Parallel machine match-up scheduling with manufacturing cost considerations
Skip to main content
eScholarship
Open Access Publications from the University of California

UC Berkeley

UC Berkeley Previously Published Works bannerUC Berkeley

Parallel machine match-up scheduling with manufacturing cost considerations

Abstract

Many scheduling problems in practice involve rescheduling of disrupted schedules. In this study, we show that in contrast to fixed processing times, if we have the flexibility to control the processing times of the jobs, we can generate alternative reactive schedules considering the manufacturing cost implications in response to disruptions. We consider a non-identical parallel machining environment where processing times of the jobs are compressible at a certain manufacturing cost, which is a convex function of the compression on the processing time. In rescheduling it is highly desirable to catch up the original schedule as soon as possible by reassigning the jobs to the machines and compressing their processing times. On the other hand, one must also keep the manufacturing cost due to compression of the jobs low. Thus, one is faced with a tradeoff between match-up time and manufacturing cost criteria. We introduce alternative match-up scheduling problems for finding schedules on the efficient frontier of this time/cost tradeoff. We employ the recent advances in conic mixed-integer programming to model these problems effectively. We further provide a fast heuristic algorithm driven by dual prices of convex subproblems for generating approximate efficient schedules.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View