Skip to main content
eScholarship
Open Access Publications from the University of California

UCLA

UCLA Previously Published Works bannerUCLA

Multi-GBq production of the radiotracer [ 18 F]fallypride in a droplet microreactor

Abstract

Microfluidics offers numerous advantages for the synthesis of short-lived radiolabeled imaging tracers: performing 18F-radiosyntheses in microliter-scale droplets has exhibited high efficiency, speed, and molar activity as well as low reagent consumption. However, most reports have been at the preclinical scale. In this study we integrate a [18F]fluoride concentrator and a microdroplet synthesizer to explore the possibility of synthesizing patient doses and multi-patient batches of clinically-acceptable tracers. In the integrated system, [18F]fluoride (up to 41 GBq [1.1 Ci]) in [18O]H2O (1 mL) was first concentrated ∼80-fold and then efficiently transferred to the 8 μL reaction chip as a series of small (∼0.5 μL) droplets. Each droplet rapidly dried at the reaction site of the pre-heated chip, resulting in localized accumulation of large amounts of radioactivity in the form of dried [18F]TBAF complex. The PET tracer [18F]fallypride was synthesized from this concentrated activity in an overall synthesis time of ∼50 min (including radioisotope concentration and transfer, droplet radiosynthesis, purification, and formulation), in amounts up to 7.2 GBq [0.19 Ci], sufficient for multiple clinical PET scans. The resulting batches of [18F]fallypride passed all QC tests needed to ensure safety for clinical injection. This integrated technology enabled for the first time the impact of a wide range of activity levels on droplet radiosynthesis to be studied. Furthermore, this substantial increase in scale expands the applications of droplet radiosynthesis to the production of clinically-relevant amounts of radiopharmaceuticals, and potentially even centralized production of clinical tracers in radiopharmacies. The overall system could be applied to fundamental studies of droplet-based radiochemical reactions, or to the production of radiopharmaceuticals labeled with a variety of isotopes used for imaging and/or targeted radiotherapeutics.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View