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Z. J. Shen, J. Pannala, R, Rai, T. S. Tsoi 

ABSTRACT 
The events of hurricane seasons and the threat of terrorist attacks have made evacuation during 
disruptions a leading management issue. Transportation networks, which form the backbone of 
any emergency management plan, should be able to respond to disruptions by ensuring safe, 
organized and quick movement of people at the time of crisis. This work proposes two models to 
capture the highly uncertain and time-dependent nature of transportation systems in the face of 
an emergency. The first model addresses the location of safety shelters.  It uses risk management 
tools, the classical facility location model and traffic assignment techniques with Wardrop’s 
principle to determine the optimal location of shelters. The second model deals with real time 
decision-making during evacuations. It incorporates a simulation algorithm with the successive 
shortest path algorithm to model evacuation. Detailed traffic information in the network can be 
obtained from this algorithm to facilitate the evacuation. 
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INTRODUCTION 
The nature of evacuations in the United States has changed in recent years. Hurricanes Georges 
in 1998 and Floyd in 1999 saw two of the largest evacuation efforts as well as two of the largest 
traffic jams in U.S. history. Numerous explanations for the jams have been proposed including 
the threat of these storms, an over-reaction to the need to evacuate, insufficient planning, and 
limited coordination between the agencies responsible for evacuation. Whatever the causes, it is 
clear that evacuation planning deserves significant attention.  Proper preparedness and response 
are important for improved traffic flow and unhindered movement during evacuations. 

Early work primarily focused on emergency management during nuclear power plant 
malfunctions and natural disasters such as hurricanes.  Since September 11, 2001, more attention 
has been given to dealing with terrorist attacks. Researchers have used simulation and 
mathematical modeling to assist in the design and evaluation of evacuation plans: the most 
notable being the use of contra flow operations to increase the capacity of evacuation routes and 
the application of intelligent transportation systems (ITS) to collect and communicate up-to-date 
traffic information.  

Disaster Management is defined as “the range of activities designed to maintain control 
over disaster and emergency situations and to provide a framework for helping at-risk persons to 
avoid or recover from the impact of the disaster” (Disaster Management Center, 1982). Disaster 
management considers the situations before, during, and after disasters. Thus, preparedness and 
planning before disruptions and dynamic decision making during disruptions are both critical to 
effective evacuation. 

This work will apply tools from financial engineering and supply chain management to 
this problem. Since the planning phase precedes the occurrence of the disaster, uncertainty about 
future events is unavoidable. A widely used method to deal with uncertainty is to define a 
number of possible future scenarios and identify solutions that minimize the total regret over all 
scenarios. The regret of a scenario is defined as the difference between the objective function 
value given by the overall compromise solution and the optimal solution for the particular 
scenario. This work uses the α-reliable mean-excess regret model in the context of the p-median 
problem suggested by Chen, Daskin, Shen and Uryasev [1], which minimizes the expected regret 
with respect to an endogenously selected subset of worst-case scenarios whose collective 
probability of occurrence is no more that 1 − α. This model is tractable and provides meaningful 
evaluations of different advanced response plans. These results will give the optimal locations of 
safety shelters, and the results of the location problem will be used in dynamic real-time decision 
making during actual evacuations. 

The real-time component addresses the critical issue of managing an emergency 
evacuation and quickly guiding the traffic to safety.  Compared with the already complicated 
traffic operations problem under normal traffic conditions, operations during emergency 
evacuation can be much more difficult.  Significantly heavier flows throughout the network 
result from a rapid rise in demand. Excessive queues and delays are expected under such 
scenarios, as the demand volume far exceeds the capacity of the network. Improper evacuation 
plans will cause some areas to be more congested than others, reducing the opportunity for 
escape from these areas. We propose a routing strategy that minimizes evacuation time to the 
safety shelter locations determined as above. 
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PROBLEM DESCRIPTION 
A transportation network consists of nodes and links. Nodes are access points to the road 
network and links are the connections between the nodes.  A disruption may make some links 
unfit for use by traffic while increasing the number of people trying to access the network to get 
to safety shelters. Safety shelters must be located to minimize evacuation time under each 
possible scenario. Further, the routing strategy must guide traffic to safety shelters in the least 
possible time. 

The two major components of emergency preparedness are the 
• Optimal location of safety shelters and the 
• Optimal routing of traffic following a disruption 

 
FIGURE 1  Illustration of the problem 
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Disruption

 
LITERATURE REVIEW 
Sherali, H.D. et al. [2] considered the impact of safety shelter locations on evacuation plans for 
hurricanes and floods. They proposed a location-allocation model to select a set of shelters from 
a set of candidate sites and created a plan to minimize total evacuation time. El Dessouki [3] 
further studied pre- and post-disaster management issues. The pre-disaster evacuation plan was 
modeled as a combined trip distribution and assignment (CDA) problem. This model considers 
shelter capacity constraints, but it is supposed that the link travel time is independent of the flow 
on the links. The post-disaster emergency management plan was treated as a special case of the 
multi-period network design problem. The optimal path problem has been studied in both 
stochastic and time-dependent networks. Miller-Hooks and Mahmassani [4][5] proposed a label-
correcting based procedure for determining the least expected travel time (LET) paths in 
stochastic time-varying (STV) networks. Miller-Hooks and Mahmassani [6] and Miller-Hooks 
and Yang [7][8] address further topics on STV networks. They consider the delay time at 
intermediate nodes due to traffic signal control in determining the optimal path in an STV 
network. Fewer works address solving STV network problems than deterministic and time-
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invariant ones. Moreover, no work considers the possible waiting time (delay) due to insufficient 
link capacity, which is common in evacuations. 

Feng and Wen [9] studied different traffic control strategies for post earthquake response. 
They proposed multiple models to maximize the traffic volume entering the safety zone and to 
minimize the rescue time in the disaster zone. Murray and Mahmassani [10] considered 
household behavior, how households act as a single unit, in evacuation modeling. Opasanon [11] 
addressed two classes of evacuation problems in STV networks. The first seeks to provide 
routing guidance as information regarding travel time becomes available. The second aims to 
determine a set of prior optimal evacuation paths in a capacitated network. 
 
SOLUTION METHODOLOGY 
 
Model I 
 
Description 
We first address the safety shelter location problem by proposing the α-reliable mean-excess 
regret model in the context of the p-median problem developed by Chen, Daskin, Shen and 
Uryasev [1]. Here, the distance between demand nodes and safety shelters as well as the demand 
at these nodes is stochastic. Scenario analysis is used to addresses the stochastic p-median 
problem in this context. However, there are significant differences between the traditional p-
median problem and the one embedded in the α-reliable mean-excess regret model used in this 
project. 

First, a transportation network is assumed to exist between nodes and safety shelters 
instead of a single route with a fixed distance. During evacuation large demand will be generated 
from a node, overwhelming any single traffic route. Considering the distribution of vehicles over 
a network is more efficient and realistic for evacuation modeling. Therefore, multiple routes are 
supposed to exist between each node-shelter pair. Link performance functions, which relate flow 
and travel time, are associated with each link in the network. 

Second, the objective is to minimize the travel time in the network instead of the 
aggregate distance traveled. The travel time is taken to mean the maximum user equilibrium 
(UE) travel time among all node-shelter pairs. Demand at one node can be assigned to multiple 
safety shelters to achieve the minimum maximum UE travel time, whether the safety shelters are 
capacitated or not. However, we assume shelters with unlimited capacity in this project. 

The UE condition used for traffic assignment is adopted for the reason of fairness. The 
system optimal (SO) condition would minimize the total travel time in the network, but it would 
be at the expense of some drivers who have far longer than others. The UE condition ensures that 
everyone achieves his minimum travel time without laterally increasing the travel time of others. 
In addition, link performance functions require a demand rate but not the total evacuation 
population as input. The demand rate chosen would affect the total evacuation duration for the 
entire population. However, for the purpose of planning, the demand rate can be estimated from 
past experience. The notification to evacuate is done in phases, and it is unlikely that the entire 
affected population would evacuate all at once. 
 
Notation 
Indices: 
i = 1, …, M - Index of demand nodes subject to evacuation 
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j = 1, …, N - Index of candidate safety shelters 
s = 1, …, S - Index of possible scenarios 
a = 1, …, A - Index of links 
r = 1, …, R - Index of routes 
 
Parameters and decision variables: 

( )asas xtt =  - Link performance function of link under scenario , as a 
function of x 

a s

rs
ijf  - Flow on route connecting nodes i andr j under scenario  s

 
ars
ijδ  

 
- 

 
Path-arc incidence relationship indicator 

⎪⎩

⎪
⎨
⎧

=
otherwise0
scenario

underandnodeslinkingrouteonislinkif1
s

jira

 

, ,

as rs ars
ij ij

i j r
x f δ= ∑  - Flow on link under scenario  a s

rs as ars
ij ij

a
C t δ=∑  

- Travel time on route connecting nodes andr i j under 
scenario  s

s
ih  - Demand originating from node i under scenario  s

p  - Number of facilities to locate 
sV  - Best p-median value (maximum UE travel time) that can be 

obtained under scenario  s
sq  - Probability of occurrence of scenario  s

α  - Desired probability level 
M  - A large number 

s
ijπ  - Equilibrium travel time between nodes andi j under 

scenario s  
{ } rC rs

ij ∀= min between i and j under scenario s in UE 
condition 

sR  - Regret associated with scenario and the current solution s
{ } ss

ij V−= πmax  
ζ  - A free variable 

sU  - The excess regret overζ  
χ  - decision variable (X, Y) 

),( sR χ  - Regret as a function of χ and scenario s 
( ) ( ){ }ζχζχ ≤= sRsPf ,|,  - With χ fixed, the collective probability of those scenarios in 

which the regret does not exceed ζ 
( ) ( ){ ζχζχ <=− sRsPf ,|, }

}
 - With χ fixed, the collective probability of those scenarios in 

which the regret is strictly less than ζ 
( ){ αζχζχζα ≥= ,|min)( f

 
- With χ fixed, the minimum value ζ such that ( ) αζχ ≥,f , 

namely, the α-quantile of the regrets of the S scenarios 
( ){ αζχζχζ α >=+ ,|inf)( f } - With χ fixed, the infimum value ζ such that ( ) αζχ >,f  
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jX  - Binary for locating a safety shelter at node j  

⎩
⎨
⎧

=
otherwise0

nodecandidateatlocateweif1 j
 

s
ijY  - Fraction of demand from node assigned to safety shelter at 

node
i

j under each scenario s 
 
Formulation 
The α-reliable mean-excess regret model for emergency preparedness and planning can be 
formulated as follows:  
 

Minimize ( )( ) ∑
=−

+=
S

s

ssUq,Y,XF
11

1
α

ζζα   (1a) 

Subject to pX
N

j
j =∑

=1
  (1b) 

 ∑
=

=
N

j

s
ijY

1

1  si,∀  (1c) 

 0≤− j
s

ij XY  sji ,,∀  (1d) 

 ( ) 0=− s
ij

rs
ij

rs
ij Cf π  srji ,,,∀  (1e) 

 0≥− s
ij

rs
ijC π  srji ,,,∀  (1f) 

 ∑ =−
r

s
ij

s
i

rs
ij Yhf 0  sji ,,∀  (1g) 

 ss
ij W≤π  sji ,,∀  (1h) 

 ( ) 0=−− sss VWR  s∀  (1i) 
 ζ−≥ ss RU  s∀  (1j) 
 { }1,0∈jX  j∀  (1k) 
 10 ≤≤ s

ijY  sji ,,∀  (1l) 

 0≥rs
ijf  srji ,,,∀  (1m) 

 0≥s
ijπ  srji ,,,∀  (1n) 

 0≥sU  s∀  (1o) 
 

The objective function (1a) minimizes the α-reliable mean-excess regret. The first term ζ 
satisfies , with the lowest value ),(),( ζχαζχ ff ≤≤− )(χζα  and the highest ; while 
the second term is the expected value of regrets conditioned on the above ζ [12]. Constraint 

)(χζ α
+

(1b) 
ensures that there are exactly p shelters. Constraint (1c) states that all the demand at each node 
must be assigned to shelters under each scenario. Constraint (1d) restricts those assignments to 
only the open shelters in each scenario. Constraints (1e) to (1g) are the first order conditions of 
the UE minimization program by the Beckmann transformation [13]. Constraint (1e) forces the 
travel time along every route between each demand node (origin) and safety shelter (destination) 
(O-D) pair must be equal to the equilibrium travel time of that O-D pair if there is flow. 
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Constraint (1f) makes certain that any unused route between each O-D pair has travel time 
greater than or equal to the equilibrium travel time of that O-D pair. Constraint (1g) is the flow 
conservation equation - it requires the total flow along all routes between each O-D pair to equal 
the total demand assigned to the O-D pair. Constraint (1h) selects the maximum of the 
equilibrium travel times under each scenario as an input to calculate the regret. Constraint (1i) 
defines the regret for each scenario. Constraint (1j) calculates the excess regret for each scenario 
over the value ζ. Together with constraint (1o), (1j) makes sure that only those regrets greater 
than or equal to ζ are considered as excess regrets. Constraints (1k) to (1o) are simply non-
negativity and binary constraints. This formulation of the p-median location problem includes all 
the constraints necessary to achieve UE under each scenario while the mean-excess regret is 
minimized. 

For each scenario s, the best obtainable p-median value is found through: 
 

Minimize V  (2) 

Subject to ∑
=

=
N

j
j PX

1
   

 ∑
=

=
N

j
ijY

1

1  i∀   

 0≤− jij XY  ji,∀   

 ( ) 0=− ij
r
ij

r
ij Cf π  rji ,,∀   

 0≥− ij
r
ijC π  rji ,,∀   

 ∑ =−
r

iji
r

ij Yhf 0  ji,∀   

 Vij ≤π  ji,∀   

 { }1,0∈jX  j∀   
 10 ≤≤ ijY  ji,∀   

 0≥r
ijf  rji ,,∀   

 0≥ijπ  rji ,,∀   
 

The objective function (2) minimizes the maximum UE travel time with scenario-specific 
choices of shelter locations. The constraints for formulation (2) are similar to those for 
formulation (1) except that they are all scenario-specific. 
 
Reformulation 
Both formulations (1) and (2) have too many decision variables. However, the situation can be 
ameliorated with a reformulation as a Stackelberg game. Different locations χ selected by the 
leader will lead to different UE solutions and responses by the followers. Thus formulations (1) 
and (2) can be reconstructed as bilevel programming models - algorithms for solving these 
bilevel programming models are proposed below. In the upper level, the shelter locations are 
chosen to either minimize the mean-excess regret in the regret model or the maximum UE travel 
time in the scenario-specific model. The lower level uses a UE formulation depending on the 
shelter locations chosen in the upper level. However, the UE solution depends on the assignment 
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of demand to shelters, Yij , since the UE formulation requires specific O-D assignments as input. 
To eliminate the decision variables Yij from this formulation, a super-destination (SD) is created 
which links to all selected shelters with zero travel time, and demand from all demand nodes will 
be sent to the SD. With this construction, constraints (1c) and (1d) will automatically be 
satisfied. 

The α-reliable mean-excess regret model is thus reformulated as: 
 

Upper level: 

Minimize ( )( ) ∑
=−

+=
S

s

ssUq,Y,XF
11

1
α

ζζα   (3a) 

Subject to pX
N

j
j =∑

=1
   

 ss
SD,i W≤π  s,i∀   

 ( ) 0=−− sss VWR  s∀   
 ζ−≥ ss RU  s∀   
 { }1,0∈jX  j∀   
 0≥sU  s∀   
 
Lower level, for all scenarios s: 

Minimize ( )∑∫
a

x
dxxt

a

0
  (3b) 

Subject to ∑ =−
r

i
r
SD,i hf 0  i∀   

 0≥r
SD,if  r,i∀   

 ∑=
ri

ar
SDi

r
SDi

a fx
,

,, δ  a∀  (3c) 

 
The lower lever formulation (3b) is the UE formulation according to the Beckmann 

transformation [13]. The path-arc incidence relationship indicator  in the constraint (3c) 
defines the configuration of the whole network and is determined by the shelter location choices 
from the upper level formulation (3a). 

ar
SDi,δ

The scenario-specific model used to obtain the best p-median value is reformulated as 
follows, for each scenarios s: 

 
Upper level: 
Minimize V  (4a) 

Subject to ∑
=

=
N

j
j PX

1
   

 Vij ≤π  ji,∀   

 { }1,0∈jX  j∀   
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Lower level: 

Minimize ( )∑∫
a

x
dxxt

a

0
  (4b) 

Subject to ∑ =−
r

i
r
SD,i hf 0  i∀   

 0≥r
SD,if  r,i∀   

 ∑=
ri

ar
SDi

r
SDi

a fx
,

,, δ  a∀   

 
Solution Algorithm 
Bilevel programming models are intrinsically nonconvex and hence difficult to solve for the 
global optimum. However, the genetic-algorithms-based (GAB) approach proposed by Yin [14] 
can efficiently solve bilevel programming models. 

Formulations (3) and (4) are basically p-median problems with UE formulations in the 
lower levels. The only decision variables in the upper levels are the shelter locations Xj. Among 
previous works done on GAB for p-median problem, the approach of Alp, Drezner and Erkut 
[15] is suggested here due to its efficiency and simplicity. The Franke-Wolfe algorithm [13] is 
brought to bear on the UE component. Since the lower level formulations (3b) and (4b) are 
exactly the same as the conventional UE assignment problem given the shelter locations Xj, the 
Franke-Wolfe algorithm is considered as a black box and not discussed here. Formulation (4) is 
basically a scaled-down version of formulation (3) so the solution algorithm described below can 
solve it with slight modifications. 
 
Step 0:  

Solution sets {Xj} in the upper level formulation are encoded as chromosomes; the genes 
are the indices of the p selected shelters. The fitness function is the objective function 
(3a). The regret for each scenario Ws can be calculated after solving the lower level UE 
formulation. ζ, in the fitness function, is the value satisfying , 
which is the lowest possible regret level where the collective probability of all scenarios 
with regret not greater than this level is at least α. The second term in the fitness function 
is the expected value of the excess regret over ζ. Thus, the fitness function value can be 
evaluated once the UE formulation is solved and the regrets Ws are calculated for each 
scenario. 

),(),( ζχαζχ ff ≤≤−

Step 1:  
Calculate the population size and generate the initial population as described in Alp et al. 
[15]. 

Step 2:  
Calculate the fitness function value for each chromosome of the whole population. 
Record the members with the highest and lowest fitness value. 

Step 3:  
Randomly select two members from the population and run the generation operator to 
obtain a candidate member as described in Alp et al. [15]. Mutation operation is omitted. 

Step 4:  
Calculate the fitness value of the candidate member. If the fitness value of the candidate 
member is lower than the highest fitness value in the current population, replace the one 
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with the highest fitness value with the candidate member. Update the members with the 
highest and lowest fitness value. 

Step 5:  

If the best solution found so far has not changed after [ ]+pN (the smallest integer 

greater than or equal to pN ) iterations, stop; otherwise return to Step 3. 
 
Model II 
 
Description 
Now we address the dynamic routing strategy. The optimal location of safety shelters is taken 
from Model I and a routing strategy with minimum evacuation time is sought. Unlike 
conventional models, the travel time on any link is considered to be stochastic and varies 
between an upper and lower limit according to some probability distribution as well as time. The 
model here considers both the capacity of the links and the congestion on the links. It uses the 
shortest path algorithm to route the vehicles and recognizes delays caused by queuing in 
calculating the travel cost of any particular route. The model has the flexibility for a vehicle to 
change its route at any time depending on network conditions. 

An SD is constructed linking the safety shelters so that the shortest path algorithm does 
not need to match nodes to safety shelters. The shortest path algorithm will be applied between 
the concerned node and this SD. 

Assumptions: 
• Queues are formed at nodes 
• Queues are point queues and they do not spill over to other links of the network 
• Vehicles join the end of a queue upon reaching a node 
• Vehicles have perfect knowledge of the travel times 
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FIGURE 2  Illustration of Model II 
 
Notation 
i  - Index of demand nodes subject to evacuation 
j  - Index of candidate safety shelters 

k - Index of time interval ( , 1]k k +  
τΔ  - Time interval length 

iD  - Total demand at i to be evacuated  

ir  - External rate at which vehicles enter node i 

ikq  - Number of vehicles in queue at the start of time interval ( ,  1]k k +

ijkc  - Capacity in link ij in time interval ( , 1]k k +  
o
ijkt  - Free flow travel time on link ij in time interval ( , , which varies 

according to some probability distribution between an upper and lower 
limit 

1]k k +

ijkt  - Total travel cost on link ij in time interval ( , 1]k k +  

j i 

iD  

Evacuation area demand 

ir  

ikδ  
ikw  

ijc  
o
ijt  ijkz  

ike  
ikq  

Safety Shelter
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'ijkkp  
- Probability that a vehicle leaves node i in time interval ( , 1]k k +  will 

arrive node j in time interval ( ' , i.e. , ' 1]k k +

( ) ( )' ' 1ijkP k k t k kτ τ⎡ ⎤Δ − ≤ ≤ Δ − +⎣ ⎦ '
'

1ijkk
k

p =, and ∑  

ikδ  - Number of vehicles leaving node i in time interval ( ,  1]k k +

ijkz  - Binary for a vehicle starting from node i encountering node j in time 
interval ( , 1]k k +  

ike   - External number of vehicles entering node i in time interval ( , 1]k k +  

ikw  - Delay at node i  in time interval ( , 1]k k +  
 
Definitions: 

1           
0ijk

if the first node encountered by node i is node j
z

otherwise
⎧ ⎫

= ⎨ ⎬
⎩ ⎭  

Delay at node i is the amount of time spent by a vehicle in queue at the node, i.e. ik
ik

ij

qw
c

=  

 
Algorithm 
Step 0:  
 Initially the queue at any node i is given by 
 { }0 0 min ,i i i iq e D r iτ= = ×Δ ∀  
Step 1:  
 The route with the least travel time is calculated using the shortest path algorithm. 

Inputs are 
 ,

ij
o

ikt w

 Where 
ik

ik
ij

qw
c

=  

The total travel time on any link is calculated as the sum of free flow travel time and the 
delay due to queuing. 

o ik
ij ij

ij

qt t
c

= +    

Output is  ijkz
Step 2: 

The number of vehicles that leave a particular node is the minimum of the number in 
queue and the capacity of the link. 

{ }min ,ik ik ijq cδ τ= ×Δ  

Step 3: 
 The matrix q is updated for the next time interval 
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 Update matrix q for (  ]1, 2k k+ +

1ik ik ik ikq q eδ+ = − +  

Where { }min ,ik i i ie D k r rτ τ= − × ×Δ ×Δ

k

 
Step 4:  

The matrix q is updated for the time interval when the vehicles reach their destination 
nodes. 
Update matrix q for (  ]', ' 1k k +

' ' ' , 'jk jk ijkk ik ijk
i

q q p z jδ→ + ∀∑   

Step 5: 
 The routing process is stopped when the queues at all the nodes are dissipated. 

Stop if    0ik
i

q =∑
Otherwise go to Step 1 for 1k +  

 
 The procedure is represented in FIGURE 3. 

In this algorithm, batches of vehicles are dispatched at regular intervals. For clarity, it is 
assumed that the departure time of a vehicle from a node is always at the start of an interval, 
regardless of when it departs during the interval. Higher accuracy can be achieved with shorter 
time intervals – the trade-off being higher computational requirements. 

In an actual evacuation, people will not have perfect knowledge of the travel times and 
they will not be able to run shortest path algorithms to find the optimal route. However, 
information on the traffic volume passing into each node and the corresponding exit node is 
known at all times. Evacuation managers can use this information to divert traffic in an optimal 
manner. 
 
CONCLUSION 
The α-reliable mean-excess regret model was developed to determine the locations of safety 
shelters in a transportation network so that evacuation time is minimized. Given possible future 
disruption scenarios and likelihoods of occurrence, the model minimizes the expected regret of 
worst-case scenarios whose total probability is less than 1 − α. The regret is calculated in terms 
of the maximum evacuation time to safety shelters. Travel times are calculated with the User 
Equilibrium assignment of vehicles in a transportation network. The model was reformulated as 
bilevel model with the upper level designed to locate safety shelters and the lower level designed 
to calculate the User Equilibrium travel times. The bilevel problem is solved in two tiers: the 
upper level is solved using a genetic algorithm and the lower level using the Franke-Wolfe 
Algorithm. 

A second model was developed to provide dynamic routing control in a stochastic time 
varying transportation network during disruption. Locations of safety shelters obtained by the 
first model are the destinations in the second. It routes the vehicles using the shortest path 
algorithm accounting for the capacity of the links and delays due to congestion. The second 
model is useful in providing decision makers with a control strategy during emergency 
evacuations. 
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FIGURE 3  Model II algorithm. 

Testing the Model I algorithm and the Model II algorithm is currently underway. More 
work will be performed to test the feasibility and computational efficiency of these procedures. 
Particularly for Model II, short computational time is exceptionally important during the critical 
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moment of evacuation. The trade-off between time interval size, computational time and 
accuracy for this algorithm should be studied to determine the optimal time interval size with the 
highest accuracy given computational time constraints. In addition, queue spillover is a common 
evacuation phenomenon that is not addressed in Model II. It is believed that consideration of 
queue spillover will increase the realism of the model and achieve a stronger result. 
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