, and exit gates to the transition lanes. This information

may not be acquired through direct line-of-sight detection. Therefore, they are encoded

in the highway, so that sensors can read and decode them as the vehicle travels along the

highway. As we saw earlier in the description of the maneuvers, since this information is

only needed when the vehicle wants to enter or exit the automated lanes, the decoding

sensors are turned on by the coordination layer, as the need arises.

2.6.2 Highway Sensors

Two types of highway sensors are needed for the PATH-AHS proposal:

1. Sensors that provide information regarding the state of the traffic (traffic flow and

average velocity) to the link layer controllers.

2. Sensors that provide occupancy information to assist the entry and exit maneuvers.

The occupancy information is needed when no direct line-of-sight detection by the

vehicle is possible. For example to design the metering scheme for the entry maneuver,

the controller on the stop light requires the traffic gap information at a specific point

on the highway.

2.6.3 Highway-Vehicle and Vehicle-Vehicle Communication

Highway-vehicle and vehicle-vehicle communication is an active area of PATH

research. Previous work and proposals can be seen in [23,  241.

The highway-vehicle communication is in the form of broadcast. Since the in-

formation is grouped according to the section and the lane the vehicles are traveling on,

different channels should be allocated to each section and lane, with the possibility of chan-

nel reuse when the sections are far apart and interference is limited, Every vehicle has to

tune its receiver to the new channel as soon as it enters a new section. The reverse channel

(vehicle to the highway) can work in the same manner, but since the number of vehicles

can be large (up to the capacity of a lane in a section), there should be a robust scheme to

minimize the interference among the transmitters.
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Communication among vehicles can be divided into intraplatoon and interplatoon

communication. Currently in the field tests intraplatoon communication is handled with

radio communication under the token bus protocol ([24]). Since the follower controller in

the regulation layer requires a periodic update of the acceleration and velocity of the front

vehicle and the platoon leader, and the token bus has a finite turn-around time for the

token, only a few vehicles can be part of a platoon. Also, the bandwidth that is used for

the token bus may be used for the interplatoon communication. A better communication

scheme may be based on the infra-red communication, but it has not yet been tested [25,

261.  To perform a maneuver, the vehicles must have point-to-point communication among

themselves. Therefore, every vehicle listens to a general shared frequency and a specific

frequency (a communication address). To establish the point-to-point link the vehicles

may use the shared frequency to transmit their request with their communication address

encoded in the message. The appropriate vehicle should respond directly to the requesting

vehicle using the encoded communication address.

2.7 Concluding Remarks

The protocols of section 2.3 were verified at various stages of the protocol devel-

opment by Ann Hsu and myself. The maneuvers have been extensively simulated using

SmartPath.  Subsequently, Ekta Singh and Sonia Sachs have verified the communication

protocols of section 2.5. For the verification, we have used the COSPAN software package.

The question that may arise at this stage is whether these protocols are imple-

mentable on a real vehicle. At first glance, we might be tempted to answer this question

positively. Though the answer may be correct, we shall test the complexity of the algo-

rithms in a real-time operating system to evaluate the performance of the system and to see

whether it is feasible to acquire the needed information from sensors and communication

devices in real time. This has not been done yet.

At this point we have finished the modeling of the Automated Highway System.

The next section describes the simulation environment and how the SmartPath  simulation

is organized.
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Chapter 3

AHS Simulation

3.1 Introduction: Simulation of Hybrid Systems

The Automated Highway System is a hybrid system in which both continuous and

discrete elements are present. The coordination layer and the communication protocols

employed in the maneuver sublayer are discrete controllers, and the vehicle’s actuators, the

sensors, and the feedback control laws employed in the regulation layer are continuous ele-

ments of the system. The continuous element is sometimes called the plant and the discrete

element is called the controller. The plant is usually described by means of differential or

difference equations, and the discrete controllers by discrete event description languages

like FSMs and Petri nets. The output of the plant will generate a set of input events for

the FSMs and the discrete controllers. For example, the detection of a vehicle in the safety

zone of another will cause an event for the safety controllers of the latter vehicle. The

controller after making its transitions will output a set of symbols that encode trajectories

which should be followed by the continuous plants; however, since there may be more than

one discrete controller, it is possible that more than one transition takes place. Let us look

at an example. In the join maneuver, as we saw before, the coordination layer has to be

notified of the detection of a vehicle in front of it; the detection comes from the vehicle’s

sensors which generate an event for the supervisor sublayer of the coordination layer. The

coordination layer then performs the required protocol and if successful, asks the regulation

layer for the execution of the maneuver which in turn designs a trajectory for the maneuver.

Until this point we are in the realm of the discrete controllers. the desired trajectory is

followed by the accelerate to join feedback controller which produces the control parameters

(desired jerk or acceleration) for the actuators of the vehicle.
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The state of the hybrid system is the state of the discrete controller together with

the state of the continuous plant; the former defines the trajectory and the latter the actual

position of the system on that trajectory. But how does the plant behave during the time it

takes for the controllers to decide on the next trajectory? If we assume that the transitions

all occur in zero time, i.e., the communication protocols are executed instantaneous by then

time stops during discrete state transition and the plant will not evolve. The assumption

can be justified, if the discrete controllers can reach the decision much faster than the

sampling period of the observation. For example, if the sampling period T is 0.1 seconds,

then a communication protocol between two entities, each entity modeled as an FSM, can

be assumed to be instantaneous, since the speed of communication is much faster than 0.1

seconds, and virtually infinite number of transactions can happen within the 0.1 seconds.

In order to simulate a hybrid system, we build a scheduler for the execution of

each layer of the system, continuous and discrete. In its most general form, such scheduler

has two phases. In the first phase, it schedules the continuous plants and increments the

simulation time by T seconds; in the second phase, after the continuous plants are simulated,

the discrete controllers are scheduled for simulation, and during this step the simulation

time is stopped.

In this chapter we will describe SmartPath simulation system which provides the

environment to simulate the control layers and the continuous elements of the Automated

Highway System.

3.2 SmartPath Simulation Environment

SmartPath  is a simulation environment for the AHS. It has a simulation program

and an animation program; the animation can be used to show the simulation results as the

simulation progresses (concurrent visualization), or it can read the simulation results from

a simulation-prepared data file. The latter case is more efficient and better suited for long

simulation runs; however, with concurrent visualization, one can use the animation to choose

a vehicle and change the control parameters interactively, see [27, 281  for information on how

to use SmartPath.  SmartPath’s scheduler is written on top of CSIM, which provides a light-

weight, quasi-parallel, process-oriented simulation environment. For further information

regarding CSIM, see [29].  The network layer and the link layer are each modeled as one

process within the simulation. However, every vehicle is modeled as a collection of processes,

since each vehicle has a coordination and a regulation layer controller and other supporting



52

modules like communication and sensors.

Although we have optimized SmartPath for the PATH-AHS proposal, any pro-

posal that can be mapped to the four layer control hierarchy, described in chapter 2, can

be modeled and simulated in SmartPath. To show how an AHS proposal can be simu-

lated within SmartPath,  I will describe three sets of constructs-primary, secondary, and

tertiary-that are provided within this framework.

3.2.1 SmartPath  Primary Constructs

The primary constructs in SmartPath provide the basic structures for the simu-

lation of any AHS scenario that complies with the four layer control hierarchy, described

in section 2. The highway structure is the basis for the vehicle movement, the detection

schemes, and the interactions among the network, link, and coordination layers of the ve-

hicles. The highway is modeled (as described in detail in section 2) by sections and lanes.

Every section contains a number of segments, which in turn contain the geometrical infor-

mation about that section; a segment can be either a straight line or an arc of a circle; in

the former case its only attribute is its length, but in the latter case it has length, the arc

radius, and the direction of turn which can be left or right (see figure 2.1).

On top of the implementation of this highway model, we provide the following

functions:

l A set of routines to create the four different control layers-network, link, coordination

and planning, and regulation layers.

l A set of routines to populate the highway to some initial condition, and generate ve-

hicles from the entrances (sources) at some fixed time intervals. The created vehicles

are initialized by activating their coordination layer, and each is given a unique id.

This id is used to identify the vehicle for communication and sensing purposes, as

we will see later. Since the coordination layer of the vehicle is the only layer initial-

ized within the vehicle, it should in turn initialize the regulation layer, sensors, and

communications, if desired.

l Every control layer has a wake-up routine, used by the scheduler to activate the time

driven part of the control layer, if any. The simulation calls the wake-up routine at

every simulation time step.

l A set of support routines to ease the burden of AHS implementation. Among these



53

are a simple fixed step Kdtu-Mersu  4-5 integration routine for non-stiff differential

equations and a simple vehicle model.

l Simple detection scheme (for implementing a sensor process) for vehicle-vehicle and

highway-vehicle detection. There are two sets of sensors: the vehicle sensors and the

highway sensors. The vehicle sensors provide the vehicle the relative distance and

the velocity of the front vehicle, the neaaest right-adjacent vehicle, and the nearest

left-adjacent vehicle. The highway sensors provide the highway controllers aggregate

information, like the average flow of vehicles and the average velocity in a specific

lane of a section. The sensor requirement is, as explained in Chapter 2, the detection

of the vehicles in front, in the right and left adjacent lanes, and in the right and

left next-to-adjacent-lanes, if applicable. These regions are shown in figure 2.23. To

simulate a such sensor scheme we place a grid on every section. The length of each

cell in the grid depends on the geometry of the section. The length of the largest

possible cell on all sections is equal to the length of the smallest vehicle present in the

simulation. The grids for the two cases of line section and arc section are shown in

figure 3.1.
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Figure 3.1: Grid structure on the highway for detection of vehicles

As the vehicles travel along the highway, they are placed in the appropriate cells

by the simulation, and because the length of the cells is the minimum length of the

vehicles in the simulation, a cell can be occupied at most by one vehicle; otherwise,

there is a collision. The sensors now only have to traverse the cells around the vehicle
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for detection, and if they are occupied a detection has been made. For example, the

front sensor will traverse the cells in front of the vehicle that are in the same lane.

When a vehicle is detected, its velocity and relative distance is returned.

l The simulation and animation can run simultaneously. The connection is provided

by the Unix interprocess communication, so it is possible to run the simulation on

one workstation and the animation on another. This feature will be used in the

secondary constructs to provide the interactive change of the control parameters while

the simulation is running.

The following interfaces exist between the control layers:

l An event delivery system between coordination and regulation layer controllers, which

can be extended to other layers. Each layer defines a set of events to which it will

respond. The events function in the same way as the input symbols in the FSM

definition, which may cause a transition in the FSM. Event names should be provided

by the layer developer.

l A simple communication scheme between the coordination layers, such that the co-

ordination layer of a vehicle can activate the transmitter and the receiver modules in

order to send or receive messages. The transmitter and the receiver form an error-free

point-to-point communication system.

At the heart of the simulation is the scheduler, which activates the control layers

and synchronizes vehicle movements. The SmartPath scheduler calls each layer according

to the following cycle:

1. Update the position of all vehicles on the highway. The synchronous updating of the

positions of the vehicles allows the vehicle sensors to return consistent values, i.e., the

returned value will not depend on the fact that the regulation layers of some vehicles

are activated after the sensors detected the vehicle.

2. Call the regulation layer wake-up routine.

3. Wait until the regulation layer of all vehicles are activated and the new acceleration,

velocity, and coordinate (X, Y) increments are calculated.

4. Move all vehicles in the highway by the coordinate (X, Y) increments provided by

the regulation layers in the previous step and calculate their new positions and cell

locations on the highway for detection purposes.



55

5. Call the coordination layer wake-up routine.

6. Call the link layer wake-up routine.

7. Call the network layer wake-up routine.

8. Wait until all the control layers are executed.

9. Increment the simulation clock by the simulation time step, and go to 1.

Note that the coordination, link, and network layer controllers are called at the

same time; therefore, there is no guarantee on the order of their execution.

These primary constructs provide the basic means to create different layers and

to initiate the interactions between them. The animation program can then be used to

observe the behavior of the traffic or individual vehicles. However, since the constructs are

primitive, the AHS developer has to create all aspects of the AHS, e.g., the controllers to

move a vehicle, the communication protocols for sending and receiving maneuver requests,

and so on, which is a burden if the purpose of the AHS developer is to experiment with

one of the control layers. The burden is even greater, if the developer only wants to see

whether the performance of a maneuver is satisfactory. For these reasons, we implement

the secondary constructs that are more specific but provide greater functionality.

3.2.2 SmartPath  Secondary Constructs

The secondary constructs are created to ease the implementation of a specific layer

or a controller within the layer without worrying about how other layers and controllers are

implemented. This requires a set of robust interfaces between modules as I explain after I

introduce the new constructs.

l The complete structure of the network layer is incorporated in SmartPath.  The net-

work layer structure closely follows the description in Chapter 2. The shortest path

routing is obtained using the Bellman-Ford shortest path algorithm ([9]).

l In the coordination layer, we have created the two sublayers: supervisor and maneuver

sublayers. The supervisor layer is modeled according to the discussion in section 2 as

Finite State Machines. In the maneuver sublayer we have added the verified protocol

machines for join, split, and change lane. For the join and split maneuvers to make

sense, we need the concept of platooning and point-to-point communication between

the vehicles. There are two change lane protocols in the maneuver sublayer: manual



56

change lane which uses sensors as the only means of coordination between the involved

vehicles (no communication between vehicles) and automated change lane which uses

radio communication to coordinate the adjacent vehicles.

l In the regulation layer a set of controllers to accelerate, decelerate, and move the

vehicle to an adjacent lane are included. The regulation layer of the vehicle can either

be in the lead-mode (when the vehicle is a leader or free agent as defined in Chapter

2), or in the follow-mode. When the regulation layer is in the follow mode, it expects

to receive a control message (speed, acceleration) at every simulation time sample. A

brief description of these controllers is in Chapter 2 and [30].

l We extend the simultaneity of the animation and simulation and provide for interac-

tivity between them so that control parameters can be changed through the animation

as the simulation runs.

l The simulation can be stored at a specific time and restored at a later time. This

feature can help to re-run a maneuver with different parameters and observe the

differences.

The primary interfaces are too general to be of very good use for these extensions. Therefore,

we specialize them as follows:

l The communication facilities for vehicle-to-vehicle and highway-to-vehicle message

transmission is included in the secondary constructs. There are three means of com-

munication: point-to-point radio, broadcast radio, and infra-red. The distinction be-

tween the radio communication and infra-red is that radio communication has a larger

area of propagation and can be transmitted over relatively large distance, whereas

infra-red has a limit of 50 meters. Therefore, infra-red communication is used only

for intra-platoon communication. We specialize each type even further. The point-to-

point radio communication provides message-passing from the supervisor or maneuver

sublayer of one vehicle to the supervisor or maneuver sublayer of another vehicle. The

broadcast radio is used to transmit messages to all the vehicle in a lane of a section.

The messages are used by the link layer controllers to send route information to the

vehicles. The infra-red communication is used to transmit control messages between

the regulation layers of the vehicles within the same platoon. The infra-red com-

munication is also point-to-point, and the current controllers use it to send control

information (velocity, acceleration) to the vehicle behind in the same platoon.
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l The event delivery system is extended to include the supervisor, maneuver, and reg-

ulation layer. In the present implementation of coordination and regulation layer

(SmartPath3.0), the only event issued by the supervisor sublayer to the regulation

layer is the abort-regulation-process event, which causes the regulation layer to ter-

minate itself. The request for a maneuver execution is only issued by the maneuver

sublayer to the regulation layer.

The secondary constructs allow us to model and simulate the PATH proposal for a fully

Automated Highway System, see [31, 321 for more details on simulation and modeling and

[33, 111 for some performance results. But in order to simulate the extended PATH-AHS

scenario, described in Chapter 2 which includes mixed traffic and mixed lane assignments

in the highway, we need to add even more structure and functionality. These tertiary

constructs are explained next.

3.2.3 SmartPath  Tertiary Constructs

The tertiary constructs are created for simulation of the extended PATH-AHS

scenario. The following are added to the secondary constructs:

l In the tertiary constructs, the structure of a lane also contains the type of the lane

(which can be automated, transition, and manual) and existence of the barriers, gates,

checking station, and stop-sign. A barrier has a beginning and an end and can be

placed on all lane types. Gates are assumed to be at the places where there are no

barriers. A checking station has a position on the highway, and a stop-sign has a

position on the lane and is associated with a highway sensor in the automated lane

upstream. Both the checking station and the stop-sign can only be placed on the

transition lanes.

l Two operational modes are defined for the vehicles in SmartPath,  automated and

manual. To ease and decouple the implementation of different maneuvers for the

vehicles in different lane-types, we provide multiple behaviors for each operational

modes in the coordination layer. The number of behaviors is equal to the number of

lane-types available. The manual mode is designed solely for the interactive simula-

tion and visualization, so that when a vehicle is set to operate in the manual mode,

its regulation layer takes the acceleration and steering command directly from the

SmartPath  graphic user interface. In this fashion, the user can “drive” a vehicle

in the highway. Within the automated mode, we have three behaviors: automated,
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transition, and manual. The automated behavior is the same as the secondary con-

structs with the addition of exit maneuvers to the maneuver sublayers. The transition

behavior encapsulates the extended PATH-AHS proposal with checking-station, stop-

sign, and entry maneuvers, and the required preparation for an automated vehicle

to be re-introduced to the manual lanes. The manual behavior only has the lane

change maneuver with the lead controller in its regulation layer. The supervisor of

every behavior knows about the required support modules such as vehicle-to-vehicle

communication or vehicle-to-highway communication. In order to switch from one

behavior to another, the previous supervisor sublayer should prepare the vehicle for

the new supervisor sublayer by terminating all on-going maneuvers and deactivating

its support modules. The switching from automated mode to the manual mode fol-

lows the same guidelines with the difference that if a vehicle that is chosen to become

manual (by the user) is a follower, the supervisor of that vehicle first initiates a fast

split maneuver, so that it becomes a free agent in the shortest possible time, and it

then switches the control of the vehicle to the manual mode supervisor sublayer.

l A simple behavior model of the check station and stop light is added to the simula-

tion. The check station uses a highway sensor to detect vehicles in its vicinity. As

soon as a vehicle is detected, a message is sent to it. If the message is answered by the

vehicle, the check station issues a permission to that vehicle; otherwise, no permission

is granted. The stop light is activated by a message from the vehicle, indicating its

presence at the stop light. The stop light then activates the highway sensor located

upstream in the automated lane adjacent to the transition lane. The sensors period-

ically returns the available gap to the stop light, and when the gap is large enough

to accept one vehicle, the stop light notifies the waiting vehicle. The stop light then

waits for another message.

In the third release of SmartPath, SmartPath3.0, all three constructs are included.

In the next section I will describe the performance of the SmartPath3.0 simulation package.

3.3 Performance of the Simulation

The SmartPath simulation program consists of about 50,000 lines of code, ex-

cluding the CSIM library. Its execution time and memory usage is a linear function of the

number of vehicles in the simulation: as the number of vehicles (processes) in the simulation
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increases, the time it takes to simulate one simulation time step increases proportionally.

Figure 3.2 shows the CPU time for simulation of different number of vehicles for one minute

of simulation time, and figure 3.4 shows the memory usage of the simulation. Both figures

are for a 80 km. long highway and 0.1 seconds simulation time step. To calculate the time

and memory usage for N vehicles, we ran the simulation program ten times and averaged

the results. Each of the ten simulation runs was initialized with N vehicles using a dif-

ferent intervehicle spacing and platoon size. Our studies have shown that on the average

80% of the simulation time is spent for the calculation of vehicle trajectories. Therefore,

we conclude that the configuration of the vehicles in the highway and the extent of their

involvement in maneuvers have had little effect on the memory and timing results.

As we see from figure 3.2, SmartPath simulates 70 vehicles in real time (i.e., it

takes 1 cpu minutes to simulate one simulation minute), 120 vehicles in 1.60 times real

time, and 300 vehicles in 4.6 times real time. The graph remains linear for larger numbers

of vehicles; for 1800 vehicle it took about 27 times real time with a memory requirements

of about 20 megabytes.

These experiments with SmartPath were performed on a SGI Indigo II workstation

with MIPS R4400 CPU (200 MHz), 32 MB memory, and IRIX 5.3 operating system.

The simulation performance under Sun SPARC-5 workstation is shown in figure

3.3.
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Chapter 4

Parallelization and Distribution

In the previous chapter we saw that SmartPath can simulate 60 cars in real time.

In a four-lane highway with an average flow of 2000 vehicles/lane/hour and average speed

of 100 kilometers/hour, there are about 20 vehicles/kilometer/lane and for the 4-lane

highway 80 vehicles/kilometer. If we consider the San Francisco Bay Area highway net-

work, we have 300 kilometers of highway which amounts to a maximum of 24,000 vehicles

on the highways at any time. To simulate 24,000 vehicles in SmartPath for one hour, the

processor would spend 400 hours (16 days 16 hours), which is not convenient and may be

impractical to use. There are two solutions to this problem. Either we aggregate and sim-

plify the control layers and, as a result, lose the micro-simulation property of SmartPath  in

favor of timing efficiency, an approach followed in Netsim, Watsim, Intras and other traffic

simulators, or we must allocate more processing power to the simulation.

The former approach is not followed in SmartPath, since one of its objectives is

to exhibit the interaction of the controllers on the highway and in the vehicle.

More processing power can be allocated by employing a massively parallel machine

(MPP) or distributing the AHS simulation over a network of workstations (NOW). Parallel

machines are designed to have very low communication overhead and very high bandwidth

among their processors and, therefore, are suitable for those applications that require high

bandwidth and relatively large amounts of message passing. Their disadvantage is their

high price and relatively slow processors compared with workstations. Good comparisons

of parallel processors are found in [34]  and [35]. On the other hand, workstations are widely

available and have very fast processors. But the communication link between them, usually

Ethernet, is very slow (the maximum bandwidth of Ethernet is 10Mbps with an effective

bandwidth of about 1Mbps;  the effective communication bandwidth of Thinking Machine
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CM5 is 20Mbps),  which makes them suitable for applications that require small amount

of message passing [36]. For example, there are 90 workstations in the instruction labs in

the EECS department of U.C. Berkeley, used mainly by undergraduate students for class

assignments and e-mail. We can run SmartPath simulation on any one of these workstations

(mostly DEC workstations with MIPS R3000 processors which are slower than the MIPS

R4400 used for the performance analysis in the previous chapter) at the rate of 30 vehicles

in real time, when the processor is lightly loaded.

We would like to use this pool of mostly idle processing power to simulate Smart-

Path. In the ideal case, we can simulate about 2700 (30 x 90) vehicles in real time, using the

linear relationship between number of vehicles and the ratio of real time per simulation time

of figure 3.2, which means that we can perform the one hour simulation of the 24,000 vehi-

cles in the Bay Area in about 8.9 hours (24,000/2700),  which is more convenient. However,

this optimistic estimate is not achievable in a non-trivial simulation because of the over-

head associated with the communication among the processors. The main objective of the

distribution and parallelization of a simulation is to improve the performance by intelligent

partitioning in order to reduce the amount of communication among the processors.

In this chapter we will discuss the distribution of SmartPath in a multi-processor

environment which could be a MPP with distributed memory or a NOW. In section 4.1

we look at the distribution of AHS elements; in section 4.2, we develop an algorithm for

synchronization of distributed simulation of multi-layered hybrid systems (with direct ap-

plication to SmartPath); in section 4.3, the implementation of distributed SmartPath  in

a multi-platform environment (Sun, SGI, DEC, and IBM workstations) is discussed, and

finally section 4.4 assesses the performance of the distributed simulation relative to the

sequential simulation discussed in chapter 3.

4.1 Distributed Simulation of AHS

The metrics often used to evaluate the performance of a distributed system are

speed-up, efficiency, and scaled speed-up.

Let

l C be the simulation scenario,

l Tr(C) = the time needed to simulate scenario C in SmartPath  when 1 processor is

employed,
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l Tp(C) = the time needed to simulate scenario C in SmartPath  with p processors,

l 27; = the time spent by processor i in a p processor environment on simulation only

(not including the communication among the processors),

l Tp(pC) = time needed to simulate the scenario C scaled by a factor of p; in Smart-

Path the scaling of the scenario by p means increasing the number of vehicles in the

simulation by a factor of p,

l C,(i, j) = communication cost between two processors i and j,

l C,(C) = the total communication cost among p processors.

We can see from the above notation that

T&Tp=pT;,
i=l

where for the last equality we assumed that Tj = Tj for all i and j, which is a valid assump-

tion if all processors have the same load and processing power throughout the simulation.

Speed up S, of the system is defined as

S,(C) = $
P

therefore, 0 2 S, 5 p, since we can always guarantee that Tl(C) 5 pT,(C)  by simulating p

processors by 1 processor.

Efficiency Ep is defined as

Ep=s”,Ep<l.
P

Scaled speed up Rp(C)  of the system with p processors is defined as

Tl CC)
%6) = Tp(pC)  7

therefore, 0 2 Rp(C)  5 1.

Tp is essentially the time to simulate the system plus the time for the inter-processor com-

munications. Therefore, the speed up S, can be written as

Tl cc>
sm = y) I cp(c)

and we can drop the dependence on the scenario C by using a fairly general scenario for

simulation.
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The cost C, consists of two terms: the number and size of messages transmitted

between the processors and the overhead associated with setting up the connection and

transmission and reception of the messages.

Therefore, we have to employ a partitioning scheme that minimizes Cp; such a

scheme is the topic of this section. However, before we do that, we have to identify the

entities and the interactions among them that might result in the message passing between

processors.

4.1.1 Simulation Entities and Their Interactions

As described earlier in chapter 2, there are two control layers on the roadside,

the network and link layer controllers, and two control layers inside each vehicle, the coor-

dination and regulation layer controllers. The domain of operation of each layer is as follows:

l Network layer: the whole highway system.

l link layer: a section of the highway or multiple sections.

l coordination and regulation layer: the portion of the highway that the vehicle’s lon-

gitudinal and lateral sensors can cover.

Now let us investigate the interactions among these controllers and other modules within

SmartPath,  the frequency of these interactions, and the number of controllers involved.

l The network layer transmits its routing table to each link layer controller. The routing

table has size (number-of -network-nodes ⌧ number-of -AHS-exits);  each entry of

the table is an array of integers, whose size can be approximated by the size of the

network layers node structure. Each link layer controller in turn sends a message

to the network layer; the message size depends on the controller, but the number of

messages is on the order of number of sections in the highway network.

These transactions will take place periodically in the absence of emergency conditions;

the period also depends on the controllers, but the network updates the routing table

roughly every 15 minutes. Thus the period of these transactions is on the order of 15

simulation minutes.

l The link layer transmits its routing table to the coordination layer of the vehicles

within its domain. The size of the table is (number-ofdunes  ⌧ number-of -exits) and
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its entries are integers. Every vehicle also transmits the relevant state information to

the link layer controller of the section it is traveling. The vehicle message contains

its velocity, lane number, section number, and destination address. The size of the

message depends on how the destination is coded, roughly the size of four integer

values. The frequency of this message passing is a function of the time that it takes

for a vehicle with the maximum allowable velocity to pass through a section, assuming

that all sections have equal length. With a velocity of 25m,/s  and section length of

500 meters, the period of the message passing is 20 seconds.

l The coordination layer periodically receives sensor information which is local message

passing within a car, but it also receives and transmits messages to other vehicles’

coordination layers. The radius of this operation is limited by the range of longitudi-

nal and lateral sensors; however, it is aperiodic and occurs only when the vehicle is

involved in or in the process of initiating a maneuver. Communication between fol-

lowers and their platoon leader can always happen, regardless of how many vehicles

are in the platoon and the distance of the follower from the leader.

For every maneuver at least two messages (integer valued) pass between the coordi-

nation layer and the regulation layer, which again may be counted as local.

l The regulation layer also uses the sensors information periodically. If the vehicle is

a follower, in addition to the sensor information, the regulation layer also receives

periodically a message from the regulation layer of the vehicle ahead. This message

contains control information such as velocity and acceleration of the transmitting

vehicle.

The period of updates for sensor information and control information is presently 0.1

seconds.

Let us sum up what we have above. At every simulation time sample the vehicle and

highway sensors scan the highway for vehicles and update the information in their respective

controllers. Within a platoon each follower receives a message from the vehicle ahead and

transmits a message to the vehicle behind, if any. Meanwhile, any vehicle may transmit

a message to initiate a maneuver, if the required conditions are satisfied. The range of

communications is at most equal to the detection range, unless the vehicles are part of the

same platoon. Also, while the vehicle is traveling in a section, it will receive at least one

message from the link layer, and it will send one message to the link layer controller of that

section.
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Given these requirements on the communication and sensors we have to devise a

partitioning scheme which is optimum, i.e., if we export each element of the partition to a

processor, we have the minimum possible communication among the processors.

4.1.2 Partitioning the AHS Simulation

The AHS simulation is a particle simulation in the sense that it simulates vehicles

(particles) that are moving autonomously in a 2-dimensional (2-D) plane with strong inter-

actions among them as listed in the previous section. There are two general partitioning

method for distribution of particle simulation ([37]  chapter 2):

l particle (vehicle) partitioning- In particle partitioning, a fixed number of vehicles is

assigned to each processor. The advantages of this method are that it is perfectly

load balanced, i.e, if there are 500 vehicles and 2 processors, according to this method

we assign the simulation of 250 vehicles to each processor; also, there is no need to

transfer the simulation of any vehicle to another processor. The disadvantage of this

method is that it does not guarantee the locality of the vehicles with respect to each

other, since each vehicle has its own travel plan, position, and velocity.

l spatial (highway) partitioning- In spatial partitioning, space is divided into sections

and each section is allocated to a processor which simulates the particles in that

section. In this method unlike in the previous one the coordinates of each partition

with respect to the origin of the 2-dimensional plane are fixed, and interactions among

processors are limited to the boundary regions; boundary regions are defined only if

the interactions among the particles can be localized. In the case of AHS we can

localize the interactions among the vehicles, since the interactions are limited by the

detection range of the vehicle’s sensors; i.e., if one vehicle can not detect another, it

will not react to it; on the other hand, the controllers on the vehicle do not require

the information about vehicles outside their detection range. Therefore, in order to

minimize the communication among processors, it is enough to minimize the boundary

regions. In the AHS simulation the minimum boundary is achieved by partitioning

the highway on or parallel to the highway section divides. The disadvantage of this

partitioning scheme is that there is extra overhead for transferring the simulation of

vehicles from one processor to another as they move from one spatial partition to

another. As a result of the vehicle transfer, the load on the processors may change

from one time to another, and, therefore, the efficiency of the distributed simulation
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may decrease.

In order to compare the two methods, we calculate in both cases the number of

messages each processor should transmit, M1 and M2, under each method. Let us assume

that we want to simulate n vehicles on p processors (assume n is divisible by p), the average

platoon size is S, each vehicle during its travel time in AHS performs q maneuvers, average

number of messages for a maneuver is A, and we are simulating for T seconds with t as the

simulation time increment.

For the particle partitioning method the communication costs among the processors

are as follows. Each processor has to transmit the information regarding the position of

each vehicle on the highway and the velocity of all vehicles in its domain to other processors;

this information is used for sensors detections and we denote it by

Also, since each vehicle has equal probability to belong to any processor, the participants

in a maneuver are likely to be in different processors; therefore, during a maneuver, there

are extra message transmissions among the processors; the number of these messages is a

function of the number of maaeuvers in the highway and number of processors. As a result,

the number of messages that are transmitted for maneuver purposes for each simulation

step is
Ml =p-ln

m --Aq-$
P P

The first term ( pe) is the probability that two vehicles are in different processors, and the

second term is the number of vehicles in each processor.

To this number we should add the number of control messages that every follower

should transmit to the car behind at every simulation time step,

M1=“-l”- -
c

A P’

The first term (9) is the probability that a vehicle is not the tail car of a platoon, since

the tail car will not transmit a message. Therefore, the total number of messages in the

vehicle partitioning scheme is

A - l n
M’=Mj+M;+M:=;+-- +P-ln--Aq$

AP PP

To calculate M2 for the spatial partitioning method, note that if we substitute n

with n’ in Mj where n’ is the number of vehicles in the boundary regions of the processor,
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we get Mj. The number of messages required for maneuvers is equal to

3 1

where 2/3 is the probability that the two vehicles belong to different processors, since a

section can at most connect to two other sections.

To calculate the regulation layer control messages, we have to calculate the amount

of time at least one member of a platoon is in a neighboring process. Let R be the flow of

traffic in vehicles per second per lane and L the average length of a platoon with velocity

V, then the time for a platoon to travel through the process boundary is
L
-sec .
v

Therefore, the number of control messages per simulation step is

M;d&+

In this method we also have to add the messages used to transfer the simulation of vehicles

from one processor to another; the number of messages in the spatial partitioning case is

M; = tR

rvr,” is calculated for a one-lane highway, and should be multiplied with the number of lanes

for multi-lane highways. The total number of messages in the second case is

The communication costs for the distributed simulation of the Bay Area traffic (described

at the beginning of this chapter) with 8 processors, average platoon size of 4 and platoon

length of 24 meters (assuming length of the cars are 5 meters and the intraplatoon distance

is 1 meter), average highway section length of 500 meters, and detection range of 60 meters

are:

M1 N 2100 + 1575 + 1.63

M2 N 504

As we predicted the value of M2 is much smaller than Ml, even though M2 is calculated

for the worst case highway partitioning such that every section has a boundary region

with another processor, which can be avoided, if the partitioning is done efficiently. The

actual number of messages is on the order of 10 messages per simulation increments. If

we increase the flow to 7200 vehicle/hour/lane in a three-lane highway, then we should

expect that in every second 6 vehicles enter a new section; however in this case too, the

main communication cost is in for the detection schemes (first term of M”).



4.1.3 Partitioning the Highway for Minimum Communication Cost

In the previous section, we calculated the communication costs for detection, ma-

neuvers, and control messages and did not consider the communication between link layer

controllers and vehicles. However, this will not change the conclusion of the previous section

that M1 is significantly larger that M2, since the link layer communication can be consid-

ered local and will increase M1 more than M2. Note that if the highway partitions are

along the section boundaries, the value of M2 will not increase. The reason is the locality

of the link layer controller to its section.

In order to partition the highway, we will associate a directed graph G = (N, E)

to the highway section structure (see figure 4.1).

sections
HW 7: 9km

‘;i;” ,,.,........, ...i”““““’

v
nodes

HW:: 8km

Figure 4.1: Highway and its Associated Graph

To every section of the highway a node is assigned, and there is an arc between

any two nodes whenever the corresponding sections are connected through their lanes. The

assignment of nodes to the sections enforces the indivisibility of the sections. The weight on

node i, IV;, is the number of vehicles present in section i, since the cost of simulating section

i is linear in the number of vehicles. The weight on the arc (i, j), Wt;,j) is the number N2

calculated in the previous section.

From the above transformation, we see that partitioning the highway is equivalent

to partitioning the graph G. If we think of a node i E N as representing a job to be

performed, the weight IV; as the cost of job i, an arc a = (i, j) E E as the existence of some
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data that should be transferred from job i to job j and vice versa (assuming undirected

graph),  and W(i,i) as the cost of the data transfer, then partitioning G means dividing N

into the union of p disjoint set of nodes:

N=N1UN2U...UNP,

where we assign node n to the processor i, if n E Ni. This partition is subject to the

following conditions:

l For all processors p and q,

c wj N c wj
jENP iENq

which means that the load is approximately balanced across processors.

l For every processor p,

cc c w,d
PfP i E NP

j E Nq

is minimized which means that the total cost of all messages communicated between

different processors is minimized.

In this way we have transformed the question of the distribution of particles among several

processors into a graph partitioning problem. Note that if all the highway sections are

connected, the graph G is a connected graph. In order to facilitate graph partitioning, if

the graph is not connected, we can introduce some auxiliary arcs with weight 0 such that

the new graph G is connected.

Graph partitioning, in general, is an NP-complete problem, [38];  therefore, we

resort to heuristics to find suboptimal solutions to our problem. There are two main ap-

proaches to graph partitioning, depending on the information available about the graph G:

partitioning the graph with coordinate information and coordinate-free partitioning.

The coordinate partitioning scheme is useful for planar graph where we can assign

(2, y) coordinates to each node. Typically, in planar graphs nodes that are spatially close

together have edges connecting them. There are efficient algorithms that exploit this prop-

erty, see [39].  In general, an algorithm in this family finds a line (or a plane if the graph

is three dimensional) such that with respect to that line the nodes are equally divided and
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assigns each set of the nodes to a processor. For more partitions, we can apply the algorithm

recursively, bisecting each partition further until enough partitions are available.

The coordinate-free partitioning scheme assumes no identification of a node with

a physical point in space, and clearly can also be applied to graphs with coordinate infor-

mation. The most popular algorithms are the Kernighan/Lin algorithm [40]  and recursive

spectral bisection [41].

The Kernighan/Lin algorithm is a simple local descent algorithm which works

well to improve an already available, reasonable partition. In this algorithm nodes are

moved between sets in an effort to reduce the cost of the partition. There are extension of

this algorithm for quadrisection [42]  and partitioning to arbitrary number of sets [43].

The Recursive Spectral Bisection uses the second lowest eigenvector of the

Laplacian matrix of the graph to divide the graph into two partitions. The second eigenvec-

tor is called the Fiedler vector. The (i, j)th element of the Laplacian matrix of the graph

G is defined as

1

- 1  if(i,j)EE

L;j = di if i = j

0 otherwise

where d; is the degree of node i. The spectral bisection has been also extended to quadri-

section and octasection, see [43].

To partition the highway graph we use an iterative method consists of three comple-

mentary iterative algorithms. The first algorithm creates a set of subdomains and attempts

to improve the shape of subdomains by migrating the boundary nodes from one subdomain

to another so that the radial distance from the center of the subdomain to the edges of the

subdomain is minimized.

The second algorithm, devised by Song [44],  performs load balance among parti-

tions. This algorithm assumes that the workload consists of independent tasks of equal size

and determines the number of nodes to migrate from a given processor to its neighbors.

The nodes that are actually moved should also reduce the cut-edge weight.

The third algorithm is a localized version of the Kernighan-Lin algorithm which

minimizes the communication cost. This iterative method is an order of magnitude faster

than the spectral bisectioning with the equivalent quality of partitions measured by the

number and weight of the cut-edges and load imbalance among the processors. A variation

of the above scheme is originally proposed in [45] and is used in JOSTLE software tool.
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4.2 Distributed Simulation of Hybrid System

As described in chapter 3, we can simulate a hybrid system in two phases: first

simulate the continuous layer and then the discrete layer. The amount of the real time it

takes to simulate each element is different from one layer to another and from one simulation

time to another, and since the simulation of a large and detailed hybrid system (like AHS)

is very time-consuming, we would like to distribute the execution of the layers in a multi-

processor environment. We can also characterize the AHS simulation as a discrete-time

(sampled-data) and discrete-event simulation. The sensors and regulation layer are discrete-

time systems, and the coordination layer is a discrete-event system.

Assuming that the system is strongly coupled, i.e., there is a large penalty when

the simulations in different processors are not synchronized, the distribution of the discrete-

time simulation is traditionally done by using barriers. The barrier is a software block that

disallows the progress of time, until the barrier is executed by all processors involved in the

simulation. Barriers are implemented by broadcast communication messages in distributed

memory systems and by flags in shared memory systems. However, given the special struc-

ture of SmartPath,  the spatial partitioning method for distribution, and the locality of

the discrete-time elements, we have implemented barriers by local communications among

neighbors, which is much more efficient than broadcasting. We describe in the next section

how we use these local barriers to synchronize the distributed partitions of SmartPath.

For the discrete-event simulation there are two main approaches to distribution:

conservative and optimistic. In the conservative approach the events are timed, tl to t,,

where n is the total number of events generated throughout the simulation and are destined

for another processor. We have ti # tj whenever i # j. The conservative algorithm requires

that events be transmitted in chronological order. The receiving end then waits until it

receives all its input events, processes the event with the lowest time stamp, and increments

its local clock to the value of the event just processed. In order to avoid deadlock, if a

processor does not have an event to transmit, it sends a null message, which requires a

lookahead capability for each processor, i.e., a processor should be able to look into the

future for some strictly positive amount of time, and if it will not generate an event during

this period, it should send a null message to all its output links. In [46]  it is proved

that there is no deadlock with this null message algorithm. Variations of the conservative

algorithm have been developed, see [43]  for more details and [47]  for an excellent overview

and comparisons of different conservative algorithms.
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In the optimistic approach, or Time Warp,  as it is called by Jefferson and Sowizral

[48], every processor checks its input links and executes the event with the lowest time stamp.

Contrary to the conservative approach it does not wait until an event has arrived at each

of its input. As a consequence of this relaxation, it is possible for a processor to receive

an event with a time stamp which is less than the processor’s local clock value. If this

happens, the processor should roll back its local clock, execute the event that has happened

in the past, and nullify all the generated events and their effect subsequent to the new time

after the roll back by sending anti-messages to other processors that received the erroneous

events. The roll back capability requires storing the state of the system throughout the

simulation time, which may require a large memory in the system. Other variations of

Time Warp have been developed, see [49]  for more details.

The conservative approach is ideal for fully connected, strongly coupled systems.

It has the disadvantage that a slower or more loaded processor slows down the whole

system, and so load balancing is of paramount importance in the conservative approach.

On the other hand, the optimistic approach is ideal for loosely coupled systems with little

communication among processors, and if the conditions are ideal, its efficiency tends to

one. The drawback is that as the number of rollbacks increases, the efficiency may quickly

degrade depending on the size of the system.

We argued in the previous section that the best way to partition the AHS is by

allocating the simulation of the sections of the highway together with the vehicles in that

section to different processors, so that each processor has a certain number of sections.

This produces a connected graph, each node being a section. When a vehicle moves from

one section to another, it may have to be moved from one processor to another, if the

sections belong to different processors. With a large enough traffic flow (a flow of 7200

vehicle/lane/hour will cause inter-processor messages at the rate of two per second per

lane) in the highway, we have a large demand on inter-processor communication. Also, for

detection purposes, a message will be generated for each simulated vehicle in the boundaries

of the processors at every time sample. Because of these reasons, we chose the conservative

approach for the discrete event part of the simulation; however, we had to modify it in

order to take into account the discrete-time part of the simulation, since we are simulating

the continuous plant together with the discrete controllers in the same processor; therefore,

we had to be careful about the synchronization between the discrete controllers simulated

in different processors. The option of simulating the continuous plant separately from the

discrete controllers is not efficient in our case because of multiple interactions that take
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place between the discrete-time and discrete-event parts.

In this section, I describe an algorithm which functions as the supervisor for dis-

tributed message passing. This algorithm is needed since null messages alone will not guar-

antee the correctness of the simulation and lack of deadlock in a discrete-time simulation

of hybrid environment. The algorithm developed in this section ensures the correctness of

the simulation (which will be defined subsequently) by determining the sequences of events

that should occur before the simulation clock can be incremented.

4.2.1 The Processor Model

We model each processors of our distributed system as follows, figure 4.2:

FLAG

Figure 4.2: Modeling of a Processor

Within every processor there is a simulation supervisor, a set of distribution su-

pervisors, buffers and buffer flags, and message boxes.

l The simulation supervisor (SS) consists of the main scheduler and simulates the mul-

tilayer system, the network and link layer controllers, FSMs for coordination and

regulation layers, and the vehicle dynamics. Every event that is generated by a con-

troller is marked by the simulation supervisor as an internal or ezternal  event. Internal

events are those events whose recipients are also simulated within the same proces-

sor and supervised by the simulation supervisor; the recipients of external events are

simulated in another processor, and the event should be sent to them.

l The message boxes (MB) are memory locations where the external events are stored

until the simulation or distribution supervisor can serve them.
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l Between every two neighboring processors, there is a buffer (B) which is a memory

location readable and writable by both processors, and a buffer flag (BF) which models

a toggle switch that points to only one of the processors at any specific time. The

buffer flag is also readable and writable by both processors and initialized randomly

to one of the two possible choices. By convention a processor can only access the

buffer for reading and writing, if the buffer flag points to that processor. In this case

the processor can also toggle the switch to the neighboring process, but before that

it should have read the incoming messages from the buffer and written the outgoing

messages into the buffer.

l The distribution supervisor (DS) supervises the message passing between two proces-

sors. It receives the external events from its own simulation supervisor and delivers

them to the neighboring process by writing the messages into the buffer whenever

it is allowed. The distribution supervisor also receives messages from the buffer and

notifies the simulation supervisor of the messages. Our distribution algorithm resides

in this entity.

Figure 4.3 shows the connections for a three-processor system. Note that there

is one distribution supervisor for each neighbor, and therefore it is necessary for every

processor to know how many neighbors it has. However, this number can change as the

simulation progresses, which allows us to perform dynamic load balancing as we will see in

the next chapter.

4.2.2 Simulation Supervisor (SS)

Figure 4.4 shows the sequence of events that takes place inside the simulation

supervisor during one simulation time step.

The simulation supervisor has a list of all its neighbors which is initialized at the

beginning of each simulation step. Since every processor has to simulate a fixed segment of

the highway, the neighborhood list usually will not change, unless there is a repartitioning

of the highway which may happen, if a load imbalance is detected (see chapter 5 for the

definition of load imbalance). After the initialization of this list, the simulation supervisor

simulates its own continuous plants in synchronization with other processors.

The basic idea behind the discrete-time simulation is the lock-step progress with

the help of barriers. A barrier is a software block that when executed blocks that processor

until all participating processors in the simulation executes the barrier. In a distributed



77

------------T-------------~

pz%+y--&~~-;-i;

I1I I/------ -~+-~-~-~------~~

I I

Figure 4.3: Modeling of Multiprocessor System

environment, barriers are implemented using the following two communication steps:

l When the barrier is executed, it sends a message to all processors involved in the

simulation.

l Then, it waits until it receives the corresponding message from all other processors as

well.

In SmartPath  the relevant processors are limited to the neighboring processor, which reduces

the number of messages and the resulting bottlenecks tremendously. However, there are

two barriers involved in the discrete-time SmartPath simulation, one for moving the vehicles

and another for detection purposes. Figure 4.5 shows the sequences of events for coherent

completion of the discrete-time simulation.

The simulation supervisor first updates the position of all vehicles, and if some

vehicles have passed the boundary of the processor, they are grouped according to their

next host (processor). After the completion of the update, a message for each neighbor

processor is created. The message contains both static and dynamic state information of

the vehicles in the corresponding group. If there is no message for a neighbor, a message

with no content is transmitted. A processor waits until it receives a message from each of its

neighbors, and if any message has some content, the corresponding vehicle is created. For

detection purposes, as was stated before, the information about the vehicles in the boundary

regions should be transmitted to the processors that are connected to that boundary. As in
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Figure 4.4: Modeling of the Simulation Supervisor

the first case, the processor groups the vehicles that are in the boundary region, and sends

their position, velocity, and acceleration to the other processors, and waits until it receives

messages from the neighboring processors.

Assuming that the simulation starts at time 0 on all processors, and the time is

incremented after the second barrier, we can see that the time differential between any two

neighbors is at most one time sample.

We return to figure 4.4. After completion of the discrete-time simulation, the

simulation supervisor simulates the FSMs  and other discrete controllers, which we call pro-

cesses, since in SmartPath they are represented as light weight processes. Each controller

may generate multiple internal or external messages that should be delivered to their re-

spective processes within the simulation. All the internal events are delivered immediately,

but each external event is put in the message box associated with the neighboring processor
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Figure 4.5: The Discrete-Time Simulation

that simulates the process to which the external event belongs. If the simulation supervi-

sor can not find the location of the receiving process, the external event is copied into all

message boxes. When the simulation of processes has ended, and none of the controllers

is active, the distribution supervisor is activated; the simulation supervisor then moves to

a wait state. If for some neighboring processors there is no external event, the simulation

supervisor stores a null message in the corresponding message boxes.

The simulation supervisor stays in the wait state until one of the distribution su-

pervisors notifies it of a message or generates a done event, which means that the simulation

supervisor will not receive a message from that neighbor during this simulation time. In

the former case, the message is delivered to the process it is intended for, if any, and after

the simulation, the simulation supervisor either generates more external events for that dis-

tribution supervisor or stores a null message in the corresponding message box, effectively

activating the DS. In the latter case (the generation of done event) the simulation supervisor

marks that neighbor in its list of neighboring processors and checks whether all entries of

the list are marked. If this is not the case, it again moves to the wait state, otherwise, the

simulation of discrete-event elements of the system for that time step is completed and the

simulation clock can be incremented.

In order to use automatic verification tools (COSPAN and HSIS), we had to specify

how many neighbors every processor has and design the formal state machine for the simu-

lation supervisor. The simulation supervisor’s FSM for a processor with only one neighbor

is shown in Figure 4.6.



80

IONE DSP:msg

DSP:done

Figure 4.6: Formal State Diagram for the simulation supervisor

4.2.3 Distribution Supervisor (DS)

The distribution supervisor responds to two events, the msg or null-msg event from

the simulation supervisor which indicates the generation or absence of a message, respec-

tively, and the my-turn event from the buffer flag indicating the ownership of the buffer.

The distribution supervisor in turn generates two events, msg and done, for the simulation

supervisor and toggle for the buffer flag. The msg event indicates to the simulation supervi-

sor the arrival of an external message that should be simulated. The simulation supervisor

then checks whether the recipient of the message is simulated in its domain. For efficiency,

if the process to which the message is to be delivered does not exist within the simulation

domain, the message is ignored by the distribution supervisor. The toggle event indicates

that the ownership of the buffer should be transferred to neighboring processor.

The DS will eventually move to the DONE state and generate the done event for

the simulation supervisor, when the following two criteria are satisfied:

1. There is null-msg event from the simulation supervisor and given that the buffer flag

points to its processor, there is no message in the buffer.

2. The buffer flag has already switched at least once, and the other processor had a

chance to put its messages in the buffer.

The DS algorithm has four branches:



81

l there is null-msg from the simulation supervisor and no message in the buffer. In this

case the DS will toggle the buffer flag. If the other processor already has the buffer,

the DS generates the done event.

l there is null-msgfrom simulation supervisor, and there is a message in the buffer. The

DS will give the message to the simulation supervisor and wait for a message from it.

l there is a msg event from the simulation supervisor and no message in the buffer. The

DS puts the simulation message in the buffer and generates the toggle event. It then

waits until the buffer flag generates the my-turn event.

l there is a msg event from the simulation supervisor, the buffer flag points to its

own processor, and there is a message in the buffer. In this case, the DS delivers

the messages from the buffer to the simulation supervisor, puts the message it has

received from the neighbor through the buffer, and generates the toggle event for the

buffer flag. It then waits for either the msg or null-msg from simulation supervisor.

The algorithm for the distribution supervisor is shown as formal FSMs in figures 4.7,4.8,  and

4.9, each depicting one branch starting from the beginning of the algorithm. The algorithm

is not a tree (though it is drawn like one), since there are loops within each branch (shown

by the dotted arrow) and connections from the states of the two right branches (figures 4.8

and 4.9) to the states of the left branches (figure 4.7, the connections are shown as labels

1A and 1B).  The states of the distribution supervisor are either WAIT-SS-i or WAIT-BF-i

where i is an integer, WAIT-SSindicates that the distribution supervisor is waiting for an

event (either msg or null-msg) from the simulation supervisor, and WAIT-BFindicates  that

it is waiting for the buffer flag to switch to its side.

The initial state of the DS is WAIT-SS-1. If the event null-msg is generated by

the SS, and the buffer is empty (B-idle), when the buffer flag generates the event my-turn,

the DS just toggles the buffer flag and again waits for the my-turn event from the buffer flag

after which if the buffer is still empty, the DS generates the done event for the simulation

supervisor, since both criteria mentioned earlier are satisfied, and moves to the D O N E

state. The second branch of the algorithm (in figure 4.7) starts from the WAIT-BF-1 or

WAIT-BF-2 state on the condition that there is a message in the buffer. The message is

delivered to the SS (by generating the smsg event) and the DS waits for a response from the

simulation supervisor. If the SS generates a message, the distribution supervisor generates

the B-msg event (a message for the buffer) and moves back to the WAIT-BF-2. In this
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Figure 4.7: Formal State Diagram for the distribution supervisor- 1st and 2nd branches

branch, the sending and receiving of the messages between the two neighbors are essentially

sequential, i.e., one sends a message and waits for the other to respond, while the other

receives the message and waits for the simulation supervisor to simulate and generate a

message or a null message.

The third branch of the algorithm, shown in figure 4.8, is created when at the

beginning of the distribution the SS has generated a message and the buffer is empty. The

DS then moves to the WAIT-BF-4  after putting the simulation message in the buffer and

toggling the buffer flag. If after the return of the buffer flag the buffer is still empty, the DS

is done, otherwise the DS delivers the message in the buffer and moves to the WAIT-SS-3.

The DS jumps to the first branch (WAIT-BF-2 or 1A label) if the SS has not generated

any message.

The fourth branch of the algorithm (figure 4.9) is the most involved, since there

is a message from the simulation supervisor and a message from the neighbor in the buffer.

For efficiency, we deliver both messages and toggle the buffer flag; therefore, we allow both

processors to continue simulation. For this reason, when the simulation supervisor does not

generate a message, null-msg, the DS still has to wait for the buffer flag and wait for any

messages that may be generated from its earlier SS message by neighboring processor.
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Figure 4.8: Formal State Diagram for the distribution supervisor- 3rd branch

In the next section, I discuss the criteria for the correctness of the algorithm.

4.2.4 Assumptions and Correctness of the DS Algorithm

We want to show that the behavior of the distributed system is the same as in the

single processor simulation. So in order to prove the correctness of the distribution we have

to show that:

A. The DS will eventually terminate, i.e., it will go to its DONE state.

B. The DS will not generate any message (B-msg in the DS FSM) to the buffer while the

distribution supervisor of a neighbor is in the DONE state.

As we note from the DS state diagram, it is possible that the DS remains in the WAIT-SS-i

or WAIT-BF-i indefinitely, or makes infinite transitions from WAIT-SS-i to WAIT-BF-i,
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Figure 4.9: Formal State Diagram for the distribution supervisor- 4th branch

and vise versa. So in order to prove the eventual termination of the algorithm, we make

four assumptions:

1. Each processor has a finite pre-defined number of neighbors.

2. The simulation phase of the simulation supervisor always terminates in finite time.

3. There will not be an infinite message passing loop between the neighboring processes.

4. A message from a neighbor will not generate another message to another neighboring

processor other than the original generator of the message. However, a message may

generate some internal messages. We call this assumption the independence assump-

tion.

Under these assumptions, we are able to conclude that all simulation supervisors receive

the correct set of messages for every simulation time step without deadlock. The first

assumption is clearly justified. We can justify the second and the third assumption on

the ground that if they do not hold, the uni-processor simula,tion also will not proceed to
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the next time sample, so the behavior of the distributed system will be the same as the

uni-processor simulation.

The last assumption may not be true for specific applications and has to be checked

separately. In the AHS simulation, if the length of the section is large enought then the

vehicles in the different boundaries are independent and will not interact; therefore, under

these conditions this assumption holds. We will show later, how to augment the algorithm,

when the fourth assumption can not be validated.

Proposition 4.1 Under assumptions 2 and 3 above, the DS eventually will terminate.

Proof: If the DS does not go to the DONE state, either it is indefinitely in a wait state,

or it makes infinitely many transitions within a loop.

1. There are two general wait states: wait for the simulation supervisor, WAIT-SS-i,

and wait for the buffer flag, WAIT-BF-i.

The DS cannot be in the first wait state because of assumption 2.

The DS cannot be in the second wait state indefinitely for the following reason. If the

DS is waiting for the buffer flag, it means that the DS in the neighboring processor has

the buffer flag. The neighboring DS cannot be in the DONE state, since before going

to the DONE state, the DS switches the flag, so it should itself be in a wait state.

The neighboring DS cannot be in the wait state for the buffer flag, since the buffer

flag has only two states and always points to one of the two processors. Therefore, the

neighboring DS should be in a wait state for the simulation supervisor, and because

of the second assumption, it cannot remain in this state indefinitely and eventually

will return the buffer flag to the neighboring DS.

2. There are three possible infinite loops: WAIT-BF-2-WAIT-SS-2 (in figure 4.7),

WAIT-SS-3- WAIT-BF-5 (in figure 4.8), and WAIT-SS-5-  WAIT-BF-7 (in figure

4.9). Each is possible only if infinitely many messages passes between the two neigh-

boring processors, which violates the third assumption.

Therefore, we conclude that the DS will eventually make a transition to the DONE state.

0

Proposition 4.2 Under assumptions 2, 3, and 4 above, the DS will not send a message to

the neighbor DS when the neighbor DS is in the DONE state.
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In other words, whenever a distribution supervisor makes a transition to the DONE

state, the neighboring DS either has already moved to its DONE state, or it will move in

the next transition. By proving this proposition, we can verify that there will not be

any message from one simulation time step to the next time, i.e., the simulation correctly

simulates the behavior of the system in the distributed environment.

Proof: The DS will go to the DONE state only after it passes one of the following states

which we call primary states: WAIT-BF-2, WAIT-SS-2, WAIT-BF-4,  and WAIT-SS-5,

which means that the other DS is also past the primary states, since the buffer flag has

been toggled. After the primary states, a DS moves to the DONE state only after a null-

msg and a B-idle. Since the above events are symmetric, i.e., the null-msg in one DS is

equivalent to the B-idle in the neighbor, and the fact that the DS returns the buffer flag

before the transition to the DONE state, we can conclude that as soon as one DS moves

to the DONE state, the neighbor DS will follow. In other words, if there was a message

generated after the primary states, it should have been as a result of an earlier B-msg event,

which could not be generated. Cl

Now that we shown the DS will terminate and the consistency of the transactions

between any two DSs, we can state our main theorem.

Theorem 4.1 In the finite distributed environment under assumptions l-4, all processors

receive the correct set of events and eventually move to the DONE state.

Proof: By construction, between any two processors there is a buffer, a buffer flag, and

every processor has a specific DS for each of its neighbors. From proposition 4.1 every DS

will eventually terminate, and so in a finite time all the DSs of a processor will terminate.

Therefore, each processor will eventually move to the DONE state.

From proposition 4.2 when a DS is terminates it will not receive a message, and

from assumption 4 (the independence assumption), the simulation supervisor will not gen-

erate a message for a terminated DS as a by-product of a message received from another

DS. Therefore, the simulation is correct. El

We programmed the above model in COSPAN [13] and verified the DS algorithm

for two-processor and three-processor systems. The “monitor” chosen for the verification

was to check that all the simulation supervisors are in the DONE state, and the message

boxes and buffers are in the IDLE state. The DS chosen for the verification was designed to
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make a transition from its DONE state to the WAIT-SS-1 again, so it can make a transition

the next sample time, too.

4.2.5 Extension to the DS Algorithm

We have described in the previous section the algorithm that can be used to mon-

itor the distributed simulation of a hybrid system. This algorithm should be employed

on top of the conservative approach to the distribution, which uses null messages to avoid

deadlocks. In our case, the null messages generated by the simulation supervisor are used

to indicate to the distribution supervisor that the simulation has already been performed

and it did not generate any external events. We also proved that the algorithm will ter-

minate regardless of the number of processors engaged in the simulation, as long as the

four assumptions mentioned before are satisfied. However, the independence assumption is

not well-justified and can be violated in some applications. The independence assumption

basically decouples the boundaries of a processor; this allows for the simulation supervisor

to increment a counter for the “done” distribution supervisors and as soon as the counter

is equal to the number of neighbors the processor has, it moves to its DONE state. Let us

look at an example that violates the independence assumption.

In the PATH-AHS design, the maximum number of vehicles in the platoon is 20

and with 5 meters as average length of a vehicle and 2 meters intra-platoon distance, the

length of a platoon can be as large as 140 meters. Assuming that a longitudinal maneuver,

i.e., a maneuver whose participants are all in the same lane, involves only 2 platoons, and

the sensor range of a vehicle is 60 meters, then in order to have the 2 platoons in at most 2

processors, the minimum length of a section can not be less than 300 meters (2 x 140+60),

otherwise there is a possibility that a message generated from the tail follower of a platoon

in a processor generates a message to the leader of another platoon in another processor

which is not its direct neighbor.

The easiest solution is to use a global barrier as the synchronization point among

all the processors. The simulation supervisor after all of its distribution supervisors has

moved to the DONE state, moves to an intermediate state, waiting for other processors to

reach that state, after which it moves to its DONE state. But global synchronization is

very expensive in terms of communication costs, since every processor has to broadcast its

state to other processors. Another solution is to use a variation of the optimistic approach

in the simulation supervisor to augment the DS algorithm. This approach has merit, if

the probability of an external events to interfere with processors other than the processor
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for which it is generated, is small. This solution will require more memory to save the

simulation state for possible roll backs.

If the highway graph is connected, the processor graph is also connected, since

it is only an aggregation of the highway graph. Let us define the distance between any

two processors as the minimum number of processors that are between the two over all

paths that connect the two. Also, define the gruph diameter as the maximum distance that

exists on the graph. The significance of the graph diameter is that it limits the number of

simulation steps that should be saved by every simulation supervisor. I remind the reader

that the processors are pairwise  synchronized for the purpose of moving the vehicles and

vehicle detection (the continuous elements of the the hybrid system). Therefore, it is not

possible for any processor to be ahead of the neighbor by more than one simulation step

time. As a result, if one processor is blocked, its neighbors will be blocked at most in the

next clock cycle and thus, the simulation clock value of no processor can be more than the

graph diameter away from the blocked processors. So no simulation supervisor can receive

a message with time stamp less than simulationTime  - graphDiameter,  and there is no

need to save the state of the simulation for more than the graph diameter time.

The algorithm for the simulation supervisor, then, will be augmented as follows:

1. To every external event append the simulation time.

2. After a DS is in DONE state, and an external event for that DS is generated, activate

the DS again.

3. Save the state of the simulation for the amount of time equal to the graph diameter.

4. If an incoming message has a time stamp earlier than the simulation clock, restore

the saved simulation state, activate the distribution supervisor for that boundary, and

deliver the message to the entity.

4.3 Implementation of the Distributed SmartPath

Our goal in implementing the Distributed SmartPath is to provide a consistent in-

terface for interconnecting different platforms. The Distributed SmartPath can be executed

in IBM RS6000, SUN SPARC, DEC, and SGI workstations. The distributed platform can

also incorporate a mixed set of workstations with the exception that the animation should

run on the SGI workstations. For inter-processor communication, we use standard TCP
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sockets. An earlier version of the distributed SmartPath was ported to a 64-node Thinking

Machine CM-5 to acquire some estimates of the speed up (discussed in the next section).

The preliminary results was on the order of 0.9p speed up where p is the number of nodes in

the simulation. However, since we used split-C language (instead of C) for message passings

among processors, that version was not portable to a workstation.

The workstation in which the user executes the SmartPath  program is the main

server for the distributed simulation. The server initiates the SmartPath  program in the

user-determined clients. Every client is given the list of all clients, so that they can create

connections to others. The end result is that every processor is connected to all others.

If the user does not specify any client, the server initiates a client process in the same

workstation. If the simulation is specified to be interactive, the server waits until it receives

a message from the animation platforms. The address of the animator process is then sent

from the server to all clients, so that they can establish connections with the animator.

To implement the discrete-time and discrete-event distributed simulation, we added

a distribution layer and changed the scheduler of SmartPath. Recall that SmartPath’s

scheduler after initialization of all layers has the following loop: the regulation layer wake-

up, update the position of all vehicles, wake-up for the coordination, link, and network layer

controllers, and increment the simulation clock by the simulation time step. We modified

the above scheduler as I explain next. Note that in the description that follows the “process”

is the SmartPath  simulation which is executed as a Unix process in the workstation.

l The initialization of the distribution layer is added to the initialization routines of the

scheduler.

If the process is the server process, it creates the highway graph by reading the input

file provided by the user, determines the,number  of clients, assigns a consecutive num-

ber to each client (server is processor number 0), partitions the graph so that number

of partitions is equal to the number of clients and all partitions have approximately

equal weight, and transmits the relevant information, which I will shortly describe,

regarding the partitions to the clients. After transmission of the partitions, the server

waits until it receives an all-done message from every client and then terminates.

If the process is a client process, it receives the communication address of the server,

its processor number, and the user-provided input file as part of the initialization

argument. The client connects to the server after reading and initializing the highway

graph structures from the input file. The client receives the list of all other clients,
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creates a connection to every client, and waits until it receives the partition allocated

to it by the server. Every partition consists of a set of nodes and edges. Every node

contains the id of a highway section (as described in 4.1.3),  the processor number to

which it belongs, and a list of vehicles which is initialized and updated by the client

process.

Since every edge structure contains the source node (the upstream node) and the

destination node (the downstream node) of the edge, the client sets up its table of

the neighboring processes, searching the edge structures and if either the source or

destination node does not belong to it, it inserts the processor number of the node

in its table and marks the node as a boundary node. The client process also creates

a memory location, a message box, for every neighbor that it uses for storing the

messages and information regarding the vehicles that should be transferred to that

neighbor.

l The regulation layer wake-up routine is executed as in the sequential simulation; how-

ever, since it is possible that part of the platoon is in another client, the regulation layer

after executing the controller for those platoons that are wholly within its domain,

waits for controller messages to arrive from other clients. As soon as the messages

have arrived, the followers are activated and the regulation layer returns the control

to the scheduler.

l To update the position of the vehicles, the client process traverses the list of vehicles

in its nodes, and calculates the next position of the vehicles. If some vehicles are

moving out of the section to another section, they are placed in the vehicle list of the

downstream node, if the downstream node belongs to the same client; otherwise, the

moving vehicles are placed in the message box of the corresponding neighbor. After all

vehicles are updated, the client creates a message for every neighbor from its message

box, and terminates the simulation of the transferring vehicles. If the message box

of a neighbor is empty, a NULL message is sent to that neighbor. The client then

waits until it receives a message from each of its neighbor and creates the vehicles

that are moved to its processor, if any. If the vehicles that are transferred to another

client have followers, the simulation sets a flag for the regulation layer and waits for

the regulation layer control messages (infra-red messages) for the followers from the

neighboring clients.

If the simulation is in the interactive mode, the updated information of the vehicles
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are sent to the animation host, which in turn transmit an acknowledgement after

reception of the data message. The animation program may also transmit a set of

commands-store and restore-for the whole simulation and acceleration and steering

angle for a particular vehicle in the manual mode. See section 3.2.2 for store and

restore commands, and 3.2.3 for the description of the manual mode.

After receiving the transferred vehicles and the animation acknowledgement, if ap-

plicable, the client process stores the sensor information of the vehicles which are in

the boundary zone (sensor range) of the boundary nodes in the message boxes of the

neighbors. The client process transmits this information to the neighbors, and waits

for the sensor messages from the neighbors. At this point the discrete-time part of

the simulation has been performed.

l After the execution of the wake-up routines for the control layers, the scheduler acti-

vates the distribution supervisor. The distribution supervisor is implemented accord-

ing to the algorithm described in section 4.2.3.

In the implementation of the distribution supervisor, we assume that the section length is

large enough so that the vehicles in different boundaries remain independent of each other,

and we have not yet implemented the augmented version of the distribution supervisor.

4.4 Performance of the Distributed SmartPath

We saw earlier in section 3.3 that the performance of SmartPath  simulation is

a linear function of the number of vehicles being simulated. Our goal in the distribution

was to preserve the linearity of the simulation performance with respect to the number of

vehicles and have the speed up close to the ideal case by reducing the communication cost

among the processors.

Experiments were performed on up to four SGI INDIGO II workstations with

MIPS 4400 processors (200MHz)  and 32 MB of memory. The graphs of figure 4.lland

4.12 are the results of a set of experiments with the SmartPath3.0. The highway for the

experiments, shown in figure 4.10, is a double “race track” consisting of twelve 300-meters

sections and four lOOO-meters sections. All sections have three lanes except the middle

sections which has six lanes.

For the speed up graph, the highway is populated with 1260 vehicles. To simulate

this many vehicle in one processor, it takes about 20 times the simulation time (i.e., for 1
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Figure 4.10: The Test Highway for Load Balancing

second of the simulation time, 20 seconds of the real time is needed). In a two processors

system we could achieve the speed up of 1.7 on average (i.e. for 1 seconds of simulation

time, 12 seconds of real time is needed), and in a four processor system, we have the speed

up of 3.4. Figure 4.11 shows the speed up of the distributed simulation as a function of the

number of processors.

Tl/Tp

Figure 4.11: Speed up of the Distributed Simulation

Our experiments also showed us that to simulate few vehicles (on the order of

loo), it is much faster to simulate the system on a single processor. The reason is that

we are using TCP-IP protocol stack for the inter-processor communication, and there is a

fixed overhead cost associated with sending a message. When few vehicles are simulated,
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the communication cost is dominant and diminishes the benefits of the distribution.

The next performance measure is the scaled speed up, which is shown in figure

4.12. For this graph we used the same highway as above, but we increased the number

of the vehicles as we increased the number of processors. For this experiment we added

270 vehicles to the system for every processor. For one processor to simulate 270 vehicle

corresponds to about 4.5 times the simulation time. The ideal situation is that it takes the

same amount of time as we increase the number of processors and vehicles, which translates

to the scaled speed up of 1. However, we cannot achieve this scaled speed up because of the

inter-processor communication. As shown in figure 4.12, for two processor the value of scaled

speed up is 0.84, for three processors it is 0.75 and for four processors it is 0.72. The value

of the scaled speed up drops noticeably from two processors to three processors, since in a

two-processor system a processor can have at most one neighbor, but in a three-processor

system the number of neighbors can be two, as was actually the case in the simulation. The

scaled speed up did not decrease more than 0.72.

T l/Tp

1 ,QQ $/$\ & . . . . . . . . . . . . . . . . . . . . . . . . . Ideal line
‘... I ...”

Q ,cJ5  it......  :;ml+;F . . . . . . . . . . . . . [.................................................. j . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . /................................ 270 cars

Figure 4.12: Scaled Speed up of the Distributed Simulation
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Chapter 5

Dynamic Load Balancing

5.1 Introduction

The disadvantage of the spatial partitioning of the highway graph for the purpose

of distribution is the possibility of load imbalance among the processors. For a P processor

system, let IV;(t)  be the work that a processor is performing at simulation time t in terms

of real time, and W(t)  = cebw’(a be the average amount of work, then we define the load

imbalance AL as
AL(t)  = maxi(wi(t>>  - w(t)

w(t)
The load imbalance is the result of unavoidable non-uniform movement of the vehicles on

the highway, even if the initial distribution of the vehicles on the highway is uniform, i.e.,

all nodes and edges have the same weights at the simulation time 0. Intuitively, if the

flow of traffic is regular, and the initial distribution of the traffic is uniform among the

lanes and sections, then it will remain so for the duration of the simulation. However, any

disturbances on the highway flow, which may have been caused by vehicles changing lane

will unavoidably cause imbalance among the processors. The reason is that the change lane

maneuver is accompanied by degradation of the speed in the target lane of the vehicle.

Minor and major incidents that may cause the reduction of the velocity of the vehicles in a

lane or a section, also contribute to the load imbalance among the processors.

We devised the following experiments with the distributed version of SmartPath

with fully implemented PATH-AHS control hierarchy (second constructs) in order to observe

the degree of the load imbalance that the change lane maneuver and minor incidents may

cause.

The highway is a double “race track” (shown earlier in figure 4.10). The track is
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Load Imbalance (%) 5 10 15 20 25 30 35 40 45 50 55 60 65 70
S i m u l a t i o n  T i m e  (%) 7 9 8 10 13 7 10 12 7 9 5 3 1 0

Table 5.1: Average Load Imbalance

populated by vehicles which are grouped in platoons of average size of 5 vehicles/platoons.

The total number of vehicles is 1680 vehicles, uniformly distributed on the highway. The ini-

tial velocity of all vehicles is 25 meterslsec;  therefore, the flow of traffic is 5724 vehicles/lane/hour.

The platoons can merge, and the vehicles within the platoons are randomly selected for

change lane maneuvers.

Table 5.1 shows the result of the simulation. The top row of the table is the

percentage of the 1oa.d imbalance (Al; x 100) and the bottom row shows the percentage

of the simulation time with that imbalance. For example for 13 percent of the simulation

time, the system was experiencing 25 percent imbalance. It is clear from the result 5.1 that

we need to investigate the dynamic load balancing option for the simulation.

In this chapter I study the dynamic load balancing problem using dynamic pro-

gramming and show that under suitable conditions ithe optimal behavior is of a threshold

type, that is if the load imbalance exceeds a certain threshold, it is beneficial to perform

a load balancing operation on the processors. In section 5.2 we present our formulation

of the problem and the conditions for a closed form solution. In section 5.3 we discuss

implementation issues and the cost of the dynamic load balancing. Section 5.4 evaluates

the performance of the simulation, when the load balancing option is active.

5.2 Problem Formulation and Structure of Optimal Policy

The SmartPath  distributed simulation a process starts at time 0 and evolves in

discrete time increments. At every step the simulation moves from one state to another,

and at every state of the simulation we should decide whether to perform the load balancing

operation or to let the simulation progresses to the next time step unchanged. Clearly the

decision is based on the cost of the load balancing operation and the state of the simulation.

Our goal in this section is to design a policy, that minimizes the real time spent by the

distributed system in simulating an AHS scenario. To design the policy we shall need some

preliminaries about dynamic programming which I present next.
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5.2.1 Dynamic Programming

Dynamic programming is a recursive technique used to calculate optimal sequential

decisions sequentially. Every decision has a cost associated with it, and since it may change

the state of the system, it may affect the subsequent decisions. Therefore, the objective of

dynamic programming is to properly balance the decisions that incur small short term cost

with the possibly high cost in the long run. If the decision is only based on the current

state of the simulation, then the process is a Markov decision process.

Let

l X; be the state of the system at time i with Xu the initial state,

a 7r = {al,aa,-. .} be the policy and a; be action chosen by the policy T at time i; a

policy is called a stationary policy, if the action chosen at time i is non-randomized

and only depends on the state of the system,

l C(X;, ai) be the cost of simulating the system when it is in state X; and the action

a; is chosen,

l V?(i) be the expected discounted cost of simulation when the initial state of the system

is state i and policy 7r is chosen, i.e.,

00
VT(i)  = &[C C(X,, u,)an  1 X0 = i]

n=O

and

I&(i) = rnjn VT(i)

l &(i) be the expected average cost of the simulation

system is state i and policy rr is chosen, i.e,

&(i) = l i mN-+oo $GINcl C(JL an>
n=O

Our goal is to find the policy rr* such that

qb(i) tEf &p(i) = rnjn q&(i)

(54

(54

when the initial state of the

1 x0 = i] (5-3)

(5.4)

From the principle of optimality, which says that an optimal policy has the prop-

erty that whatever the initial state and initial decisions are, the remaining decisions must
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constitute an optimal policy with regard to the state resulting from the first decision [50],

equation (5.2) can be written as:

V&(i) = min(C(i, a) + ck 5 P;jV,(j)) (5.5)
j=l

where P;j = P(XI, = j]Xk-r = i) is the probability of moving from state i to state j.

Let

ha(i) = &(i) - l&(O)

for some fixed state which we call state 0; then, we can write equation (5.5) as:

(1 - a)V,(O) + b(i) = mjn(C(i, a) + o 2 P;jh(j))
j=l

Now, if for some sequence o, + 1,

(5.6)

ha, (4 + h(i), (5.7)

and

for some constant g, then we have

g + h(i) = m;ln(C(i,  a) + 5 &h(j))
j=l

(5.9)

the function h inherits the characteristics of V, in the sense that, if V, is convex and

increasing (or non-decreasing), h is convex and increasing (or non-decreasing). It can also be

shown that if (5.9) has a solution (which is based on the existence of the limit functions (5.7)

and (5.8)),  then g = 4(i), and the stationary policy that minimizes (5.9), also minimizes

(5.4).

For conditions (5.7) and (5.8) to hold, it is sufficient to show that for some fixed

state (say state 0), there exists a constant constant N < 00 such that

for all cu and i.

The results that I described above are the tools necessary to formulate the dynamic

programming problem for SmartPath. There is a vast literature dealing with the theory

and application of dynamic programming. Bellman’s book [51]  is an excellent reading. For

applications of dynamic programming see [50].  Most of the above results are from [52]  and

[531-
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5.2.2 Dynamic Load Balancing: Problem Formulation

For the distributed SmartPath simulation let Xi, the state of a processor j at time

i, be the number of vehicles simulated in that processor, and let the state of the system be

Assuming that the vehicles are uniformly distributed along the lanes and along the sections,

the cost of simulation is directly proportional to X;. Also, the decision at every time step

is either to perform the load balancing operation or do nothing. After load balancing is

performed the state of the simulation is always state 0, which is the state with no load

imbalance among the processors, i.e., each processor has cp= x3‘p’ . Let

1

0 if no load-balance
ai =

1 if load-balance

which gives the one-step cost of the simulation to be

C(X; = j, a;) =
{

IC + C(0) if a; = 1

C(d if ai = 0

where K is the cost of load balancing, C(0) is the cost of simulation when every processor

has an average number of vehicles, and C(j) is the cost in state j. From equation (5.2), we

can write

&(i) = mjn(C(i,  a)+cyC P;jV,(j)) = min(K+C(O)+aC PujV,(j), C(i)+oC P;j%(j))
j i i

(5.10)

We can see that

V,(i) 5 K + C(0) + ox PojV,(j)  I IC + K(O)

The last inequality follows from the fact that equation (5.10) for i = 0 is

V*(O) = min(K +C(O) + aCPojV,(j),C(O)+~C~~V,(j)) = c(o) +oCpu.iva(j)
j j j

Also, since l&(i) is increasing in i (to be proved later), Vo(i) - Va(0)  is non negative, and

we can write:

IV,.(i) - Va(O>l < I(
Therefore, there exist a constant g, and a bounded function h(i) such that

g + h(i) = min(K + C(0) + (Y c Pojh(j), C(i) + cyc P;jh(j))
j .i
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where g is the value of the average cost function shown in (5.4). To solve the above

equation and find the optimal policy, we can use the method of successive approximation

and policy iteration [50];  however, with certain assumptions we can describe the structure

of the optimal policy more clearly.

5.2.3 Dynamic Load Balancing: Structure of the Optimal Policy

In order for Vcy(i)  to be an increasing function of i we need the following assump-

tions:

0 C(i) is an increasing function of i.

l CTCl,  P;j is an increasing function of i. This assumption is sometimes called the

stochastic ordering of states.

Since the state of distributed SmartPath is based on the load imbalance among the pro-

cessors, the first assumption is justified. The second assumption means that it is easier to

move to a state with higher cost from a state that has a high cost than a state with low

cost, which is generally true in the highway; a congestion is more likely to occur in a dense

section than in a section with a small number of vehicles. However the assumption also says

that there is a better chance to move to a “good” state from a “good” state than from a

“bad” state. This may not be true if the controllers (specifically the link layer controllers)

are designed such that they wait till the state of the system becomes worse than some

threshold and then starts functioning, for instance by opening a new lane, which means

that if we allow the highway traffic to reach that congestion level, there is a better chance

of moving to a “good” state.

It is easy to verify that if f( )i is a non-decreasing function, then Cj P;jf(j)  is also

non-decreasing. The next step is to show that V,(i) is a non-decreasing function of i.

Proposition 5.1 Under assumptions 1 and 2,

V~:i~min(li+C(O)+aCPojl/,(j),C(i)+ocC~jV~(j))
i i

is a non-decreasing function.

Proof: The proof is by induction. Let us assume that the simulation time is N and Vn(i)

is the value function when n steps remain in the simulation.

VL(i)  = min(K+C(O)  +cyCPojI/n-~(j),C(i)  + QCEjVn-i(j))
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and

Vo(i) = min(K  + C(O), C(i))

Thus, from the first assumption, Vo is a non-decreasing function. Now, assume that for
jzo,..., n - 1, Vj is non-decreasing. Now

Vn(i) = min(fW, f(i))

where

111 = K + C(0) + ax pojvn-1 (j)

and

f(i) = C(i) + o C P;jV+l (j)

note that from condition 2, Cj P;jV,-l(j) is a non-decreasing function; therefore, f(i) is a

non-decreasing function, which makes Vn(i) a non-decreasing function. Since

&(i) = Jim I&(i)

then, I/b(i) is a non-decreasing function of i. Cl

We know from the previous section that h(i) inherits the properties of Va(i), thus,

h(i) is a non-decreasing function of i and Czo P;jh(j) is a non-decreasing function of i.

Therefore, the optimal policy is of a threshold type. It will perform a load balancing at

state i if

K + C(0) + a e Pojh(j)  < C(i) + o( 5 P;jh(j)
j=o j=o

let

I = {i : C(i) + CY~ P;jh(j) < K + C(0) + CY~ Pajh(j)}
j=o j=o

then if i $ I, we should activate the load balancing operation.

The above can be summarized in the following proposition:

(5.11)

Proposition 5.2 Under assumptions 1 and 2, there exist ^i > 0, such that whenever i > g,

the policy that chooses to perform the load balancing operation is the average cost minimized

policy. Furthermore

i = min{i > 0 : C(i) + a 5 P;jh(j) > K + C(0) + a 2 Pojh(j)}
j=o j=o
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5.3 Implementation of the Load Balancing Scheme

To implement the load balancing scheme and to find the corresponding threshold,

the server requires periodic transmission of the workload from each client. The workload of

each client is estimated by the number of vehicles the client is simulating. The transmission

period should be short enought so that variations of the workload are correctly conveyed to

the server; however, as the period decreases the cost of load balancing due to the high cost

of communication increases. We found it more efficient to allow the server to set the next

transmission time of the workloads from the clients.

The message that the clients transmit to the server contains the number of vehicles

in each section and the average velocity of vehicles on that section. From this information,

the server decides whether to start a new partitioning of the highway graph or continue the

simulation as it is. The decision to load balance is based on the load imbalance experienced

by the system. In section 5.2.1 we proved that if the distributed system is in state i such

that i 6 I where 1 is the set defined in equation (5.11), then the server should perform the

load balancing operation. We can rewrite equation (5.11) as

I = {i : C(i) < K + C(0) + a 2 Pojh(j)} - a 5 P;jh(j)
j=o j=o

I = {i : C(i) < K + C(0)  + cxg(Pojh(j)  - P;jh(j))
j=o

Since Cj”=, P;jh(j) is increasing in i, ~~,(Pojh(j)  - Pijh(j))} is always non-positive; there-

fore, if there exist a state j, such that Ii’ + C(0) < C(j) then j @ I. However, there is

a possibility that there are other states which are less than j and load balancing is still

beneficial.

The implementation of the load balancing operation in SmartPath is as follows:

l The server after initializing the clients, the highway graph, and transmission of the

partitions to the clients, calculates the next reporting time for clients and waits until

it receives the information regarding their workloads. After receiving the information,

it calculates the value of imbalance and decides whether to perform load-balancing or

not. If the decision is to balance the load, the server generates a set of new partitions

from the highway graph according to the new node and edge weights acquired from

the clients and transmits the new partitions to the clients. It then calculates the next

reporting time and waits for the next message.
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l The simulation scheduler on the clients has been changed to accommodate the load

balancing operation. Every client after incrementing the simulation time and before

updating the vehicles position on the highway, checks the simulation time. If it is the

reporting time, it sends the number of vehicles and average velocity of vehicles on

every section in its domain to the server. For efficiency, the client then continues the

simulation for the next time, after which it waits for the decision from the server. The

assumption is that the state of the traffic does not change during one simulation time

sample which is accurate if the sample time is small. Therefore, while the calculation

on the server is progressing, the clients are simulating the vehicles. The message from

server to a client contains the new nodes that it should simulate and the nodes that

it should transfer to another client. The client then transmits the vehicle information

for the nodes that have to be transferred and waits until it receives the vehicles on

its newly acquired nodes. After the nodes are transferred and the vehicles on the new

nodes are created, the simulation continues.

5.4 Performance of the Load Balanced SmartPath

We simulated a series of AHS scenarios in SmartPath environment to investigate

the following points:

Cost of workload transmission from clients to the server The cost of workload

transmission is a function of how often the messages are transmitted. When the

message transmission is at every simulation time step (0.1 seconds), the simulation

time increased by 5%, and for message transmission at every second, the increase in

the simulation time was 0.5%. Note that the clients do not wait for a response from

the server until the next sample time. Furthermore, with the load balancing option,

this cost is unavoidable. For long simulations (on the order of 1 hour), we set the

transmission period to be equal to the time required for a vehicle to move from one

section to another, which is calculated by the server’ and sent to the clients. This

period is also used in the link layer controller for broadcasting the routing information.

Cost of load balancing The cost of load balancing depends on the scenario, the magni-

tude of the load imbalance, the number of sections that have to be transferred from

‘Every client sends the average velocity of every section in its domain. The server calculates the mini  2
where V, and L, are the average velocity and length of section i, respectively, and send it to the clients. Thk
period is usually between 13-20 seconds for 300-meter sections.
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one client to another, and the number of clients involved in the load balancing oper-

ation. Usually, if the congestion is the result of an accident or velocity degradation

in one section or in sections that are sufficiently far from one another, the clients are

involved pairwise  in the load balancing operation. In this case cost of load balancing

on average is 0.14 seconds per occurance.

Threshold for load balancing operation. From chapter 4 we know the distributed

simulation can simulate about 50 vehicles per processor in real time, and the simula-

tion time is linear with respect to the number of vehicles. With the simulation sample

time of 0.1 seconds and the load balancing cost of 0.14 seconds, the state j such that

O.l4+C(O)  < C(j) is the state that the imbalance in the system is at least 70 vehicles

(e50). As I mentioned before, it may be beneficial to initiate the load balancing

operation with smaller imbalance. The experiments with SmartPath  showed us that

the simulation time is reduced when the threshold is set to be larger than 50 vehicles.

The magnitude of the simulation time reduction depends on the scenario and the

nature of the incident.

In one scenario we reduced the velocity of one section to 80% of the normal velocity

(from 25 to 20 m/s) for different time durations. By activating the load balancing

option, we could decrease the simulation time by about 10%. In another scenario we

blocked one lane in a section by stalling a vehicle in that lane for the duration of the

simulation; the decrease in the simulation time was in the order of 15%. In these

scenarios we used a closed track with a fix number of vehicles.

In the third scenario we introduced an entrance (a traffic source) in one of the sections

with a constant inflow to that section and an exit (a traffic sink) in another section.

When the traffic flow from the entrance was low, no load balancing happened, and the

performance of the simulation was just slightly lower than the distributed simulation

without load balancing (due to the load balancing overhead). As soon as the traffic

flow increased to 1 vehicle per second, we had several load balancing operations, but

the net result was that the the simulation time increased. The reason was that the

traffic was flowing regularly and we had a wave of vehicles moving smoothly in the

highway. Since the load balancing operation was only checking the magnitude of the

imbalance and not the dynamic of the imbalance, it was performing the load balancing

operation at every reporting time which was inefficient and increased the simulation

time. We solved the problem by calculating the average number of vehicles in every
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section during the next time interval (from the current time to the next reporting

time) by considering the in-flow and out-flow to that section.

The load balancing operation is costly and inefficient when the simulation time is short or a

few vehicles are simulated. Our experiments with SmartPath have shown us that for large

scale simulation, the above load balancing technique can reduce the simulation time by as

much as 20%.
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Chapter 6

Conclusion and Future Extensions

We have presented in this disseratation the structure of PATH-AHS proposal.

The proposal is based on a four-layer control hierarchy, and although intended for fully

automated vehicles and highways, it is rich enough to encompass proposals based on different

strategies. We described the interfaces and the information that should be exchanged among

different control layers. The next step was to present the controllers for the control layers.

We followed the PATH-AHS proposal of platooning as the mean to reduce the congestion

and increase highway capacity. A platoon is a group of vehicle traveling in close proximity

of each other. The distance between adjacent vehicles in a platoon is small, and the distance

between platoons is large. We describe the internal structure of each control layer and the

interfaces among them. The PATH-AHS proposal requires the following maneuvers: join,

split, and change lane. In the join maneuver two platoons become one platoon. In the split

maneuver two platoons are formed from one platoon. In the change lane maneuver a single

vehicle changes lane. Since the vehicles are under automatic control, each maneuver use a

communication protocol to acquire permission from the surrounding vehicles to perform the

maneuver. The communication protocols are designed to ensure the safety and efficiency of

the maneuvers.

In order to observe the behavior of any specific proposal and to test, evaluate,

and compare different proposals, we simulated the design. We developed the SmartPath

simulation tools for AHS scenarios. SmartPath demonstrated that our modeling approach

is sound. SmartPath  is a visual simulation package. It provides a graphical interface to

view the simulated data (vehicles and highway) in a natural way. SmartPath  is a micro-

simulation: the behavior of each functional element of the vehicle and highway is individ-

ually modeled and simulated. SmartPath is also a distributed simulation, so that different
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sections of the highway network can be simulated in different processors. The distributed

SmartPath  is designed for distributed memory systems and uses the TCP-IP protocol stack

for communication purposes.

The future work in the area of control and communication design is as follows:

l Network and Link layer Controllers The controller designs for the network and

link layer controller are in various stage of developments. The network layer controller

is still in the process of development; however, the link layer controllers proposed in

[lo] and [12] are being integrated in the SmartPath simulation and the testing will

begin soon.

l Communication and Sensor Design The work on vehicle-to-vehicle communica-

tion is in its infancy. Communications among the vehicles within a platoon is carried

by radio under the token-bus protocol. The communication among vehicles in different

platoon is on the planning phase, see [54]  and [55].

The research on sensors is mostly directed toward vision-based sensors. However, the

field trials are not completed yet.

l Degraded Mode At this stage we have designed and simulated the PATH-AHS

proposal assuming that all components of the system perform as expected, which we

call the normal mode. The next step is to design the controllers for the degraded

mode of operation, i.e., when there is one or a multitude of device and/or controller

failures in the AHS. In [56] and [57]  the faults are classified, and a research group

is already formed under PATH that actively pursues the design of the controllers for

the degraded mode. SmartPath simulation is used as the primary tool for testing and

integration of the controllers.
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