- Main
A Local-View Array Library for Partitioned Global Address Space C++ Programs
Published Web Location
https://doi.org/10.1145/2627373.2627378Abstract
Multidimensional arrays are an important data structure in many scientific applications. Unfortunately, built-in support for such arrays is inadequate in C++, particularly in the distributed setting where bulk communication operations are required for good performance. In this paper, we present a multidimensional library for partitioned global address space (PGAS) programs, supporting the one-sided remote access and bulk operations of the PGAS model. The library is based on Titanium arrays, which have proven to provide good productivity and performance. These arrays provide a local view of data, where each rank constructs its own portion of a global data structure, matching the local view of execution common to PGAS programs and providing maximum flexibility in structuring global data. Unlike Titanium, which has its own compiler with array-specific analyses, optimizations, and code generation, we implement multidimensional arrays solely through a C++ library. The main goal of this effort is to provide a library-based implementation that can match the productivity and performance of a compiler-based approach. We implement the array library as an extension to UPC++, a C++ library for PGAS programs, and we extend Titanium arrays with specializations to improve performance. We evaluate the array library by porting four Titanium benchmarks to UPC++, demonstrating that it can achieve up to 25% better performance than Titanium without a significant increase in programmer effort..
Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.
Main Content
Enter the password to open this PDF file:
-
-
-
-
-
-
-
-
-
-
-
-
-
-