
UC Berkeley
CUDARE Working Papers

Title
Trading Off Generations: Infinitely Lived Agent Versus OLG

Permalink
https://escholarship.org/uc/item/1b58j8m6

Authors
Schneider, Maik T.
Traeger, Christian P.
Winkler, Ralph

Publication Date
2012-01-26

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/1b58j8m6
https://escholarship.org
http://www.cdlib.org/


Copyright ©  2012, 2010, 2007 by author(s). 
 
 

University of California, Berkeley 
Department of Agricultural & 

Resource Economics 
 
 

CUDARE Working Papers 
 Year  2012                                                       Paper 1093R2 

Year  2010                                       Paper 1093R 
        Year 2007, first version                           Paper 1093 

 
 
 

Trading off generations: infinitely lived 
agent versus OLG 

 
Maik T. Schneider, Christian Traeger,  

and Ralph Winkler 
 
 

 



Trading Off Generations:
Infinitely Lived Agent Versus OLG∗

Maik T. Schneider†, Christian P. Traeger‡, Ralph Winkler§

† CER-ETH – Center of Economic Research at ETH Zurich
ZUE D15, CH-8092 Zurich, Switzerland; schneider@mip.mtec.ethz.ch
‡ Department of Agricultural & Resource Economics, UC Berkeley

207 Giannini Hall #3310, Berkeley, CA 94720-3310, USA; traeger@berkeley.edu
§ Department of Economics and

Oeschger Centre for Climate Change Research, University of Bern
Schanzeneckstrasse 1, CH-3001 Bern, Switzerland; mail@ralph-winkler.de

This version: January 2012, First version: March 2007

Abstract: The prevailing literature discusses intergenerational trade-offs in climate
change predominantly in terms of the Ramsey equation relying on the infinitely
lived agent model. We discuss these trade-offs in a continuous time OLG frame-
work and relate our results to the infinitely lived agent setting. We identify three
shortcomings of the latter: First, underlying normative assumptions about social
preferences cannot be deduced unambiguously. Second, the distribution among gen-
erations living at the same time cannot be captured. Third, the optimal solution
may not be implementable in overlapping generations market economies.

Keywords: climate change, discounting, infinitely lived agents, intergenerational
equity, overlapping generations, time preference

JEL-Classification: D63, H23, Q54

∗ We are grateful to Hippolyte d’Albis, David Anthoff, Geir Asheim, Johannes Becker, Beatriz Gaitan, Reyer
Gerlagh, Christian Gollier, Hans Gersbach, Richard Howarth, Larry Karp, Verena Kley, Georg Müller-
Fürstenberger, Grischa Perino, Armon Rezai, Ingmar Schumacher, Gunther Stephan, Nicolas Treich, seminar
participants at the Universities of Berkeley, Bern, Kiel, Leipzig, Toulouse and ETH Zurich, and conference
participants at SURED 2008 (Ascona), EAERE 2008 (Gothenburg), ESEM 2008 (Milan), and VfS 2009
(Magdeburg) for valuable comments on an earlier draft.



1 Introduction

How much should society invest into avoiding or at least extenuating anthropogenic climate

change? This question is at the heart of the literature on integrated assessment models, which

augments economic growth models with a climate module to deliver the quantitative input

for policy design. Any climate policy involves major intergenerational transfers. Therefore, a

sound analysis of the structural and – implicit or explicit – normative assumptions is crucial.

The current debate discusses the intergenerational trade-off between today’s mitigation costs

and future generation’s well-being in terms of the Ramsey equation.1 The Ramsey equation,

like most integrated assessment models, relies on the Ramsey-Cass-Koopmans growth model

and, thus, assumes an infinitely lived representative agent (ILA). In this paper, we explore

how an explicit model of overlapping generations (OLG) relates to the Ramsey equation. For

this purpose, we develop a new continuous time overlapping generations growth model. We

compare the preference specifications of the ILA-based Ramsey equation and its OLG coun-

terpart resulting in the same (observed) aggregate market outcomes. We uncover normative

assumptions of calibration-based approaches to climate change assessment and explore equity

and consistency concerns in normative approaches that refuse intergenerational discounting.

The Stern (2007) review on the economics of climate change, carried out by the former World

Bank Chief Economist on behalf of the British government, has drawn significant attention

in the political arena. It implies an optimal carbon tax that differs by an order of magnitude

from the optimal tax derived by Nordhaus (2008) in his widely known integrated assessment

model DICE. Nordhaus (2007) shows that this difference is almost fully explained by the

different assumptions on social discounting as summarized in the Ramsey equation. Nordhaus

himself favors a positive approach to social discounting using a calibration-based procedure

that attempts to avoid explicit normative assumptions. In contrast, Stern (2007) advocates

a normative approach emphasizing that only ethical considerations are valid to address the

intergenerational trade-off. The debate over the right discount rate almost exclusively relies on

the Ramsey equation. However, the underlying ILA assumption inevitably neglects the crucial

distinction: How do we discount the welfare of future generations as opposed to our own future

welfare?

The Ramsey equation characterizes how an ILA trades off consumption possibilities accruing

at different points in time. In the climate change discussion, the ILA framework is usually

interpreted as a utilitarian social welfare function, where each point in time is associated

with the utility of a different generation. Barro (1974) shows that appropriate assumptions

on altruism and operational bequests imply that finitely lived overlapping generations can

be aggregated into a representative ILA. However, recent empirical studies indicate that the

altruistic bequest motive is rather weak.2 As a consequence, the dominant share of savings is

1 In line with the environmental economic literature we call the the Euler equation of the Ramsey-Kass-
Koopmans growth model “Ramsey equation”.

2 See, e.g., Hurd (1987, 1989), Kopczuk and Lupton (2007), Laitner and Juster (1996), Laitner and Ohlsson
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driven by individual life-cycle planning rather then by altruistic transfers for future generations.

Therefore, a calibration of the Ramsey equation to observed interest rates will necessarily reflect

preference parameters that deal with individuals’ life-cycle planning over their finite lifetime. In

contrast, integrated assessment models evaluate climate change and climate policy impacts on

a scale of several centuries. Hence, the disentangling of the life plans of finitely-lived individuals

from the long-run plans of a social planner is crucial to analyze the positive and normative

assumptions underlying the climate change assessment.

For our analysis, we develop a novel continuous time OLG model around two desiderata. First,

in order to relate as closely as possible to the standard Ramsey equation, we choose a model

in continuous time where agent’s live a finite deterministic life span. In contrast to the models

based on Yaari (1965) and Blanchard (1985), where agents have an infinite lifetime and a

constant probability of death, our model explicitly captures life-cycle investment. Second, we

incorporate economic growth via exogenous technological change in order to make reasonable

statements about intergenerational distribution. This feature is also a crucial distinction from

the most closely related model in the literature by d’Albis (2007) who examines the influence

of demographic structure on capital accumulation.

We first compare our decentralized OLG economy to an ILA economy. We explain why and how

the preference parameters of the individual households in the decentralized OLG economy differ

from those in the observationally equivalent (i.e., leading to the same aggregate outcomes) ILA

economy. We draw attention to the resulting implicit normative assumptions of the “positive”

approach. We then introduce a social planner who maximizes the discounted life time utilities

of the OLG as, for example, in Calvo and Obstfeld (1988), Burton (1993) and Marini and

Scaramozzino (1995). We show that this utilitarian OLG economy is observationally equivalent

to an appropriately chosen ILA economy. However, the distribution of consumption between

old and young at any given point in time differs substantially from that of the decentralized

economy if the rate of time preference (or generational discount rate) of the social planner

is lower than that of the individual households. We draw attention to a resulting normative

conflict between intergenerational equity and distributional equity among generations alive that

arises in the utilitarian social planner framework with a dedicated intergenerational discount

rate. Finally, we find that a social planner who is limited to tax labor and capital income cannot

achieve the first-best social optimum without age-discriminatory tax schedules.

Related to our analysis, Aiyagari (1985) showed that under certain conditions an overlapping

generations model with two-period-lived agents exhibits the same paths of aggregate capital

and consumption as the discounted dynamic programming model with infinitely lived agents

in discrete time. We complement these results by explicitly deriving the relation between the

preference parameters of the OLG model and the observationally equivalent ILA framework

(2001), Wilhelm (1996). These papers suggest either that the bequest motive is statistically insignificant,
economically irrelevant, or, if there is a considerable bequest motive, that it is not of the altruistic type (in
the sense of Barro 1974 and Becker 1974) but originates from other sources such as the “joy of giving”. In all
these cases an OLG economy does not reduce to an ILA economy.
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in continuous time. The equivalence between the social planner solution in a continuous time

OLG setting and an ILA model was already observed by Calvo and Obstfeld (1988). While

they focus on time inconsistencies in fiscal policy, our focus is on intergenerational trade-offs.

Several environmental economic applications employ numerical simulations of integrated as-

sessment models to compare interest rates and climate policy between ILA models and OLG

frameworks in which agents live for two or three periods. Gerlagh and van der Zwaan (2000)

point at differences between the models as a consequence of aging and distributional policies.

Howarth (1998) compares the simulation results of a decentralized OLG, a constrained, and

an unconstrained utilitarian OLG to the results obtained by Nordhaus (1994) using the ILA

model DICE. While the decentralized OLG yields similar results as DICE, he finds substantial

differences for the utilitarian OLGs. Calibrating time preference, Howarth (2000) shows that

the unconstrained utilitarian OLG model and the ILA model can produce similar outcomes.

Stephan et al. (1997) provide a simulation yielding equivalence between a decentralized OLG

with bounded rationality and an ILA economy with limited foresight. In contrast, our model

elaborates the analytical conditions under which the continuous time ILA and OLG frameworks

are observationally equivalent. Burton (1993) and Marini and Scaramozzino (1995) analyze the

relationship between individual welfare maximization and the optimal outcome of a benevolent

social planner in an overlapping generations model with resources or environmental pollution.

With this literature, our paper shares the insight that OLG models provide crucial insights

about intergenerational trade-offs that cannot be captured in infinitely lived agent models.

The next section explains the positive and normative approaches to social discounting and lays

out the further structure of the paper.

2 Nordhaus, Stern and the Relation between ILA and OLG Models

Our major presumption is that the world looks more like an overlapping generations model than

an infinitely-lived agent framework. Accordingly, we interpret the real world (without policy

intervention) as a decentralized OLG economy. We develop a decentralized OLG model and an

OLG model where a social planner optimizes the allocations of consumption and capital (either

with or without a full set of instruments). We analyze the relation between preference inputs

and market outcomes and compare it to a standard Ramsey-Cass-Koopmans model with an

infinitely lived decision maker. Figure 1 illustrates the relations that we analyze in this paper.

The majority of economists in the climate change debate takes an observation-based approach

to social discounting. This view is exemplarily laid out in Nordhaus’ (2007) critical review of the

Stern (2007) review of climate change. Individual preferences towards climate change mitigation

cannot be observed directly in market transactions because of the public good characteristic

of greenhouse gas abatement. However, we observe everyday investment decisions on capital

markets that carry information on intertemporal preferences. In particular, we observe the

market interest rate and the steady state growth rate of the economy. The positive approach

3



decentralized OLG

(real world)

utilitarian OLG

(social planner)

ILA

Ethics

Prop. 4
Corollary 2

Prop. 7

Prop. 8
Prop. 9

input positive approach
input normative approach
interpretation as
implementation

Figure 1: Relation between ILA and OLG models. Clockwise interpretation starts from the
decentralized OLG economy that we consider the more accurate description of the
real world: The integrated assessment literature and the social discounting debate
abstract from the real world OLG to an ILA model. After filling in preference infor-
mation in different ways, the ILA model is interpreted as a social planner model for
evaluating climate policy. In the OLG world, the social planner has to implement the
policy in the presence of households that optimize their own life-cycle consumption.

translates this information into (pairs of) time preference and a measure for the intertemporal

elasticity of substitution. Then, this ILA is interpreted as a utilitarian social planner who

confronts the climate problem in an integrated assessment model. In Figure 1, the dashed

arrows indicate the positive approach. The ILA model is calibrated according to preferences

revealed in the decentralized OLG economy and then interpreted as a social planner weighting

the different generations’ lifetime utility. The latter is represented by our utilitarian OLG

model.

The normative approach to social discounting aims at treating all generations alike and, there-

fore, argues that a positive rate of time preference is non-ethical. This view is supported by a

number of authors including Ramsey (1928), Pigou (1932), Harrod (1948), Koopmans (1965),

Solow (1974), Broome and Schmalensee (1992) and Cline (1992). The Stern (2007) review of

climate change effectively uses a zero rate of time preference, but adopts the parameter value

ρR = 0.1% in order to capture a small but positive probability that society becomes extinct.3

Figure 1 represents the normative approach by dotted arrows. It uses ethical arguments to spec-

ify the time preference rate of the ILA. As in the positive approach, this time preference rate is

3 Strictly speaking this is not time preference, but Yaari (1965) shows the equivalence of discounting because of
a probability of death/extinction and a corresponding rate of time preference. Our superscript R labels inputs
to the Ramsey equation.
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interpreted as the weight a social planner attaches to lifetime utilities of different generations.

Finally, the social optimum or preferred policy has to be implemented. As indicated by the solid

arrow in Figure 1, in our explicit OLG setting the social planner has to implement the policy

in the presence of households that optimize their own life-cycle consumption. In this setting,

equity trade-offs become more complex, as the implementation of the first-best solution is

limited.

The remainder of the paper is structured as follows. In Section 3, we develop the decentral-

ized, continuous time OLG model and establish conditions for existence and uniqueness of a

steady state. Section 4 recalls the ILA Ramsey-Cass-Koopmans economy. Section 5 analyzes

the relation between the preference parameters of OLG households and the ILA for observa-

tionally equivalent economies. In Section 6, we introduce a social planner into the OLG model

and examine the relationship between this utilitarian OLG economy, the ILA model, and the

decentralized OLG economy. We consider the case where the utilitarian social planner can fully

control the economy and the situation where he is limited to non-age discriminatory taxes on

labor and capital income. We apply our formal investigation to the recent debate on climate

change mitigation in Section 7. Section 8 concludes.

3 An OLG Growth Model in Continuous Time

We introduce an OLG exogenous growth model in continuous time and analyze the long-run

individual and aggregate dynamics of a decentralized economy in market equilibrium.

3.1 Households

Consider a continuum of households, each living the finite time span T . All households exhibit

the same intertemporal preferences irrespective of their time of birth s ∈ (−∞,∞). We assume

that if households are altruistic, their altruistic preferences are not sufficiently strong for an

operative bequest motive. This allows us to abstract from altruism in individual preferences.

As a consequence, all households maximize their own welfare U , which is the discounted stream

of instantaneous utility derived from consumption during their lifetime

U(s) ≡

∫ s+T

s

c(t, s)
1− 1

σH

1− 1
σH

exp
[
− ρH(t− s)

]
dt , (1)

where c(t, s) is the consumption at calender time t of households born at time s, σH is the

constant intertemporal elasticity of substitution and ρH denotes the constant rate of (pure)

time preference of the households. Each household is endowed with one unit of labor at any time

alive, which is supplied inelastically to the labor market at wage w(t). In addition, households
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may save and borrow assets b(t, s) at the interest r(t). The household’s budget constraint is4

ḃ(t, s) = r(t)b(t, s) + w(t) − c(t, s) , t ∈ [s, s+ T ] . (2)

Households are born without assets and are not allowed to be indebted at time of death. Thus,

the following boundary conditions apply for all generations s

b(s, s) = 0 , b(s + T, s) ≥ 0 . (3)

Because of the non-operative bequest motive, intertemporal welfare U of a household born at

time s always increases in consumption at time s + T . Thus, in the household optimum, the

second boundary condition in equation (3) holds with equality.

Maximizing equation (1) for any given s subject to conditions (2) and (3) yields the well known

Euler equation

ċ(t, s) = σH
[

r(t)− ρH
]

c(t, s) , t ∈ [s, s + T ] . (4)

The behavior of a household born at time s is characterized by the system of differential

equations (2) and (4) and the boundary conditions for the asset stock (3).

At any time t ∈ (−∞,∞) the size of the population N(t) increases at the constant rate ν ≥ 0.

Normalizing the population at time t = 0 to unity implies the birth rate γ5

N(t) ≡ exp[νt] ⇒ γ =
ν exp[νT ]

exp[νT ]− 1
. (5)

3.2 Firms

Consider a continuum of identical competitive firms i ∈ [0, 1]. All firms produce a homogeneous

consumption good under conditions of perfect competition from capital k(t, i) and effective labor

A(t)l(t, i). A(t) characterizes the technological level of the economy and grows exogenously at

a constant rate ξ. Normalizing technological progress at t = 0 to unity implies

A(t) ≡ exp[ξt] . (6)

All firms have access to the same production technology F (k(t, i), A(t)l(t, i)), which exhibits

constant returns to scale and positive but strictly decreasing marginal productivity with respect

to both inputs capital and effective labor. Furthermore, F satisfies the Inada conditions.

4 Throughout the paper, partial derivatives are denoted by subscripts (e.g., Fk(k, l) = ∂F (k, l)/∂k), derivatives
with respect to calendar time t are denoted by dots and derivatives of functions depending on one variable
only are denoted by primes.

5 The equation is derived by solving
∫ t

t−T
γ exp[νs] ds = N(t), where γ exp[νs] denotes the cohort size of the

generation born at time s. Observe that γ → 1/T for ν → 0 and γ → ν for T → ∞. Anticipating definition
(12), we can also write γ = 1/QT (ν).
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Constant returns to scale of the production function and symmetry of the firms allow us to

work with a representative firm whose decision variables are interpreted as aggregate variables.

With minor abuse of notation, we introduce aggregate capital per effective labor, k(t), and

aggregate capital per capita, k̄(t),

k(t) ≡

∫ 1
0 k(t, i) di

A(t)
∫ 1

0 l(t, i) di
, k̄(t) ≡

∫ 1
0 k(t, i) di

N(t)
. (7)

In addition, we define the intensive form production function f
(
k(t)

)
≡ F

(
k(t), 1

)
.

Profit maximization of the representative firm yields for the wage w(t) and the interest rate

r(t)

w(t) = A(t)
[
f
(
k(t)

)
− f ′

(
k(t)

)
k(t)

]
, (8a)

r(t) = f ′
(
k(t)

)
. (8b)

3.3 Market Equilibrium and Aggregate Dynamics

In order to investigate the aggregate dynamics of the economy, we introduce aggregate house-

hold variables per effective labor by integrating over all living individuals and dividing by the

product of technological level and the labor force of the economy. Analogously to equation

(7) we define under slight abuse of notation per effective labor household variables, x(t), and

aggregate household variables per capita, x̄(t),

x(t) ≡

∫ t
t−T x(t, s)γ exp[νs] ds

A(t)
∫ 1

0 l(t, i) di
, x̄(t) ≡

∫ t
t−T x(t, s)γ exp[νs] ds

N(t)
, (9)

where x(t, s) stands for the individual household variables consumption c(t, s) and assets b(t, s).

The economy consists of three markets: the labor market, the capital market and the con-

sumption good market. We assume the economy to be in market equilibrium at all times t.

In consequence, labor demand equals the population size, i.e.,
∫ 1

0 l(t, i) di = N(t), and capital

in terms of effective labor equals aggregate assets in terms of effective labor, i.e., k(t) = b(t).

Then, the aggregate dynamics imply6

ċ(t)

c(t)
= σH

[

r(t)− ρH
]

− (ν + ξ)−
∆c(t)

c(t)
, (10a)

k̇(t) = f
(

k(t)
)

− (ν + ξ)k(t)− c(t) , (10b)

6 Note that ẋ(t) = −(ν + ξ)x(t) + exp[−(ν + ξ)t]
∫ t

t−T
ẋ(t, s)γ exp[νs] ds+ γ

[

x(t, t)− x(t,t−T )
exp[(ν+ξ)T ]

]

exp[−ξt].
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where the term7

∆c(t) ≡
γ exp[ν(t− T )]c(t, t − T )− γ exp[νt]c(t, t)

exp[νt] exp[ξt]
. (10c)

captures the difference in aggregate consumption per effective labor between the generation

born and the generation dying at time t.

3.4 Steady State

Our analysis will concentrate on the long-run steady state growth path of the economy, in

which both consumption per effective labor and capital per effective labor are constant over

time, i.e., c(t) = c⋆, k(t) = k⋆. From equations (8) follows that in the steady state the interest

rate r(t) = r⋆ ≡ f ′(k⋆) is constant and the wage w(t) grows at the rate of technological progress

ξ. The wage relative to the technology level is constant in the steady state

w⋆ ≡
w(t)

exp[ξt]

∣
∣
∣
∣
k=k⋆

=
[
f(k⋆)− f ′(k⋆)k⋆

]
. (11)

For T ∈ R++ we define the function QT : R→ R+ as

QT (r) ≡
1− exp[−rT ]

r
, ∀ r 6= 0 , (12)

and QT (0) ≡ T . QT (r) can be interpreted as the present value of an annuity received over

T years, at the discount rate r. Properties of the function QT are summarized in Lemma 1

in appendix A.10. Expressing steady state consumption and wealth of individual households

relative to the technology level returns functions that only depend on the household’s age

a ≡ t− s:

c⋆(a) ≡
c(t, s)

exp[ξt]

∣
∣
∣
∣
k=k⋆

= w⋆
QT (r⋆− ξ)

QT
(
r⋆− σH(r⋆− ρH)

) exp
[(
σH(r⋆− ρH)− ξ

)
a
]
, (13a)

b⋆(a) ≡
b(t, s)

exp[ξt]

∣
∣
∣
∣
k=k⋆

= w⋆Qa
(
r⋆− σH(r⋆− ρH)

)
exp[(r⋆− ξ)a]

×

[

Qa(r
⋆− ξ)

Qa
(
r⋆− σH(r⋆− ρH)

) −
QT (r⋆− ξ)

QT
(
r⋆− σH(r⋆− ρH)

)

]

.

(13b)

Figure 2 illustrates these steady state paths for individual consumption and assets in terms of

the technological level of the economy.8 The individual consumption path grows exponentially

over the lifetime of each generation. Individual household assets follow an inverted U-shape,

i.e., households are born with no assets, accumulate assets in their youth and consume their

7 Note that ∆c(t) includes via c(t, t − T ) and c(t, t) all values of k(s) for s ∈ [t − T, t + T ]. Thus, (10) defines
a system of integro-differential equations. In the steady state, however, ∆c(t)/c(t) = σH

[
r⋆ − ρH

]
− (ν + ξ),

where r⋆ denotes the steady state interest rate.
8 The calculations use the following model specifications: f(k) = kα, α = 0.3, ρ = 3%, σ = 1, ξ = 1.5%, ν = 0,
T = 50.
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c⋆(a) b⋆(a)

0 010 1020 2030 3040 4050 50
a a

Figure 2: Steady state paths of consumption (left) and asset (right) for individual households
over age.

wealth towards their death.

Applying the aggregation rule (9), we obtain for the aggregate values per effective labor

c⋆ = w⋆
QT (r⋆ − ξ)

QT (ν)

QT
(
ν + ξ − σH(r⋆ − ρH)

)

QT
(
r⋆ − σH(r⋆ − ρH)

) , (14a)

b⋆ =
w⋆

r⋆ − ξ

[
QT (ξ + ν − r⋆)

QT (ν)
− 1

]

−
w⋆

r⋆ − σH(r⋆ − ρH)

×
QT (r⋆ − ξ)

QT (ν)

QT (ξ + ν − r⋆)−QT
(
ξ + ν − σH(r⋆ − ρH)

)

QT
(
r⋆ − σH(r⋆ − ρH)

) .

(14b)

The following proposition guarantees the existence of a non-trivial steady state for a large class

of production functions, in particular, CES-production functions.

Proposition 1 (Existence of the steady state)

There exists a k⋆ > 0 solving equations (8) and (14) with b⋆ = k⋆ if

lim
k→0
−kf ′′(k) > 0 . (15)

The proof is given in the appendix.

In the proof of Proposition 1 we show that steady states may be equal to or larger than the

golden rule capital stock kgr, which is implicitly defined by rgr ≡ ν + ξ = f ′ (kgr). As our aim

is to compare the decentralized OLG with an ILA economy, we are particularly interested in

steady states with k⋆ < kgr.9

Definition 1 (Decentralized OLG economy)

(i) The set Γ ≡ {f, ξ, ν, σH , ρH , T} defines a decentralized OLG economy.

(ii) Γ⋆ ∈ {Γ| ∃ k⋆ with 0 < k⋆ < kgr
}

defines a decentralized OLG economy with a dynamically

9 In the ILA economy only steady states k⋆ < kgr may occur.
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efficient capital stock k⋆ < kgr. For an economy Γ⋆ we refer by k⋆ and r⋆ to a steady

state satisfying this condition.

The following proposition shows the existence of dynamically efficient economies Γ⋆. Analo-

gously to d’Albis (2007), we introduce the share of capital in output, s(k), and the elasticity

of substitution between capital and labor, ǫ(k),

s(k) ≡
kf ′(k)

f(k)
, ǫ(k) ≡ −

f(k)− f ′(k)k

k2f ′′(k)
. (16)

Proposition 2 (Existence and uniqueness of dynamically efficient steady states)

Given that condition (15) holds, there exists a steady state with k⋆ < kgr if

kgr

f(kgr)− rgrkgr
>
Q′
T
(ν)

QT (ν)
−
Q′
T

(
(ν + ξ)(1 − σH) + σHρH

)

QT
(
(ν + ξ)(1 − σH) + σHρH

) . (17)

There exists exactly one k⋆ < kgr if

s(k) ≤ ǫ(k) and
d

dk

(
s(k)

ǫ(k)

)

≥ 0 , (18a)

and, in case that σH > 1,

ρH <
σH − 1

σH
(ν + ξ) . (18b)

The proof is given in the appendix.

Although we cannot solve the implicit equation k⋆ = b⋆ analytically and, therefore, cannot

calculate the steady state interest rate r⋆, the following proposition determines a lower bound

of the steady state interest rates in a dynamically efficient OLG economy.

Proposition 3 (Lower bound of steady state interest rate)

For any economy Γ∗ (which implies r⋆ > ν + ξ) holds

r⋆ > ρH +
ξ

σH
.

The proof is given in the appendix.

The lower bound of the steady state interest rate in the decentralized OLG economy will play

an important role for the comparison with the ILA economy.

4 Infinitely Lived Agent Economy and Observational Equivalence

As intergenerational trade-offs are mostly discussed in ILA frameworks rather than in OLG

models, we investigate how the macroeconomic observables of an OLG and ILA economy relate

10



to each other. Therefore, we first introduce the ILA model and then define observational equiv-

alence between two economies. Whenever we compare two different model structures in this

paper we assume that population growth and the production side of the economy are identical.

Variables of the ILA model that are not exogenously fixed to its corresponding counterparts

in the OLG model are indexed by a superscript R. The ILA model abstracts from individ-

ual generations’ life cycles only considering aggregate consumption and asset holdings. In the

ILA model optimal consumption and asset paths per capita are derived by maximizing the

discounted stream of instantaneous utility of consumption per capita weighted by population

size

UR ≡

∫ ∞

0
N(t)
c̄R(t)

1− 1

σR

1− 1
σR

exp
[
− ρRt

]
dt , (19)

subject to the budget constraint

ḃR(t) =
[
rR(t)− ξ − ν

]
bR(t) +

wR(t)

A(t)
− cR(t) , (20)

and the transversality condition

lim
t→∞
b(t) exp

[

−

∫ t

0
rR(t′) dt′ + (ξ + ν)t

]

= 0 . (21)

Maximizing (19) subject to (20) and (21) yields the well known Euler equation of the ILA

model

ċR(t)

cR(t)
= σR

[
rR(t)− ρR

]
− ξ . (22a)

Making use of equation (22a) we know that in a steady state the transversality condition

translates into

ρR >

(

1−
1

σR

)

ξ + ν . (22b)

In the following we assume that the transversality condition is met. Note that it is the strict

version for the Ramsey agent of the dynamic efficiency condition for the household in the OLG

economy.

Assuming markets to be in equilibrium at all times (i.e.,
∫ 1

0 l(t, i) di = N(t) and kR(t) = bR(t)),

the dynamics of the capital stock per effective labor in the ILA economy reads

k̇R(t) = f
(
kR(t)

)
− (ν + ξ)kR(t)− cR(t) , (22c)

which is formally equivalent to the corresponding equation (10b) of the OLG economy. To

compare the different models we use the following definition:

11



Definition 2 (Observational equivalence)

(i) Two economies A and B are observationally equivalent if coincidence in their current

observable macroeconomic variables leads to coincidence of their future observable macroe-

conomic variables. Formally, if for any cA(0) = cB(0) and kA(0) = kB(0) it holds that

cA(t) = cB(t) and kA(t) = kB(t) for all t ≥ 0.

(ii) Two economies A and B are observationally equivalent in steady state if there exist c⋆

and k⋆ such that both economies are in a steady state.

Note that observational equivalence in the steady state (ii) is weaker than general observational

equivalence (i).

5 Decentralized OLG Versus Infinitely Lived Agent Economy

Now, we investigate under what conditions a decentralized OLG economy, as outlined in Section

3, is observationally equivalent to an ILA economy, as defined in Section 4. The following

proposition states the necessary and sufficient condition:

Proposition 4 (Decentralized OLG versus ILA economy)

(i) A decentralized OLG economy Γ⋆ and an ILA economy are observationally equivalent if

and only if for all t ≥ 0 the following condition holds:

ρR =
σH

σR
ρH +

(

1−
σH

σR

)

r(t) +
1

σR

[
∆c(t)

c(t)
+ ν

]

. (23)

(ii) For any decentralized OLG economy Γ⋆ there exists an ILA economy that is observation-

ally equivalent in the steady state.

The proof is given in the Appendix.

Proposition 4 states that any decentralized OLG economy Γ⋆ is – at least in the steady state –

observationally equivalent to an ILA economy for an appropriate choice of
(
σR, ρR

)
. Note that

(
σR, ρR

)
is, in general, not uniquely determined by (23).

If we assume that the intertemporal propensity to smooth consumption between two periods

is the same for the households in the OLG and the ILA economy, i.e., σH = σR, we obtain the

following corollary.

Corollary 1 (Identical intertemporal elasticity of substitution)

For σR = σH condition (23) reduces to

ρR = ρH +
1

σR

[
∆c(t)

c(t)
+ ν

]

. (24)
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To understand why the pure rates of time preference in the ILA economy differs from the

observationally equivalent OLG economy, we analyze the two terms in brackets on the right-

hand side of equation (24). The first term in brackets captures the difference in consumption

between the cohort dying and the cohort just born relative to aggregate consumption. The

term is a consequence of the fact that every individual in the OLG model plans his own life

cycle, saving while young and spending while old. If there is no population growth, i.e., ν = 0

(γ = 1/T ), individual consumption growth is higher than aggregate consumption growth and

the term is always positive. More generally the following proposition states that the first term

is positive if and only if individual consumption grows faster than aggregate consumption.10

Proposition 5 (Sign of ∆c(t)/c(t))

For any decentralized OLG economy Γ⋆ ∆c(t)/c(t) > 0 holds if and only if

ċ(t, s)

c(t, s)
>

˙̄c(t)

c̄(t)
+ ν for all s ∈ [t− T, t] . (25)

Proof: The equivalence between ∆c(t)/c(t) > 0 and (25) is obtained by substituting the

individual household’s Euler equation (4) into the aggregate Euler equation (10a), recalling

that ċ(t)
c(t) =

˙̄c(t)
c̄(t) − ξ according to (9), and solving for ∆c(t)/c(t). �

Note that the right hand side of inequality (25) represents the growth rate of aggregate con-

sumption.

The second term in brackets of equation (24) reflects that instantaneous utility in the ILA

model is weighted by population size. Hence, for a growing population future consumption

receives an increasing weight in the objective function. A corresponding weighting does not

occur in the decentralized OLG economy, where all households only maximize own lifetime

utility. As a consequence, the time preference rate of an observationally equivalent ILA must

be higher to compensate for the greater weights on future consumption.

It follows immediately from Proposition 5 that for σR = σH both effects in equation (24)

together yield ρR > ρH whenever ċ(t, s)/c(t, s) > ˙̄c(t)/c̄(t), i.e., individual consumption growth

dominates growth per capita. The following corollary shows that the latter condition always

holds in the steady state and extends the analysis to the general case in which σH 6= σR.

Corollary 2 (Comparing time preference rates)

Suppose a decentralized OLG economy Γ⋆ is observationally equivalent in the steady state to

an ILA economy. Then the following statements hold:

(i) σR = σH ⇒ ρR > ρH .

(ii) In general,

ρR > ρH ⇔ σR > σH
[

1 +
1

ξ

(
∆c(t)

c(t)
+ ν

)]−1

. (26)

10 Equation (25) holds for all s ∈ [t − T, t] if and only if it holds for some s.
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The proof is given in the Appendix.

Equipping an ILA with a lower intertemporal substitutability than the household in the decen-

tralized OLG economy would ceteris paribus increase the steady state interest rate in the ILA

economy (as opposed to the situation whith coinciding elasticities). In order to match the same

observed interest rate as before, the ILA’s rate of time preference has to be lower. Thus, the

time preference relation can flip around if picking the intertemporal elasticity of substitution

of the ILA sufficiently below that of the household in the decentralized OLG economy (note

that [·]−1 < 1).

6 Utilitarian OLG Versus Infinitely Lived Agent Economy

Consider an OLG economy, which is governed by a social planner maximizing a social welfare

function. In this section, we investigate the conditions under which this economy is obser-

vationally equivalent to an ILA economy. We assume a utilitarian social welfare function in

which the social planner trades off the weighted lifetime utility of different generations. The

weight consists of two components. First, the lifetime utility of the generation born at time s

is weighted by cohort size. Second, the social planner exhibits a social rate of time preference

ρS > 0 at which he discounts the expected lifetime utility at birth for generations born in the

future.11

Assuming that the social planner maximizes social welfare from t = 0 onward, the social welfare

function consists of two parts: (i) the weighted integral of the remaining lifetime utility of all

generations alive at time t = 0, and (ii) the weighted integral of all future generations

W ≡

∫ 0

−T







∫ s+T

0

c(t, s)
1− 1

σH

1− 1
σH

exp
[
− ρH(t− s)

]
dt






γ exp[νs] exp[−ρSs]ds

+

∫ ∞

0







∫ s+T

s

c(t, s)
1− 1

σH

1− 1
σH

exp
[
− ρH(t− s)

]
dt






γ exp[νs] exp[−ρSs]ds .

(27a)

The term in the first curly braces is the (remaining) lifetime utility U(s) of a household born

at time s, as given by equation (1), the functional form of which is a given primitive for the

social planner. The term γ exp[νs] denotes the cohort size of the generation born at time s.

11 We examine the discounted utilitarian social welfare function of, e.g., Calvo and Obstfeld (1988), Burton
(1993) and Marini and Scaramozzino (1995), as it represents the de facto standard in the economic literature.
For a general criticism of discounted utilitarianism, as also employed in the climate change debate by Nordhaus
(2007) and Stern (2007), see, e.g., Sen and Williams (1982) and Asheim and Mitra (2010). Calvo and Obstfeld
(1988) show that social welfare functions which do not treat all present and future generations symmetrically,
i.e., discount lifetime utility to the same point of reference (here the date of birth), may lead to time-inconsistent
optimal plans.
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Changing the order of integration and replacing t− s by age a, we obtain

W =

∫ ∞

0







∫ T

0

c(t, t−a)
1− 1

σH

1− 1
σH

γ exp
[
(ρS− ρH− ν)a

]
da






exp

[
(ν −ρS)t

]
dt . (27b)

In the following, we consider two different scenarios. In the unconstrained utilitarian OLG

economy, a social planner maximizes the social welfare function (27b) directly controlling in-

vestment and household consumption. Thus, the social planner is in command of a centralized

economy. In contrast, in the constrained utilitarian OLG economy the social planner relies

on a market economy, in which the households optimally control their savings and consump-

tion maximizing their individual lifetime utility (1). In this second scenario, the social planner

is constrained to influencing prices by a tax/subsidy regime in order to maximize the social

welfare function (27b).

6.1 Unconstrained Utilitarian OLG Economy

We determine the unconstrained social planner’s optimal allocation by maximizing (27b) sub-

ject to the budget constraint (10b) and the transversality condition

lim
t→∞
k(t) exp

[

−

∫ t

0
f ′
(
k(t′)

)
dt′ + (ξ + ν)t

]

= 0 . (28)

Following the approach of Calvo and Obstfeld (1988), we interpret the unconstrained social

planner’s optimization problem as two nested optimization problems. The first problem is

obtained by defining

V
(
c̄(t)

)
≡ max
{c(t,t−a)}T

a=0

∫ T

0

c(t, t−a)
1− 1

σH

1− 1
σH

γ exp
[
(ρS − ρH − ν)a

]
da , (29)

subject to

∫ T

0
c(t, t−a)γ exp[−νa]da ≤ c̄(t) . (30)

The solution to this maximization problem is the social planner’s optimal distribution of con-

sumption between all generations alive at time t.

Proposition 6 (Optimal consumption distribution for given time t)

The optimal solution of the maximization problem (29) subject to condition (30) is

c(t, t−a) = c̄(t)
QT (ν)

QT
(
ν + σH(ρH − ρS)

) exp
[
− σH(ρH− ρS)a

]
. (31)

As a consequence, all households receive the same amount of consumption at time t irrespective

of age for ρH = ρS, and receive less consumption the older (younger) they are at a given time
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a) Decentralized OLG

c) Utilitarian OLG (ρH > ρS)

b) Utilitarian OLG (ρH = ρS)

d) Utilitarian OLG (ρH < ρS)

0 0

0 0

T T

T T

a a

a a

Figure 3: Distribution of consumption across all generations alive at given time t dependent
on age a for the decentralized OLG and three different utilitarian OLGs.

t for ρH > ρS (ρH < ρS).

The proof is given in the appendix.

Proposition 6 states that the difference between the households’ rate of time preference ρH and

the social rate of time preference ρS determines the social planner’s optimal distribution of

consumption across households of different age at some given time t. In particular, if ρH > ρS

the consumption profile with respect to age is qualitatively opposite to that of the decentralized

solution at any time t, as following from the Euler equation (4) and illustrated in Figure 3.12

That is, in the social planner’s solution households receive less consumption the older they

are, whereas they would consume more the older they are in the decentralized OLG economy.

The intuition for this result is as follows. The social planner weighs the lifetime utility of every

individual discounted to the time of birth. Thus, the instantaneous utility at time t of those who

are younger (born later) is discounted for a relatively longer time at the social planner’s time

preference (before birth) and for a relatively shorter time by the individual’s time preference

(after birth) than is the case for the instantaneous utility at time t of those who are older

(born earlier). For ρH > ρS the social planner’s time preference is smaller and, thus, the young

12 We do not take up a stance on the relationship between the individual and the social rate of time preference,
but merely hint at the resulting consequences. This is in line with Burton (1993) and Marini and Scaramozzino
(1995), who argue that they represent profoundly different concepts and, thus, may differ. In fact, ρH trades off
consumption today versus consumption tomorrow within each generation, while ρS trades off lifetime utilities
across generations. If they are supposed to differ, then it is usually assumed that ρH > ρS (see also Heinzel
and Winkler 2011).
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generation’s utility at time t receives higher weight.

Proposition 6 shows that the standard approach of weighted intergenerational utilitarianism

poses a trade-off between intertemporal generational equity and intratemporal generational

equity to the social planner whenever households exhibit a positive rate of time preference.

Lifetime utilities of today’s and future generations would receive equal weight if and only if

the social rate of time preference were zero. Approaching this by a close to zero social time

preference rate, ρH > ρS ≈ 0 implies that at each point in time the young enjoy higher

consumption than the old.13 In contrast, an equal distribution of consumption among the

generations alive is obtained if and only if social time preference matches individual time

preference. However, a positive social rate of time preference comes at the expense of an unequal

treatment of lifetime utilities of different generations. This trade-off practically vanishes only

if the individuals’ and the social planner’s rates of time preference are both very close to zero.

Such an equality trade-off can only be captured in an OLG model which explicitly considers

the life cycles of different generations.

We now turn to the second part of the maximization problem, which optimizes c̄(t) over time.

It is obtained by replacing the term in curly brackets in equation (27b) by the left hand side

of equation (29) resulting in

max
{c̄(t)}∞

t=0

∫ ∞

0
V
(
c̄(t)

)
exp[νt] exp

[
− ρSt

]
dt , (32)

subject to the budget constraint (10b). Observe that problem (32) is formally equivalent to

an ILA economy with the instantaneous utility function V
(
c̄(t)

)
and the time preference rate

ρS.14 We obtain V
(
c̄(t)

)
by inserting the optimal consumption profile (31) into equation (29)

and carrying out the integration

V
(
c̄(t)

)
=

[

QT
(
ν + σH(ρH − ρS)

)

QT (ν)

] 1

σH c̄(t)
1− 1

σH

1− 1
σH

. (33)

The social planner’s maximization problem (32) is invariant under affine transformations of

the objective function (33), in particular, under a multiplication with the inverse of the term

in square brackets. Thus, problem (32) is identical to the optimization problem in the ILA

economy when setting the intertemporal elasticity of substitution σR = σH and the time

preference rate ρR = ρS .

Proposition 7 (Unconstrained utilitarian OLG and ILA economy)

For an unconstrained utilitarian OLG economy, i.e., a social planner maximizing the social

welfare function (27b) subject to the budget constraint (10b) and the transversality condition

(28), the following statements hold:

13 Note that for ρS = 0 the maximization problem of the unconstrained social planner is not well defined.
14 Such an equivalence was already observed by Calvo and Obstfeld (1988).
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(i) An unconstrained utilitarian OLG economy is observationally equivalent to the ILA econ-

omy if and only if σR = σH and ρR = ρS.

(ii) An unconstrained utilitarian OLG economy is observationally equivalent in the steady

state to an ILA economy if and only if

ρR = ρS + ξ
σR − σH

σRσH
. (34)

The proof is given in the appendix.

Proposition 7 states that, maximizing the utilitarian social welfare function (27b) yields the

same aggregate consumption and capital paths as maximizing the welfare (19) in the ILA model

with σR = σH and ρR = ρS . This result, however, does not imply that the unconstrained social

planner problem can, in general, be replaced by an ILA model.

First, to derive the equivalence result, we have assumed a social planner who does not exhibit

any preferences for smoothing lifetime utility across generations. The parameter σH in equation

(33) stems from the individuals’ preferences to smooth consumption within the lifetime of each

generation. It is therefore a given primitive to the social planner. Thus, the only normative

parameter the social planner may choose is the social time preference rate ρS . It remains an

open question for future research whether a different welfare functional for the unconstrained

utilitarian social planner exists that permits a normative choice of σS for the social planner

and still delivers observational equivalence to an ILA model with ρS = ρR.

Second, in the ILA setting, the first-best solution can easily be decentralized, for example, via

taxes that ensure the optimal path of the aggregate capital stock. However, this may not be

the case for the unconstrained social planner’s problem as the latter is also concerned about

the intratemporal allocation of consumption across all generations alive at a certain point in

time. Before, we investigate the decentralization of the social optimum in the next section, we

compare the outcome of the OLG economy managed by the unconstrained social planner to that

of a decentralized OLG economy. In all comparisons between a utilitarian and a decentralized

OLG economy, we assume identical preferences of the individual households in both economies.

Proposition 8 (Unconstrained utilitarian OLG and decentralized OLG)

(i) For any economy Γ∗ there exists an unconstrained utilitarian OLG that is observationally

equivalent in the steady state. In such a steady state ρS > ρH .

(ii) In the steady state, an economy Γ∗ and an unconstrained utilitarian OLG exhibit the

same allocation of consumption across the generations alive at each point in time if and

only if they are observationally equivalent in the steady state.

The proof is given in the appendix.

Remark: The converse of (i) is not true, as there exists no economy Γ∗ that would be obser-

vationally equivalent to an unconstrained utilitarian OLG with ρS < ρH .
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Proposition 8 implies that an unconstrained utilitarian OLG economy exhibits the same aggre-

gate steady state as the decentralized OLG economy if and only if the intratemporal distribution

of consumption between all generations alive coincide. For this to hold, the social planner’s rate

of time preference has to be higher than the individual households’ rate of time preference.

6.2 Constrained Utilitarian OLG Economy

As seen in Proposition 8, the optimal solution of a social planner maximizing (27b) subject to

the budget constraint (10b) and the transversality condition (28) is, in general, not identical

to the outcome of a decentralized OLG economy.15 Thus, the question arises whether and if

so how the social optimum is implementable in a decentralized market economy. Calvo and

Obstfeld (1988) show that it is possible to implement the social optimum by a transfer scheme

discriminating by date of birth s and age a. Such a transfer scheme may be difficult to implement

because of its administrative burden. In addition, it is questionable whether taxes and subsidies

which are conditioned on age per se are politically viable.16

As a consequence, we consider a social planner that cannot discriminate transfers by age but

may only influence prices via taxes and subsidies. In particular, we assume that the social

planner may impose taxes/subsidies on capital and labor income. Let τr(t) and τw(t) denote

the tax/subsidy on returns on savings and on labor income, respectively.17 The individual

households of the OLG economy base their optimal consumption and saving decisions on the

effective interest rate re
(
t, τr(t)

)
and the effective wage we

(
t, τw(t)

)
defined by

re
(

t, τr(t)
)

= r(t)− τr(t) , (35a)

we(t, τw(t)
)

= w(t)
[
1− τw(t)

]
. (35b)

Then, the individual budget constraint reads

ḃe(t, s) = re
(
t, τr(t)

)
be(t, s) + we(t, τw(t)

)
− ce(t, s) . (35c)

Given this budget constraint, individual households choose consumption paths which maximize

lifetime utility (1). Thus, the optimal consumption path ce
(

t, s, {r(t′), τr(t
′), τw(t′)}s+Tt′=s

)

is a

function of the paths of the interest rate r(t) and the taxes τr(t) and τw(t).

Note that for a given path of the interest rate and given tax/subsidy schemes {r(t), τr(t),

τw(t)}s+Tt=s the individual household’s optimal paths of consumption and assets can be char-

acterized as in the decentralized OLG economy by (2) and (4) when using re
(

t, τr(t)
)

and

15 Recall that we assume the individual preference parameters to be identical in both economies.
16 See also the “Age Discrimination Act of 1975” for the US stating that “...no person in the United States

shall, on the basis of age, be excluded from participation in, be denied the benefits of, or be subjected to
discrimination under, any program or activity receiving Federal financial assistance.” Note that programs like
medicare use age as a proxy for the health condition and do not discriminate by age per se.

17 Following the standard convention, τi(t) is positive if it is a tax and negative if it is a subsidy.
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we
(
t, τw(t)

)
instead of r(t) and w(t), respectively. Applying the aggregation rule (9) yields

aggregate consumption per effective labor ce
(
t, {r(t′), τr(t

′), τw(t′)}t+Tt′=t−T
)
. To analyze obser-

vational equivalence between such a constrained utilitarian OLG economy and an ILA economy,

we have to restrict redistribution to mechanisms which do not alter the aggregate budget con-

straint (10b) of the economy. We consider the following redistribution scheme which yields a

balanced government budget at all times

τw(t)w(t) = −τr(t)b̄(t) . (35d)

Under these conditions the social optimum is, in general, not implementable.

Proposition 9 (Implementation of the social optimum)

The optimal solution of a social planner maximizing (27b) subject to the budget constraint

(10b) and the transversality condition (28) is not implementable by a tax/subsidy regime satis-

fying (35) unless this solution is identical to the outcome of the unregulated decentralized OLG

economy Γ⋆.

The proof is given in the appendix.

Proposition 9 states that a constrained social planner who can only impose a tax/subsidy

regime on interest and wages cannot achieve the first-best social optimum. The intuition is

that the constrained social planner can achieve the socially optimal aggregate levels of capital

and consumption, but cannot implement the socially optimal intratemporal distribution of

consumption across generations living at the same time. The only exception occurs if the social

optimum happens to be identical to the outcome of the unregulated OLG economy. In this

case, there is no need for the social planner to interfere and, thus, it does not matter whether

the social planner can freely re-distribute consumption among generations or is constrained

to a self-financing tax/subsidy scheme. In all other cases, the constrained social planner will

choose a tax path such as to achieve a second-best optimum. In consequence, Proposition 9

questions the validity of the ILA model in deriving distributional policy advice for a democratic

government that, most likely, is not able to redistribute by age between the generations alive.

7 Stern vs. Nordhaus – A Critical Review of Choosing the Social Rate of Time

Preference

A prime example for questions of intergenerational equity is the mitigation of anthropogenic

climate change, as most of its costs accrue today while the benefits spread over decades or even

centuries. The question of optimal greenhouse gas abatement has been analyzed in integrated

assessment models combining an ILA economy with a climate model. Interpreting the ILA’s

utility function (19) as a utilitarian social welfare function, intergenerational equity concerns

are closely related to the choice of intertemporal elasticity of substitution σR and the rate

of time preference ρR. This is illustrated well by Nordhaus (2007), who compares two runs
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of his open source integrated assessment model DICE-2007. The first run uses his preferred

specifications σR = 0.5 and ρR = 1.5%. The second run employs σR = 1 and ρR = 0.1%, which

are the parameter values chosen by Stern (2007). These different parameterizations cause a

difference in the optimal reduction rate of emissions in the period 2010–2019 of 14% versus

53% and a difference in the optimal carbon tax of 35$ versus 360$ per ton C.

The previous sections derived important differences between the OLG economy and an ILA

model that have to be considered when evaluating climate change mitigation polices. In this

section, we will relate these results to the positive and to the normative approach to social

discounting.

7.1 The “positive” approach

Our paper provides the tools to critically re-examine the positive approach explicitly accounting

for the finite lifespan of individuals living in an OLG economy. As described and illustrated

in Figure 1 in Section 2, there are two steps associated with the positive approach: First

the preference parameters of the ILA are set so that the ILA framework is observationally

equivalent to the decentralized OLG. Second, the resulting ILA is interpreted as a utilitarian

social planner OLG.

Concerning the first step, we showed in Proposition 4 and Corollary 2 that the rate of time

preference of the ILA does not reflect the actual time preference rate of the (homogeneous)

individuals in the decentralized OLG economy. The ILA model overestimates the rate of time

preference for two reasons. First, the ILA model assumes that every individual plans for an in-

finite future when taking their market decisions. However, the households in the OLG economy

only plan for their own lifespan when revealing their preferences on the market. Interpreting

these decisions as if being taken with an infinite time horizon overstates the actual pure time

preference. Second, the ILA model assumes that the representative consumer accounts for pop-

ulation growth by giving more weight to the welfare of the larger future population. If the

households in the OLG economy dismiss this farsighted altruistic reasoning, the ILA approach

once more overestimates individual time preference rates.

A numerical illustration shows how the inferred ILA preferences differ from actual household

preferences. Assuming the elasticities σH = σR = .5 as in Nordhaus (2008) latest version of

DICE, the ILA model implies a rate of time preference of the representative household (and

social planner) of ρR = 1.5%, while the individuals of the decentralized OLG economy exhibit

a time preference of ρH = −5.3%.18 The surprising finding of a negative rate of time preference

questions the plausibility of the above specifications. A simple sensitivity check suggests that

increasing the intertemporal elasticity of substitution is most promising for resolving the nega-

18 The calculation solves equation (14b) or, alternatively, F (5.5%) = J (5.5%) in the notation introduced in
the proof of Proposition 1. We choose the following exogenous parameters: capital share α = .3, rate of
technological progress ξ = 2%, rate of population growth ν = 0%, lifetime T = 50 and interest rate r = 5.5%.
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tivity puzzle. The more recent asset pricing literature suggests an estimate of the intertemporal

elasticity of substitution of σ = 1.5 which, in combination with a disentangled measure of risk

attitude, also explains various asset prizing puzzles.19 Adopting this estimate we find ρH = 1.9%

for the households in the decentralized OLG economy and ρR = 4.2% in the observationally

equivalent ILA economy. The wide-spread assumption of logarithmic utility (σ = 1) chosen in

the Stern (2007) review implies that households have the same rate of pure time preference of

ρH = 0.1% that the review chose for the social planner based on normative reasoning.

In the second step, the positive approach interprets the observationally equivalent ILA frame-

work as a social planner economy. Proposition 7 indeed verifies that the ILA model can be a

shortcut to a social planner maximizing intertemporal utilitarian welfare in an OLG economy.

However, calibrating the ILA framework to the decentralized OLG economy and then interpret-

ing the ILA framework as a social planner economy is not innocuous. Our full-fletched model of

the unconstrained utilitarian planner in Section 6.1 reveals an implicit normative assumption

hidden in this approach. Proposition 8 states that the condition ρS > ρH holds whenever we

calibrate the unconstrained utilitarian OLG economy to the decentralized unregulated market

equilibrium. In consequence, the calibrated ILA economy contains the assumption that the

intergenerational time preference rate of the social planner is higher than the individual time

preference rate.

This assumption not only stands in sharp contrast to most of the literature on intergenerational

ethics, it also calls for an explicit justification, as these preferences differ from those of the

individuals in the economy. In a purely positive approach to climate change mitigation the social

planner would capture only current observed preferences. In a decentralized OLG economy this

would imply to terminate the time horizon of the social planner T periods into the future, use

individual households’ rates of time preference, and introduce a weight that reflects the current

individuals still alive at a given point of time in the future. In fact, climate change mitigation

would not be optimal with such an approach, if the benefits of mitigation investments accrue

beyond the lifetime T of individual households.

If we acknowledge that climate change is a problem where individuals agree to adopt time

horizons that exceed their own lifetime, we can adopt a longer or even infinite planning horizon.

Then, however, on what grounds is it justified to increase the social planner’s impatience over

that of the individuals? The same question arises in the context of increasing impatience in

order to match the fact that observed individuals in the decentralized OLG economy do not take

account of future population growth. If one considers it adequate to endow the social planner

with a welfare function giving more weight to larger (future) populations, then why would one

increase the time preference rate to crowd out this effect? We do not provide an answer to

these normative questions, but point to the normative content of the positive approach and its

19 Vissing-Jørgensen and Attanasio (2003) estimate and Bansal and Yaron (2004) and Bansal et al. (2010)
calibrate intertemporal substitutability to this value based on approaches employing Epstein and Zin (1991)
preferences and Campbell’s (1996) log-linearization of the Euler equation.
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possible normative inconsistencies.

7.2 The normative approach

In a normative approach to social discounting it seems more natural to jump straight to an

ILA model. By normatively justified assumptions the social planner exhibits an infinite plan-

ning horizon and particular values of the time preference rate and the intertemporal elasticity

of substitution. It is obvious, however, that the ILA model cannot capture any distinction or

interaction between intergenerational weighting and individual time preference. Nevertheless,

Proposition 7 shows that a social planner fully controlling an OLG economy is observationally

equivalent to an ILA economy if the parameters σR and ρR are appropriately chosen. In partic-

ular, the intertemporal path of aggregate consumption does not depend on the individual rate

of time preference ρH , but only on the social planner’s rate of time preference ρS. In fact, the

time preference rate of the social planner coincides with the rate of time preference ρR of the

observationally equivalent ILA economy. This finding provides some support for Stern’s (2007)

normative approach to intergenerational equity in the ILA model.

However, the shortcut of setting up an ILA economy exhibits a number of caveats as questions

of intergenerational equity are more complex than the ILA model reveals. First, according to

Proposition 7, the interpretation of the time preference rate of the ILA economy as the time

preference rate of a social planner in an observationally equivalent social planner OLG economy

(ρR = ρS) requires that the intertemporal elasticity of substitution in the ILA economy be

equal to that of the individual households in the OLG economy, i.e., σR = σH . This constraint,

however, implies that the intertemporal elasticity of substitution is a primitive to the social

planner and cannot be chosen to match particular normative considerations.20

Second, interpreting the ILA economy as a utilitarian social planner OLG neglects the in-

tratemporal allocation of consumption across all generations alive at each point in time. The

utilitarian OLG model allows us to explicitly analyze the social planner’s optimal intratem-

poral distribution of consumption. As shown in Proposition 6, it depends on the difference

between the social planner’s and the individual households’ rates of time preference. Usually,

it is assumed that the normatively chosen social rate of time preference ρS is smaller than

the individual rate of time preference ρH .21 According to Proposition 6, in this case the oldest

generation receives least consumption while the newborns get most among all generations alive

(see Figure 3, part c). In contrast, the decentralized OLG economy would distribute relatively

more to the old (see Figure 3, part a). As a consequence, the standard discounted utilitarian-

ism implies a trade-off between intertemporal and intratemporal generational equity whenever

20 Note that the social welfare function (27b) we considered does not include any preferences for smoothing
lifetime utility of different generations over time. Of course, such functional forms are conceivable but it is
not clear whether and how such a utilitarian OLG economy translates into an observationally equivalent ILA
economy.

21 This assumption seems particularly reasonable if ρS is close to zero. With respect to the Stern review, it
implies that the individual households’ time preference rates exceed ρS = 0.1%.
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households exhibit a positive rate of pure time preference. The aim of ‘treating all generations

alike’ is therefore neither implemented easily in the economy nor captured in the utilitarian

objective function.

Finally, there is an additional caveat, which applies to both the positive and the normative ap-

proach to social discounting. The ILA shortcut to the social planner OLG economy conceals that

the first-best solution has to be implemented in a decentralized OLG instead of a Ramsey-Cass-

Koopmans economy. In general, the social optimum not only requires re-distribution across time

but also across different generations living at the same time. Apart, from the question whether

consumption discrimination by age is justified on ethical grounds, it is questionable whether

it is implementable. In Proposition 9 we show that, in general, a social planner whose policy

instruments are limited to non-age-discriminating taxes and subsidies cannot implement the

first-best solution. In fact, the first-best social optimum can only be achieved in the special case

that it coincides with the outcome of the decentralized OLG economy without any regulatory

intervention. Thus, the ILA economy, interpreted as an unconstrained social planner model,

cannot capture this second-best aspect of optimal policies.

8 Conclusions

In the climate change debate intergenerational trade-offs are most often discussed within ILA

frameworks, which are interpreted as a utilitarian social welfare function. In this paper, we

analyzed to what extent these models can represent the relevant intertemporal trade-offs if an

altruistic bequest motive is non-operative.

We showed under which conditions an ILA economy is observationally equivalent to (i) a

decentralized OLG economy and (ii) an OLG economy in which a social planner maximizes

a utilitarian welfare function. We found that preference parameters differ in the decentralized

OLG and the observationally equivalent ILA economy. In general, pure time preference of

an ILA planner is higher than pure time preference of the households in the observationally

equivalent OLG economy. Moreover, in a normative setting, a utilitarian social planner faces

a trade-off between intergenerational and intragenerational equity that cannot be captured in

the ILA model. Finally, the limited implementability of the first best allocation can only be

observed and discussed in the OLG context.

Our results have important implications for the recent debate on climate change mitigation

and, more generally, for ILA based integrated assessment and cost benefit analysis that relies

on the Ramsey equation. First, the positive approach to specify the social welfare function

implicitly assumes that the time preference rate of the social planner exceeds the one of the

individual households. Second, the ILA model does not capture the distribution of consumption

among generations alive at a given point in time. The utilitarian OLG model implies that a

more equal treatment of lifetime utilities between present and future generations can come at
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the expense of a more unequal treatment of the generations alive at a given point in time –

at least if individuals possess a positive rate of pure time preference. Thus, the utilitarian ILA

in the normative approach to social discounting misses an important generational inequality

trade-off. Third, the ILA approach overlooks a limitation in the implementability that arises

if the intergenerational discount rate of the social planner in a utilitarian OLG economy does

not coincide with the time preference rate of individual households. Then, the social optimum

involves re-distribution among generations at each point in time, which would have to rely on

age-discriminating taxes.

Our analysis employs two central assumptions. First, we assume selfish individual households.

Although several empirical studies suggest that altruistic bequest motives are rather weak,

extending the model to include different degrees of altruism is an interesting venue for future

research. Second, part of our analysis assumes a specific utilitarian social welfare function.

Although commonplace in the literature, this assumption drives some of our results, such as

the trade-off between intra- and intergenerational equity. In particular, discounted utilitari-

anism in general has been questioned as an appropriate approach to deal with questions of

intergenerational equity (e.g., Asheim and Mitra 2010).
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A Appendix

A.1 Proof of Proposition 1

To prove the existence of a non-trivial steady state, i.e. k⋆ 6= 0, we follow closely part (A) of the

proof of Proposition 2 in Gan and Lau (2010). We re-write equation (14b) for r∗ /∈ {ξ, ν + ξ}

as22

b⋆ =
w⋆

r⋆ − ν − ξ

{

QT (r⋆ − ξ)

QT (ν)

QT
(
ν + ξ − σH(r⋆ − ρH)

)

QT
(
r⋆ − σH(r⋆ − ρH)

) − 1

}

. (A.1)

We define the function J : R→ R by

J(r) ≡
QT (r − ξ)

QT (ν)

QT
(
ν + ξ − σH(r − ρH)

)

QT
(
r − σH(r − ρH)

) , ∀ r ∈ R (A.2)

for which Lemma 2 in Appendix A.10 summarizes some useful properties. Defining further

φ(k) ≡
f(k)− f ′(k)k

f ′(k) − ν − ξ

[
J
(
f ′(k)

)
− 1

]
, (A.3)

the steady state is given by the solution of the equation k = φ(k), or equivalently

λ(k) ≡
J
(
f ′(k)

)
− 1

f ′(k)− ν − ξ
−

k

f(k)− f ′(k)k
= 0 . (A.4)

Note that λ(k) exhibits a removable pole at the golden rule capital stock kgr which is given by

f ′(kgr) = ν + ξ ≡ rgr. By defining

λ(kgr) ≡ lim
k→kgr

λ(k) = J ′
(
f ′(kgr)

)
−

kgr

f(kgr)− f ′(kgr)kgr
(A.5)

where we use l’Hospital’s rule (recognizing that J
(
f ′(kgr)

)
= 1), we establish that λ(k) is a

well-defined and continuous function on k ∈ R. We now show that

lim
k→0
λ(k) = +∞ , and lim

k→∞
λ(k) = −∞ , (A.6)

which proves the existence of k⋆ ∈ (0,∞) with λ(k⋆) = 0 or equivalently φ(k⋆) = k⋆.

For k → 0, f ′(k) tends to ∞, f(k) − f ′(k)k tends to 0 and J
(
f ′(k)

)
tends to ∞. The latter

holds, as limr→∞ J
′(r)/J(r) > 0 (see part (iii) and (v) of Lemma 2), which implies that

22 The equivalence of equation (14b) and (A.1) is easily verified by multiplying over the terms in the denominator
and expanding the resulting expressions. In addition, the domain of the functions making up the right hand
side of equations (14b) and (A.1) can be extended to r∗ ∈ {ξ, ν + ξ} by limit. Both right hand side functions
are continuous and coincide for these points. Thus, the two equations are equivalent for all r⋆.

26



limr→∞ J(r) = +∞ and limr→∞ J
′(r) = +∞. Applying l’Hospital’s rule we obtain

lim
k→0
λ(k) = lim

k→0
J ′
(
f(k)

)
−

1

f ′′(k)k
= +∞ , (A.7)

as limk→0 1/(f ′′(k)k) is finite by virtue of assumption (15).

For k → ∞, f(k) tends to ∞ and f ′(k) tends to 0. Thus, the first summand of λ(k) tends to

[1− J(0)]/(ν + ξ), which is finite. For the second summand observe that

lim
k→∞

f(k)− f ′(k)k

k
= lim
k→∞

[
f(k)

k
− f ′(k)

]

= 0 . (A.8)

As f(k)−f ′(k)k > 0 for k > 0 this implies that limk→∞ k/[f(k)−f
′(k)k] = +∞ and, therefore,

limk→∞ λ(k) = −∞. �

A.2 Proof of Proposition 2

To prove the proposition, we re-write the steady state condition (A.3) for k 6= kgr as

f(k)− (ν + ξ)k

f(k)− f ′(k)k
= J

(

f ′(k)
)

, (A.9)

which allows to distinguish between efficient and inefficient steady states. Moreover, we discuss

solutions to equation (A.9) in terms of the interest rate r instead of the capital stock k.

Therefore, we define

F (r) ≡
f
(
k(r)

)
− (ν + ξ)k(r)

f
(

k(r)
)

− f ′
(

k(r)
)

k(r)
, (A.10)

where k(r) = f ′−1(r), which is well defined due to the strict monotonicity of f ′(k). Observe

that k′(r) = 1/f ′′
(
k(r)

)
. The derivative of F with respect to r yields:

F ′(r) =
f ′
(
k(r)

)
− (ν + ξ)

f ′′
(
k(r)

) [
f
(
k(r)

)
− f ′

(
k(r)

)
k(r)

] +
k(r)

[
f
(
k(r)

)
− (ν + ξ)k(r)

]

[
f
(
k(r)

)
− f ′

(
k(r)

)
k(r)

]2 . (A.11)

Then, for r⋆ 6= rgr, a steady state is given by the solution of the equation F (r⋆) = J (r⋆).

>From (A.5) we observe that

J ′ (rgr) =
kgr

f (kgr)− rgrkgr
= F ′ (rgr) , (A.12)

has to hold for r = rgr respectively k = kgr to be a steady state. In addition, we find for r = rgr

that

F (rgr) = 1 = J (rgr) . (A.13)
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>From the proof of Proposition 1 follows that, given condition 15 holds, there exists an efficient

steady state with r⋆ > rgr and k⋆ < kgr for F ′ (rgr) > J ′ (rgr). This can be seen from equation

(A.5), which implies λ(kgr) < 0, and limk→0 λ(k) = limr→∞ λ
(
k(r)

)
= +∞. The condition

F ′ (rgr) > J ′ (rgr) is equivalent to condition (17).

We now derive sufficient conditions such that there exists only one steady state k⋆ < kgr.

Suppose that condition (15) holds, which guarantees existence of a dynamically efficient steady

state. There exists only one steady state interest rate r⋆ with r⋆ > rgr if and only if

F ′(r)|r=r⋆ < J
′(r)|r=r⋆ , ∀ r

⋆ > rgr

⇔
F ′(r)

F (r)

∣
∣
∣
∣
r=r⋆
<
J ′(r)

J(r)

∣
∣
∣
∣
r=r⋆

, ∀ r⋆ > rgr . (A.14)

The second line holds, as F (r) = J(r) for all r = r⋆. A sufficient condition for (A.14) to hold

is that

d

dr

(

F ′(r)

F (r)

∣
∣
∣
∣
r=r⋆

)

< 0 ∧
d

dr

(

J ′(r)

J(r)

∣
∣
∣
∣
r=r⋆

)

> 0 , ∀ r⋆ > rgr . (A.15)

>From part (ii) and (iv) of Lemma 2 we know that the second condition holds for all r > rgr

if, in case that σ > 1, also condition (18b) holds.

F ′(r)

F (r)

∣
∣
∣
∣
r=r⋆

=

[

r − ν − ξ

f ′′
(
k(r)

) [
f
(
k(r)

)
− (ν + ξ)k(r)

] +
k(r)

f
(
k(r)

)
− rk(r)

]∣
∣
∣
∣
∣
r=r⋆

(A.16a)

=

[

1

k(r)f ′′
(

k(r)
)

(

1−
1

F (r)

)

+
k(r)

f
(

k(r)
)

− rk(r)

]∣
∣
∣
∣
∣
r=r⋆

(A.16b)

=

[

1

k(r)f ′′
(
k(r)

)

(

1−
1

J(r)

)

+
k(r)

f
(
k(r)

)
− rk(r)

]∣
∣
∣
∣
∣
r=r⋆

(A.16c)

=
k(r)

f
(
k(r)

)
− rk(r)

︸ ︷︷ ︸

≡g1(r)

[

1−

(

1−
1

J(r)

)
f
(
k(r)

)
− rk(r)

−k2(r)f ′′
(
k(r)

)

︸ ︷︷ ︸

≡g2(r)

]∣
∣
∣
∣
∣
r=r⋆

. (A.16d)

>From the second to the third line we employed F (r) = J(r) for all r = r⋆. We show in the

following that g′1(r) ≤ 0 and g′2(r) ≥ 0 are sufficient for d
dr

(
F ′(r)
F (r)

∣
∣
∣
r=r⋆

)

< 0.

First, observe from equation (A.3) that J (r⋆) > 1 for all r⋆ > rgr. As J(r) is U-shaped on

r ∈ (rrg,∞) because of part (ii) and (iv) of Lemma 2 and J (rgr) = 1, this implies that

J ′ (r⋆) > 0 for all r⋆ > rgr.
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Second, we show that F
′(r)
F (r)

∣
∣
∣
r=r⋆
> 0 for all r⋆ > rgr if g′2(r) ≥ 0. Observe that

lim
r⋆→∞

F ′(r)

F (r)

∣
∣
∣
∣
∣
r=r⋆

= lim
r→∞

[

1

k(r)f ′′
(

k(r)
)

(

1−
1

J(r)

)

+
k(r)

f
(

k(r)
)

− rk(r)

]

(A.17a)

= lim
r→∞

[

1

k(r)f ′′
(
k(r)

) +
k(r)

f
(
k(r)

)
− rk(r)

]

(A.17b)

= lim
r→∞

[

1

k(r)f ′′
(
k(r)

) −
1

k(r)f ′′
(
k(r)

)

]

= 0 . (A.17c)

In addition, we know that g1(r) > 0 for all r > 0 and

lim
r→∞
g1(r) = lim

r→∞

1

k(r)f ′′
(
k(r)

) > 0 . (A.18)

The latter implies together with equation (A.17)

lim
r→∞
g2(r)

(

1−
1

J(r)

)

= 1 . (A.19)

As g2(r)
(

1− 1
J(r)

)

equals zero at r = rgr and is monotonically increasing in r for g′2(r) ≥ 0 = 0,

this implies that F ′(r)/F (r)|r=r⋆ > 0 for all r⋆ > rgr. Then, we obtain for g′1(r) ≤ 0 and

g′2(r) ≥ 0

d

dr

(

F ′(r)

F (r)

∣
∣
∣
∣
r=r⋆

)

= g′1(r)

[

1−

(

1−
1

J(r)

)

g − 2(r)

]

− g1(r)g2(r)
J ′(r)

J2(r)

− g1(r)g′2(r)

(

1−
1

J(r)

)

< 0 . (A.20)

The conditions s(k) ≥ ǫ(k) and d
dk

(
s(k)
ǫ(k)

)

are sufficient for g′1(r) ≤ 0 and g′2(r) ≥ 0. �

A.3 Proof of Proposition 3

We show that σ(r⋆− ρH)− ξ > 0 is a necessary condition for aggregate assets b⋆ to be strictly

positive in a dynamically efficient steady state, i.e., (σH , ρH) ∈ ΓΨ,T . As b⋆ = k⋆ holds, this

implies that for k⋆ > 0 the steady state real interest rate must exceed ρH + ξ
σ

.

The household’s wealth, as given by equation (13b), can be re-written to yield

b⋆(a) =
w⋆

r⋆ − ξ

{
θ exp

[(
σ(r⋆ − ρH)− ξ

)
a
]

+ (1− θ) exp[(r⋆ − ξ)a]− 1
}
, (A.21)

with

θ =
1− exp[−(r⋆ − ξ)T ]

1− exp[−(r⋆ − σH(r⋆ − ρ))T ]
. (A.22)

29



Assuming a dynamically efficient steady states implies that r⋆ − ξ > 0 and we obtain from

(A.22)

θ







< 1, if σ(r⋆ − ρH)− ξ < 0

= 1, if σ(r⋆ − ρH)− ξ = 0

> 1, if σ(r⋆ − ρH)− ξ > 0

. (A.23)

Thus, we can directly infer from (A.21) that b⋆(a) = 0 for all a ∈ [0, T ] for σ(r⋆ − ρH) − ξ =

0. As all households hold no assets, the aggregate capital stock equals zero. To show that

σ(r⋆ − ρH)− ξ < 0 precludes strictly positive capital stocks, we analyze the second derivative

of b⋆(a)

d2 b⋆(a)

d a2
=
w⋆

r⋆ − ξ

{
θ
(
σ(r⋆ − ρH)− ξ

)2
exp

[(
σ(r⋆ − ρH)− ξ

)
a
]

+ (1− θ)(r⋆ − ξ)2 exp[(r⋆ − ξ)a]
}
. (A.24)

For σ(r⋆ − ρH) − ξ < 0, θ < 1 holds, which implies that d
2b⋆(a)
d a2 > 0. Hence, the household’s

wealth profile is strictly convex. Together with the boundary conditions b⋆(0) = 0 = b⋆(T ) this

implies that all households possess non-positive wealth at all times. This, in turn, precludes

k⋆ > 0.

Further, it is obvious from (A.21) and (A.24) that σ(r⋆ − ρH) − ξ > 0 does not contradict

strictly positive wealth of the individual households and, therefore, is a necessary condition for

k⋆ > 0. �

A.4 Proof of Proposition 4

(i) Both economies exhibit the same technology and rate of population growth by assumption

and, thus, the market equilibria on the capital and the labor market imply that the equations

of motion for the aggregate capital per effective labor (22c) and (10b) coincide. The remaining

difference in the macroeconomic system dynamics is governed by the Euler equations (10a) and

(22a) and by the transversality condition (21).

“⇒”: Suppose the two economies are observationally equivalent, i.e., coincidence in the initial

levels of consumption and capital imply coincidence at all future times. For this to hold the

Euler equations (10a) and (22a) have to coincide giving rise to (23).

“⇐”: If condition (23) holds, then also the Euler equations (10a) and (22a) coincide and the

system dynamics of both economies is governed by the same system of two ordinary first

order differential equations. The solution is uniquely determined by some initial conditions

on c and k. Thus, if the two economies coincide in the levels of consumption and capital at

one point in time they also do so for all future times. In consequence, the two economies

are observationally equivalent. Moreover, the capital stock is an equilibrium of Γ⋆ implying
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k⋆ < kgr. As a consequence, the transversality condition for the ILA economy is satisfied and,

thus, the described path is indeed an optimal solution.

(ii) Let r⋆ be the steady state interest rate of Γ⋆. Thus, all combinations of
(
ρR, σR

)
which

satisfy

r⋆ = ρR +
ξ

σR
, (A.25)

yield ILA economies which are observationally equivalent in the steady state. As for all Γ⋆,

r⋆ < rgr holds, also the transversality condition (21) is satisfied. �

A.5 Proof of Corollary 2

(i) For the steady state, equation (10a) returns 1
σH

[
∆c(t)
c(t) + ν

]

= r(t) − ρH − ξ
σH

which, by

Proposition 3, is strictly positive. Thus, by equation (24) ρR − ρH > 0.

(ii) From the respective Euler equations (10a) and (22a) we obtain the condition that

r −
ξ

σR
= ρR > ρH = r −

1

σH

[
∆c(t)

c(t)
+ ν + ξ

]

(A.26)

⇔
σH

σR
<

1

ξ

[
∆c(t)

c(t)
+ ν + ξ

]

(A.27)

which is equivalent to equation (26). �

A.6 Proof of Proposition 6

The optimization problem (29) subject to condition (30) is equivalent to a resource extraction

model (or an isoperimetrical control problem). We denote consumption at time t of an individual

of age a by C(a) ≡ c(t, t−a) and define the stock of consumption left to distribute among those

older than age a by

y(a) = c̄(t)−

∫ a

0
C(a′)γ exp[−νa′] da′ . (A.28)

Then, the problem of optimally distributing between the age groups is equivalent to optimally

‘extracting’ the consumption stock over age (instead of time). The equation of motion of the

stock is dy
da

= −C(a)γ exp[−νa], the terminal condition is y(T ) ≥ 0, and the present value

Hamiltonian reads

H =
C(a)

1− 1

σH

1− 1
σH

γ exp
[
(ρS− ρH− ν)a

]
− λ(a)C(a)γ exp[−νa] , (A.29)
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where λ(a) denotes the co-state variable of the stock y. The first order conditions yield

λ(a) = C(a)
− 1

σH exp
[(

ρS − ρH
)

a
]

, (A.30a)

λ̇(a) = 0 , (A.30b)

which imply that

C(a) = C(0) exp
[
σH(ρS − ρH)a

]
. (A.31)

As λ(T ) is obviously not zero, transversality implies that y(T ) = 0. Therefore, we obtain from

equation (A.28), acknowledging QT (ν) = 1/γ,

C(0) = c̄(t)
QT (ν)

QT
(

ν + σH(ρH − ρS)
) , (A.32)

which, together with equation (A.31), returns equation (31). �

A.7 Proof of Proposition 7

(i) The equivalence of the unconstrained social planner problem and of the optimization problem

in the ILA economy pointed out in relation to equations (32) and (33) implies the Euler equation

of the unconstrained social planner economy

ċ(t)

c(t)
= σH

[

r(t)− ρS
]

− ξ . (A.33)

For both economies the Euler equation implies that a time varying consumption rate also

implies a time varying interest rate (and obviously so does a time varying capital stock).

For observational equivalence to hold, consumption and interest rate of the unconstrained

utilitarian OLG economy have to coincide with that of the ILA economy, implying the following

equality of the Euler equations

σH
[

r(t)− ρS
]

− ξ = σR
[

r(t)− ρR
]

− ξ

⇔ σRρR − σHρS = (σR − σH)r(t) . (A.34)

For a time varying interest rate this equation can only be satisfied if σR = σH and ρH = ρS .

If σR = σH and ρH = ρS hold, the equivalence of the two problems was explained in relation

to equations (32) and (33).

(ii) Existence of an observationally equivalent ILA economy implies that, first, the ILA economy

has to be in a steady state as well and, second, that the steady state Euler equations have to
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coincide implying

r = ρR −
ξ

σR
= ρS −

ξ

σH

⇒ ρR − ρS = ξ
σR − σH

σRσH
.

The same reasoning applies when starting from the ILA economy steady state and assuming

an observationally equivalent unconstrained utilitarian OLG economy.

If equation (34) is satisfied and the unconstrained utilitarian OLG economy is in a steady state,

equation (A.33) implies

rS = ρS +
ξ

σH
. (A.35)

Using equation (34) to substitute ρS on the right hand side yields

rS = ρR − ξ
σR − σH

σRσH
+
ξ

σH
= ρR +

ξ

σR
= rR . (A.36)

Thus, also the ILA economy is in a steady state (see Section 4) with coinciding interest rate. As

the interest rates coincide, so does the capital stock and so do the consumption paths. Starting

with the ILA steady state with interest rate rR yields a coinciding unconstrained utilitarian

OLG steady state by the same procedure. �

A.8 Proof of Proposition 8

(i) According to the proof of Proposition 7, the Euler equation of the unconstrained social

planner solution is (A.33). In a steady state with interest rate r⋆ it is satisfied for any (obviously

non-empty) set of preference parameters σH and ρS satisfying

ρS +
ξ

σH
= r⋆ . (A.37)

Moreover, by virtue of Proposition 3, ρS = r⋆− ξ
σH
> ρH holds. Note that for all decentralized

economies Γ⋆ r⋆ < rgr. Hence, the same reasoning as in the proof of Proposition 4 can be applied

to make sure that the budget constraints of the decentralized OLG and the unconstrained

utilitarian social planner OLG coincide. The condition r⋆ < rgr also implies that the social

planner’s transversality condition is satisfied.

(ii) Using (31), we can write the intratemporal allocation of consumption across the generations

alive in steady state in the unconstrained utilitarian OLG as

c⋆S(a) =
c(t, t− a)

exp[ξt]
= c⋆

QT (ν)

QT (ν + σH
(

ρH − ρS)
) exp[−σH(ρH − ρS)a] . (A.38)
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The intratemporal allocation of consumption in the decentralized OLG economy is given by

(13a) and can be written as

c⋆d(a) = c⋆
QT (ν)

QT (ν + ξ − σH
(

r⋆d − ρ
H)
) exp[(σH (r⋆d − ρ

H)− ξ)a] , (A.39)

where r⋆d is the steady state interest rate of the decentralized OLG in which the households

exhibit the same preference parameters as in the unconstrained utilitarian OLG economy.

⇒: Suppose that the allocation of consumption across all generations alive at each point is

identical. For this to be the case, the following two equations have to hold simultaneously for

all a ∈ [0, T ]

exp[−σH(ρH − ρS)a] = exp[(σH(r⋆d − ρ
H)− ξ)a] , (A.40a)

σH
(
ρH − ρS) = ξ − σH

(
r⋆d − ρ

H) . (A.40b)

Minor mathematical transformations show that this only holds for

ρs = r⋆d −
ξ

σH
. (A.41)

This is the condition for the unconstrained utilitarian OLG and the decentralized OLG to be

observationally equivalent in steady state.

⇐: Now suppose that the unconstrained utilitarian OLG and the decentralized OLG are ob-

servationally equivalent in steady state, i.e., equation (A.41) is satisfied.

Inserting ρS as given by (A.41) into (A.38) yields

c⋆S(a) = c⋆
QT (ν)

QT (ν + ξ − σH
(
r⋆d − ρ

H)
) exp[(σH(r⋆d − ρ

H)− ξ)a] , (A.42)

which is identical to (A.39). Hence, observational equivalence in steady state is also sufficient

for identical allocations across the generations alive in both economies. �

A.9 Proof of Proposition 9

We show that the constrained social planner can implement the steady state social optimum

with a tax/subsidy regime on interest and wages only if the steady states of the first-best

optimum and the decentralized OLG economy coincide. This implies that the first-best solution

is, in general, not implementable, as every first-best solution converges to a non-implementable

steady state.

We show that for a given steady state, the intratemporal distribution of consumption coincides

in the constrained and the unconstrained utilitarian OLG economy if and only if τ⋆r = 0. To

see this consider an unconstrained utilitarian OLG economy in steady state. The household
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problem in the constrained utilitarian OLG economy is identical to the household problem in

the decentralized economy if we substitute r(t) by re(t) and w(t) by we(t). Solving for individual

consumption and wealth in the steady states yields analogously to equations (13a) and (13b):

ce⋆(a) ≡
ce(t, s)

exp[ξt]

∣
∣
∣
∣
k=k⋆

= we⋆ QT (re⋆− ξ)

QT
(
re⋆− σH(re⋆− ρH)

) exp
[(
σH(re⋆− ρH)− ξ

)
a
]
, (A.43a)

be⋆(a) ≡
be(t, s)

exp[ξt]

∣
∣
∣
∣
k=k⋆

= we⋆Qa
(
re⋆− σH(re⋆− ρH)

)
exp[(re⋆− ξ)a]

×

[

Qa(r
e⋆− ξ)

Qa
(
re⋆− σH(re⋆− ρH)

) −
QT (re⋆− ξ)

QT
(
re⋆− σH(re⋆− ρH)

)

]

,

(A.43b)

where re⋆ = re(t) and we⋆ = we(t)/ exp[ξt], both evaluated at the steady state. Following the

aggregation rule (9), we derive for aggregate steady state consumption and wealth:

ce⋆ = we⋆QT (re⋆ − ξ)

QT (ν)

QT
(
ν + ξ − σH(re⋆ − ρH)

)

QT
(
re⋆ − σH(re⋆ − ρH)

) , (A.44a)

be⋆ =
we⋆

re⋆ − ξ

[
QT (ξ + ν − re⋆)

QT (ν)
− 1

]

−
we⋆

re⋆ − σH(re⋆ − ρH)

×
QT (re⋆ − ξ)

QT (ν)

QT (ξ + ν − re⋆)−QT
(
ξ + ν − σH(re⋆ − ρH)

)

QT
(
re⋆ − σH(re⋆ − ρH)

) .

(A.44b)

Inserting equation (A.44a) into equation (A.43a), we obtain the following intratemporal distri-

bution of consumption

ce⋆(a) = ce⋆
QT (ν)

QT (ν + ξ − σH(re⋆ − ρH))
exp

[(
σH(re⋆ − ρH)− ξ

)
a
]

. (A.45)

By virtue of equation (31), however, the steady state intertemporal distribution of consumption

in the social optimum yields:

c⋆(a) = c⋆
QT (ν)

QT (ν − σH(ρS − ρH))
exp

[(
σH(ρS − ρH)

)
a
]

. (A.46)

Aggregate equivalence requires that ce⋆ = c⋆. Distributional equivalence at a point in time

requires moreover that equation (A.45) and equation (A.46) coincide. Together these conditions

imply that σH(re⋆ − ρH) − ξ = σH(ρS − ρH) ⇔ re⋆ = ρS + ξ
σH

. Thus, by equation (A.37), it

must be re⋆ = r⋆ and therefore τ⋆r = 0. �

A.10 Characteristics of the functions characterizing the steady state capital stock

Lemma 1

The function QT (r) defined in (12) satisfies:

(i) QT (r) > 0 for all r ∈ R,
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(ii) Q′T (r) < 0 for all r ∈ R.

The function

q(r) ≡
Q′T (r)

QT (r)
=

T

exp(rT )− 1
−

1

r
, (A.47)

satisfies

(iii) q(r) < 0 for all r ∈ R,

(iv) limr→∞ q(r) = 0 and limr→−∞ q(r) = −T ,

(v) q′(r) = q′(−r) > 0 for all r ∈ R,

(vi) q′(r) > z2q′(zr) for all r ∈ R, z ∈ (0, 1),

(vii) y2q′(yr) > z2q′(zr) for all r ∈ R, y > z ≥ 1,

(viii) q′′(r) < 0 for all r ∈ R++.

Proof: (i) Obviously, QT (r) > 0 for all r 6= 0. In addition, limr→0QT (r) = T > 0.

(ii) We obtain

Q′
T
(r) = −

1− exp[−rT ](1 + rT )

r2
.

For all r 6= 0:

Q′T (r) < 0 ⇔ exp[−rT ](1 + rT ) < 1 ⇔ 1 + rT < exp[rT ] .

The last inequality holds as x+1 < exp[x] for all x ∈ R. In addition, limr→0Q
′
T (r) = −T

2

2 < 0.

(iii) Follows directly from items (i) and (ii).

(iv) Follows directly from the definition (A.47).

(v) We obtain:

q′(r) = −
1

r2
−
T 2 exp[−rT ]

(1− exp[−rT ])2
=

1

r2
−

T 2

2(cosh[rT ]− 1)
.

For all r 6= 0:

q′(r) > 0 ⇔ 2(cosh[rT ]− 1) > r2T 2 ⇔ cosh[rT ] > 1 +
r2T 2

2
.

The last inequality holds as cosh[x] > 1 + x
2

2 for all x ∈ R. In addition, limr→0 q
′(r) = T 2

12 > 0.

(vi) The statement holds if and only if:

q′(r)− z2q′(zr) =
z2T 2

2(cosh[zrT ]− 1)
−

T 2

2(cosh[rT ]− 1)
> 0

⇔ z2(cosh[rT ]− 1) > cosh[zrT ]− 1 .
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To see that the last inequality holds, we employ the infinite series expansion of cosh[x]:

z2(cosh[x]− 1)− (cosh[zx]− 1) = z2
(
∞∑

n=0

x2n

(2n)!
− 1

)

−

(
∞∑

n=0

(zx)2n

(2n)!
− 1

)

= z2
∞∑

n=1

x2n

(2n)!
−
∞∑

n=1

(zx)2n

(2n)!
=
∞∑

n=1

x2n

(2n)!

(

z2 − z2n
)

> 0 .

The inequality holds, as the first summand is zero and all other terms are strictly positive for

all z ∈ (0, 1). (vii) The statement holds if and only if:

y2q′(yr)− z2q′(zr) =
z2T 2

2(cosh[zrT ]− 1)
−

y2T 2

2(cosh[yrT ]− 1)
> 0

⇔ z2(cosh[yrT ]− 1) > y2 cosh[zrT ]− 1 .

Employing the infinite series expansion of cosh[x], we obtain

z2(cosh[yx]− 1)− y2(cosh[zx] − 1) = z2
(
∞∑

n=0

(yx)2n

(2n)!
− 1

)

− y2
(
∞∑

n=0

x2n

(2n)!
− 1

)

= z2
∞∑

n=1

(yx)2n

(2n)!
− y2

∞∑

n=1

(yx)2n

(2n)!
=
∞∑

n=1

x2n

(2n)!
z2y2

(

y2(n−1) − z2(n−1)
)

> 0 .

The inequality holds, as the first summand is zero and all other terms are strictly positive for

all y > z ≥ 1.

(viii) We obtain:

q′′(r) = −
2

r3
+

2T 3 sinh[rT ]

(2 cosh[rT ]− 2)2
= −2T 3

(
1

(rT )3
+

sinh[rT ]

(2 cosh[rT ]− 2)2

)

Then, the statement holds if and only if (cosh[x]− 2)2 > x3 sinh[x]. To see this, we employ the

infinite series expansion of cosh[x] and sinh[x]

(

2
∞∑

n=0

x2n

(2n)!
− 2

)2

− x3
∞∑

n=0

x2n+1

(2n+ 1)!
=

(

2
∞∑

n=1

x2n

(2n)!

)2

−
∞∑

n=0

x2n+4

(2n + 1)!

= 4

(
∞∑

n=1

x2n

(2n)!

)2

−
∞∑

n=0

x2n+4

(2n + 1)!

Both series exhibit all even powers of x starting with x4:

x4
(

4

2!2!
− 1

)

+ x6
(

2 · 4

2!4!
−

1

3!

)

+ x8
(

2 · 4

2!6!
+

4

4!4!
−

1

5!

)

+ · · · ≥ 0 .

The inequality holds as the first term is zero and all other terms are strictly positive for all

x ∈ R++. �
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Lemma 2

For all ξ, ν ∈ R++ the function J defined in (A.2) satisfies

(i) J(r) > 0.

For all ξ, ν ∈ R++ and σH ∈ (0, 1] the function J satisfies

(ii) d
dr

(
J ′(r)
J(r)

)

> 0 for all r ≥ ξ,

(iii) limr→∞
J ′(r)
J(r) = σH T .

For all ξ, ν ∈ R++ and σH > 1 the function J satisfies

(iv) d
dr

(
J ′(r)
J(r)

)

> 0 for all r ≥ ν + ξ and ρH < σ
H−1
σH

(ν + ξ),

(v) limr→∞
J ′(r)
J(r) = T .

Proof: (i) Follows immediately from QT (r) > 0 for all r ∈ R as shown in Lemma 1.

(ii) Using the definition (A.47), we obtain

J ′(r)

J(r)
= q(r− ξ)−σHq

(

ν + ξ − σH
(

r − ρH
))

−
(

1− σH
)

q
(

r − σH
(

r − ρH
))

, (A.48a)

and

M(r) ≡
d

dr

(
J ′(r)

J(r)

)

=
J ′′(r)

J(r)
−

(
J ′(r)

J(r)

)2

(A.48b)

= q′(r − ξ) +
(

σH
)2
q′
(

ν + ξ − σH
(

r − ρH
))

−
(

1− σH
)2
q′
(

r − σH
(

r − ρH
))

.

For σH ∈ (0, 1] set x = r − ξ and restrict attention to all x ≥ 0

M(x) = q′(x) +
(

σH
)2
q′
(

ν +
(

1− σH
)

ξ − σH
(

x− ρH
))

−
(

1− σH
)2
q′
((

1− σH
)

x+
(

1− σH
)

ξ + σHρH
)

> q′(x)−
(

1− σH
)2
q′
((

1− σH
)

x+
(

1− σH
)

ξ + σHρH
)

≥ q′(x)−
(

1− σH
)2
q′
((

1− σH
)

x
)

≥ 0 .

The first inequality holds due to part (v), the second inequality due to part (viii) and the last

inequality due to part (vi) of Lemma 1.

(iii) Follows directly from equation (A.48a) and part (iv) of Lemma 1.

(iv) For σH > 1 and ρH < σ
H−1
σH

(ν + ξ) consider only r ≥ ν + ξ

M(r) = q′(r − ξ) +
(

σH
)2
q′
(

σHr − σHρH − (ν + ξ)
)

−
(

σH − 1
)2
q′
((

σH − 1
)

r + σHr
)

>
(

σH
)2
q′
(

σHr − σHρH − (ν + ξ)
)

−
(

σH − 1
)2
q′
((

σH − 1
)

r + σHr
)

>
(

σH
)2
q′
(

σHr
)

−
(

σH − 1
)2
q′
((

σH − 1
)

r
)

≥ 0
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The first inequality holds due to part (v), the second inequality due to part (viii) and the last

inequality due to part (vii) of Lemma 1.

(v) Follows directly from equation (A.48a) and part (iv) of Lemma 1. �
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