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EPIGRAPH

“Only two things are infinite: the universe and human stupidity; and I’m not

sure about the universe.”

—Albert Einstein
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2004-2005 Junior Engineer, Ponté Solutions Armenia, Physical Design
Department (Yerevan, Armenia)
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ABSTRACT OF THE DISSERTATION

Implications about the Large Scale Properties of the Universe from
the Cosmic Microwave Background

by

Grigor Aslanyan

Doctor of Philosophy in Physics

University of California, San Diego, 2012

Professor Aneesh Manohar, Chair

We analyze the large scale properties of the universe using the seven-year

WMAP temperature data. We investigate the global topology of the universe, as

well as semiclassical fluctuations of primordial perturbations on large scales.

We study the possibility that the universe is flat, but with one or more

space directions compactified. We constrain the size of the compact dimension

to be L/L0 ≥ 1.27, 0.97, 0.57 at 95% confidence for the case of three, two and

one compactified dimension, respectively, where L0 = 14.4Gpc is the distance to

the last scattering surface. We find a statistically significant signal for a compact

universe, and the best-fit spacetime is a universe with two compact directions of

size L/L0 = 1.9, with the non-compact direction pointing in a direction close to
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the velocity of the Local Group.

We consider two possible semiclassical modifications of the primordial power

spectrum. For the amplitude of a fluctuation in one Fourier mode we find the 95%

bound of |a0| ≤ 6.45× 10−4. For a semiclassical gaussian fluctuation in space the

95% confidence region for the amplitude is −5.16× 10−2 ≤ a0 ≤ 5.07× 10−2.

We show that the scenarios we consider are not responsible for the previ-

ously suggested possible special direction in space, the so-called “axis of evil”.
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Chapter 1

Introduction

Questions about the origins and the future of the universe have interested

people since ancient times. However, obtaining scientific insights into these ques-

tions was practically impossible until very recently because there was no exper-

imental data to support or reject any of the multiple conjectures. Unlike other

fields in physics (and other sciences) where experiments can be done (multiple

times if needed) to collect data, the only source of data for cosmology is the single

universe we live in. In other words, there is only one sample which we cannot even

change, all we can do is observe it in its current state. The only way of obtaining

information about the past of the universe is to look at the objects very far away

from us. The light from these objects takes a finite amount of time to reach us, so

we see them as they appeared some time ago.

The simple fact that the universe is expanding was discovered by Edwin

Hubble less than hundred years ago. This discovery was very significant since it

proved that the universe is not static, it was different in the past and will be differ-

ent in the future. However, it did not give much information about the history of

the universe. The major source of data about the past of the universe was discov-

ered accidentally by Wilson and Penzias in 1964. They discovered electromagnetic

radiation in the microwave region coming uniformly from all the directions. It was

soon understood that this radiation was a relic of the evolution of the universe

in the earliest stages, traveling freely since billions of years ago. The discovery

of this radiation, called the cosmic microwave background (CMB) radiation,

1
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was a fundamental stepping stone in the development of cosmology, this is when

the theory met the experiment, turning the speculations into real science. The

importance of the CMB cannot be overestimated, it is literally a snapshot of the

universe shortly after its “creation”. The CMB has been measured with ever in-

creasing accuracy since then, and new experiments are still being actively designed

and implemented.

Firstly, it was noticed that the CMB was very uniform and it followed

blackbody radiation spectrum with very high accuracy. This fact was the most

important confirmation of the big bang theory and the thermal evolution of the

universe. It also confirmed the so-called cosmological principle - the fact that

the universe (or at least the observable part of it) is homogeneous and isotropic.

However, anisotropies of the order of 10−5 were predicted and soon confirmed by

the measurements of the COBE satellite launched in 1989. This is what made the

CMB one of the richest sources of experimental data for cosmology. The WMAP

satellite was then launched in 2001 in order to obtain precise measurements of the

temperature anisotropies of the CMB. The data obtained from WMAP played an

invaluable role in establishing the standard model of cosmology, also called the

Λ-CDM model.1

The Λ-CDM model is very successful in describing the evolution of the

universe from at least the epoch of the synthesis of light elements until now. Ob-

servational data has strongly confirmed the predictions of this model. However,

there are a few problems that this model fails to explain. The main problems are

the so-called horizon and flatness problems. Points on the last scattering sur-

face (the surface from which the currently observed CMB was emitted) that are

more than about 1◦ apart were not (and had never been) in causal contact at the

time the CMB was emitted according to the Λ-CDM model. There is no reason

then for the CMB to be so uniform across all the sky. This is the horizon problem.

There is also no reason why the curvature of the space should be so close to 0, as

observed. This is referred to as the flatness problem. The most popular solution

to these problems is provided by the concept of inflation - a rapid expansion of

1Λ refers to the dark energy, and CDM to the cold dark matter. These, according to the
model, are currently the dominant constituents of the universe.
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the universe very shortly after the “creation”.2 This expansion makes sure that

the observable part of the universe was much smaller and in causal contact before

inflation started (solution of the horizon problem). Also, the curvature of the space

is rapidly driven towards 0 during inflation (solution of the flatness problem). As

a bonus, inflationary theories provide a natural way for the generation of the small

anisotropies of the CMB. These are seeded by the quantum fluctuations of the

field(s) driving inflation. The Λ-CDM model, the problems and their solution by

introducing inflation are discussed in more detail in Appendix A.

Although inflation is a very successful addition to the standard cosmological

model, it comes with its own problems. We still do not know the correct model of

inflation (even the fact that inflation happened has not been confirmed yet), and

we know next to nothing about pre-inflationary physics. The state of the universe

at the time when inflation started is completely unknown. This information could

open a window towards Planck scale physics and bring us closer to understanding

how the space-time emerged from the quantum foam. The current experimentally

verified fundamental physical theories cannot tell us anything about the global

properties of space-time. Therefore, obtaining information about the global struc-

ture of the universe from the experimental data is crucial in understanding the

fundamental physical laws at Planck scale.

There have been multiple studies in the literature claiming possible devi-

ations from the isotropy of the universe. Some authors suggest that there is a

statistically significant signal for a special direction in space, called the “axis of

evil”. Finite topology of space is one of the ways of breaking the isotropy, and

previous studies have shown indications that the experimental data fits the theory

with finite topology better than the infinite one. Another possibility is having

non-isotropic primordial perturbations generated during inflation. Perhaps infla-

tion started in a non-isotropic state. Detailed studies of these possibilities are in

order.

Our goal in this work is to study the properties of the universe on large

2The predicted energy density of the universe at the epoch of inflation is close to the GUT
scale. Because of this there is no way to check the theory in high energy physics experiments in
the laboratory.
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scales, and to use the experimental data to put constraints on some of these prop-

erties. We study both of the possible scenarios of isotropy breaking mentioned

above, how their effects are imprinted on the CMB anisotropies, and how well the

observational data fits these theoretical scenarios. We use the most recent seven

year temperature data from WMAP for our analysis.

This work is organized as follows. In chapter 2 we consider three finite flat

topologies of the universe and their effect on the CMB. We put bounds on the

sizes of these topologies using the experimental data. In chapter 3 we analyze two

possible modifications of the primordial power spectrum. Again, we obtain limits

on these modifications from the experimental data. We summarize our results in

chapter 4.



Chapter 2

The Topology and Size of the

Universe

2.1 Introduction

General relativity is a local theory and does not predict or constrain the

global properties of the spacetime manifold describing our universe, which have

to be constrained through observations. Various models for the topology of the

universe (for the classification of different possible topologies see, e.g. [2]) have

been extensively studied recently and compared to the experimental data. The

two most important ones are the Poincaré dodecahedral space and the 3-torus T3;

these models are in best agreement with the experimental data. The Poincaré do-

decahedral space arises by slicing the 3-sphere S3 and thus has positive curvature,

while the 3-torus is obtained by slicing infinite Euclidean space R
3 and there-

fore is flat. Theoretical arguments about quantum creation of the universe favor

the flat case. Based on the Wheeler-DeWitt equation, Linde has argued [3] that

compact flat universes are much easier to create than other models, and can nat-

urally provide initial conditions for the onset of inflation. Furthermore, Roukema

constructed a measure on the set of compact manifolds and showed that non-flat

models almost never occur while flat models occur almost certainly [4] (see also [5]

for a discussion of the Poincaré dodecahedral space versus the 3-torus). In this

5
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chapter we study the case of a flat universe with non-trivial global topology, i.e.

with one or more directions compactified. Details on the Poincaré dodecahedral

space and experimental data analysis are given in, e.g. [6, 7, 8, 9].

We analyze three different flat topologies, M0 = T
3, M1 = T

2 × R
1, and

M2 = S1×R
2, where the subscript denotes the number of non-compact directions.

We will generically refer to all three cases as a torus. Usual flat space is M∞ =

R
3. Note that M0,1,2 are all flat, and with vanishing curvature. Locally, they

are indistinguishable from infinite flat space R
3. Globally, of course, there are

differences, since signals can propagate around the universe and come back to the

starting point. We study the case where the compact directions are of cosmological

size, i.e. of order several Gpc.

The 3-torus T3 can be obtained by identifying the opposite edges of a par-

allelepiped. We only consider the simplest case of a rectangular parallelepiped

with equal side lengths L. This has the highest number of symmetries which helps

reduce the computational time. Moreover, it has been argued in [10] that only in

well-proportioned spaces is the quadrupole of the CMB temperature-temperature

correlation function suppressed compared to the infinite universe. The surprisingly

low observed quadrupole is one of the motivations to invoke a compact topology.

For our case of the 3-torus, well-proportioned means that all three sides should

be approximately equal. The topologies of the spaces T
2 × R

1 and S1 × R
2 are

obtained by compactifying only 2 or 1 dimension respectively. Again, following the

argument of [10] and for the sake of simplicity, we consider only the case where the

compactified dimensions of T2 × R
1 have the same size. The size of the compact

directions will be denoted by L. As L → ∞ all three manifolds reduce to infinite

flat space R
3.

Different approaches have been proposed for extracting information about

the topology of the universe from the experimental data, the two most important

ones being the circles-in-the-sky test and the analysis of the CMB power spectrum.

The basic idea of the circles-in-the sky test is that if the global structure of the

space is smaller than the distance to the LSS (last scattering surface), then the LSS

will self-intersect in circles, producing correlations between circles with different
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centers. The detection of such circles can reveal the global properties of space (for

detailed description of the method see, e.g. [11, 12, 13]). The main disadvantage

of the method is that it cannot be used if the size of the universe is bigger than the

observable part of it (the distance to LSS). The one-year WMAP data has been

analyzed with this method for signatures of non-trivial spatial topology [14], ruling

out the possibility of compact spaces with a length-scale smaller than 24Gpc. This

limit has been extended by about 10% by the authors of [15] who have also ruled out

the possibility of Poincaré dodecahedral space. The authors of [16] have analyzed

the most recent seven-year WMAP data with this method, putting a lower bound

of about 27.9Gpc on the size of the fundamental domain for a flat universe.

The low-l (i.e. large scale) portion of CMB correlations is sensitive to the

topology of space, which gives rise to another method for detecting the topology.

The torus preserves the homogeneity of infinite space but breaks rotational in-

variance. This implies that the power spectrum of CMB temperature-temperature

correlations does not contain all the possible information since the off-diagonal el-

ements of the covariance matrix in the spherical harmonics expansion are non-zero

in general, while the diagonal elements with equal l and different m values are

not all equal to each other (see section 2.3 for more details). Moreover, in [17] it

has been argued that the off-diagonal elements contain more information than the

diagonal ones if the side length of the torus is less than twice the distance to the

last scattering surface. Therefore, to gain all the possible information from the

correlations of CMB anisotropies, one has to consider the full covariance matrix

rather than just the power spectrum.

The CMB correlation functions have been previously used to analyze COBE [18,

19], one-year WMAP [17, 20] and three-year WMAP [21] data. The lower bound

on the side length L of T3 obtained from COBE data [18] is L > 4.32h−1Gpc at

95% confidence, and L > 5.88h−1Gpc at 68% confidence. For T2×R
1 and S1×R

2

the lower bound obtained from COBE [19] is L > 3.0h−1Gpc at 95% confidence.

The authors of [17] have obtained higher bounds for T3; L > 1.2L0 at 95% confi-

dence and L > 2.1L0 at 68% confidence.1 They have also found that the maximum

1We will give lengths in terms of L0 = 14.4Gpc, the distance to the last scattering surface.
The Hubble length is H−1

0
= 2.998/h0 = 4.266 (0.703/h0)Gpc.
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likelihood occurs for L = 2.1L0 (29Gpc). Several models of tori with different side

lengths have been considered in [20] with the conclusions L > 19.3Gpc for T3 and

L > 14.4Gpc for S1 ×R
2. The main result of [21] is that the 3-torus with volume

≈ 5 × 103Gpc3 (which corresponds to side length of 17Gpc) is well-compatible

with the WMAP three-year data. The WMAP seven-year data has been analyzed

for detecting signatures of the so-called half-turn space [22] (the only difference

of the half-turn space from the 3-torus is that one of the edges is turned by 180◦

before identifying with the opposite edge) where the case of the 3-torus is also

considered. Out of these works, only in [17] and [20] has the full covariance matrix

been analyzed. For some earlier results on these topologies see also [23, 24, 25]

and references therein.

We analyze the most recent seven-year WMAP data for signatures of the

three topologies of flat space mentioned above using the full covariance matrix

of temperature-temperature fluctuations. By using the symmetry groups of the

spaces we construct efficient algorithms for the theoretical computation of the

covariance matrix and the likelihood function using that matrix. These algorithms

can be used again as soon as the high precision data from the Planck satellite [26]

are released. The computation of the covariance matrix is done using a modified

version of the CAMB program [27], as discussed in Sec. 2.3, and that of χ2 and

the likelihood using the available WMAP code [28, 29, 30]. We have used only

the TT correlations in our analysis. Including TE, EE, and BB correlations is

straightforward, but would quadruple the computer time needed, without much

improvement in the results since these other correlations have much larger errors.

There have been speculations in the literature about the detection of a

special direction in the CMB map in which the first few multipoles of temperature-

temperature correlations seem to be aligned [31, 32, 33]. This is referred to as the

“axis of evil” and is given by b = 60◦, l = −100◦ in galactic coordinates. The

topologies that we consider are not rotationally invariant, in particular T
2 × R

1,

and S1 ×R
2 have one special direction (the infinite one in T

2 × R
1, and the finite

one in S1 ×R
2), so we analyze the case where this special direction coincides with

the axis of evil, to see if the axis of evil can be explained by one of these topologies.
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The authors of [34] have analyzed the topology S1 × R
2 with the conclusion that

it is not the explanation for the multipole alignment.

The chapter is organized as follows. In section 2.2 we present a slight

generalization of Linde’s argument for the quantum creation of compact universes.

We describe the calculation of the covariance matrix and the likelihood in sections

2.3 and 2.4 respectively. We present our numerical results in section 2.5, and

discuss the goodness of fit, and maximum likelihood confidence intervals. We have

done several checks of our analysis, which are given in section 2.6. The possibility

that our results are generated by a random fluctuation are analyzed in section

2.6.1, where we discuss Monte-Carlo skies. The possibility of spurious effects due

to a small residual CMB dipole in the data is investigated in section 2.6.2. We

summarize in section 2.7. Unless otherwise stated, everywhere in this chapter the

side length of the torus is given in units of the distance to the last scattering surface

L0.

2.2 Quantum Creation of Compact Universes

Consider the standard Einstein-Hilbert action of gravity minimally coupled

to matter. Here we will be only interested in “quantizing” gravity, so for the matter

portion we will just consider energy density V without worrying about where it

comes from. Then the action takes the form (~ = c = 1, Mpl ≡ (8πG)−1/2 = 1)

S =
1

2

∫

d4x
√
−g (R− 2V ) . (2.1)

Following the standard procedure to derive the Wheeler-DeWitt equation we use

the ADM form of the spacetime metric [35]

ds2 = −N2dt2 + hij(dx
i +N idt)(dxj +N jdt) . (2.2)

The action can be rewritten in the form

S =

∫

d4x L , (2.3)

with

L =

√
hN

2

(

3R +
1

N2
(EijE

ij − E2)− 2NV

)

(2.4)
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where 3R is the 3-curvature of spatial slices,

Eij =
1

2
(ḣij −∇iNj −∇jNi) ,

E = Ei
i . (2.5)

There are numerous possibilities for the spacetime manifold and it may be

described by infinitely many parameters, so to be able to proceed we consider

manifolds with finite homogeneous spatial slices which can be characterized by

one length scale a(t). In other words, we assume that locally the manifold is

characterized by a Friedmann-Robertson-Walker metric while globally it can have

any finite topology that is compatible with the metric. So by a suitable choice of

coordinates we get in this case

N = 1, Ni = 0 , (2.6)

hij = a2(t)kij , (2.7)

where the tensor kij is constant (it only depends on the choice of the manifold but

does not depend on any of the coordinates). Then

EijE
ij − E2 = −6

(

ȧ

a

)2

. (2.8)

Since we assumed a homogeneous spatial submanifold characterized by sin-

gle length scale a, by dimensional analysis the volume must be proportional to a3

and the curvature to a−2. Namely,
∫

d3x
√
h = αa3 , (2.9)

3R =
β

a2
, (2.10)

where α and β are dimensionless constants that depend only on the choice of the

manifold. The Lagrangian then takes the form

L =
α

2

(

aβ − 6aȧ2 − 2a3V
)

. (2.11)

Now we treat a as the dynamical variable describing the geometry. The

canonical momentum is then

pa =
∂L

∂ȧ
= −6αaȧ , (2.12)
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Figure 2.1: Plot of the potential U(a) for a positively curved space (β > 0). The
axes are in arbitrary units.

and the Hamiltonian becomes

H = paȧ− L =
1

12αa

(

−p2a − 6α2βa2 + 12α2a4V
)

. (2.13)

Finally, we canonically quantize, replacing pa by the operator −i(d/da) to
get for the Hamiltonian

H =
1

12αa

(

d2

da2
− 6α2βa2 + 12α2a4V

)

. (2.14)

Consider now the quantum creation of the universe with zero energy. Then

the wavefunction of the universe Ψ(a) satisfies the analog of the Schrödinger equa-

tion with Hamiltonian Eq. (2.14), which is called the Wheeler-DeWitt equation.

In this case it takes the form
(

d2

da2
− 6α2βa2 + 12α2a4V

)

Ψ(a) = 0 . (2.15)

The effective potential energy is

U(a) = 6α2βa2 − 12α2a4V , (2.16)
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and is shown in Fig. 2.1 which decreases to −∞ for large a since the second term

dominates. However, for small a the first term dominates, so for β > 0 there is

a potential barrier from a = 0 to
√

β/2V , i.e. the universe has to first undergo

tunneling before the expansion can start. This is the reason why the probability

of quantum creation of positively curved spaces, which have β > 0, is thought to

be highly suppressed compared to flat and negatively curved spaces. The action

for tunneling through the barrier is S = a30
√
V /3, where a0 =

√

β/(2V ) is the size

of the created universe. The tunneling probability is ∝ exp(−S), and is greater

for smaller universes; S → 0, a0 → 0 as V → ∞. For a flat universe, β = 0, and

the barrier vanishes.

2.3 Covariance Matrix Calculation

Now we turn to the calculation of correlations between CMB temperature

anisotropies in the flat topologies T3, T2 × R
1, and S1 ×R

2. Locally they all look

exactly like the infinite flat R
3 so Einstein’s equations and therefore the Fried-

mann equations are unchanged from the infinite case. The calculation for the

infinite case is described in standard textbooks (for a detailed derivation see [36]),

so let us briefly summarize that calculation and then focus on the differences be-

tween the infinite and finite universes. Essentially, one has to take the Einstein’s

equations that describe the interactions between gravity and all of matter and

Boltzmann’s equations for interactions between various types of matter (most im-

portantly, electrons and photons) and solve for the distribution of photons today

given initial conditions set by inflation. Since the temperature anisotropies in the

CMB are about five orders of magnitude smaller than the background, the calcu-

lation is done using perturbation theory around the homogeneous background and

keeping only first order terms. Then all of the differential equations become linear

and can be treated easily in Fourier space. This is where there is a key difference:

in an infinite universe the spectrum of the Fourier modes k is continuous, while

for compactified dimensions the spectrum becomes discrete. For a torus with side
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lengths L1, L2, and L3 we have k = (k1, k2, k3),

k1 =
2π

L1

n1, k2 =
2π

L2

n2, k3 =
2π

L3

n3 , (2.17)

where n1, n2, n3 are integers (the torus is essentially a box with periodic boundary

conditions). So all of the equations in Fourier space remain unchanged, all we have

to worry about is integrations over k which have to be replaced by sums

∫

d3k

(2π)3
→ 1

L1L2L3

∑

k

, (2.18)

over the discrete k values in Eq. (2.17). The set of points Eq. (2.17) will be referred

to as the k grid.

The three cases studied here can be characterized by different values for Li.

The three-torus T
3 has L1 = L2 = L3 = L, T2 × R

1 has L1 = L2 = L, L3 = ∞,

and finally S1 × R
2 has L1 = L2 = ∞, L3 = L. All three cases can be treated in

a unified manner by using the integral notation, with the understanding that the

integral is to be replaced by a summation if the corresponding Li is finite.

The first set of summations over k arises when constructing collision terms

in Boltzmann’s equations. However, we will not worry about these integrals for

the following reason. The Boltzmann’s equations are important only before the

decoupling epoch, which corresponds to a redshift of about z ∼ 1100. The co-

moving horizon at that time was about 50 times smaller than currently, and the

current bounds on the size of the torus are of the order of the size of horizon, so at

the epoch of decoupling, the size of the torus was at least about 50 times bigger

than the causally connected part. As we will see later in section 2.5, the sums

rapidly converge to the corresponding integrals when the topology scale is around

3 times the radius of horizon, which implies that the effects of finiteness can be

safely ignored for the epoch of decoupling (and before), and k can be treated as a

continuous variable. All the equations are solved in Fourier space, exactly as for

the infinite case.

There is a summation over k when the final answer for the temperature

fluctuations has to be converted from Fourier space back to real space. So let us

pick up from that point in the calculation. The temperature anisotropies Θ(n̂,x)
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in direction n̂ at a given point x (chosen to be our location x0) are decomposed

into spherical harmonics

Θ(n̂,x) =
∑

lm

alm(x)Ylm(n̂) , (2.19)

where the position space alm coefficients are given in terms of the Fourier space

temperature fluctuations Θ(n̂,k) by

alm(x) =

∫

d3k

(2π)3
eik·x

∫

dΩ Y ∗
lm(n̂)Θ(n̂,k) . (2.20)

The observed CMB fluctuations are given by the correlations between the different

alm’s,

Mlml′m′ ≡ 〈alm(x0)a
∗
l′m′(x0)〉 . (2.21)

The correlations between temperature anisotropies in k-space are related to

the initial power spectrum of gauge invariant curvature perturbations ζ on uniform

density hypersurfaces

〈Θ(k, n̂)Θ∗(k′, n̂′)〉 = (2π)3δ3(k− k′)P (k)
Θ(k,k · n̂)

ζ(k)

Θ∗(k,k · n̂′)

ζ∗(k)
, (2.22)

where the curvature perturbations power spectrum is defined by [36]

〈ζ(k)ζ∗(k′)〉 ≡ (2π)3δ3(k− k′)P (k) . (2.23)

The ratios Θ/ζ on the right hand side of Eq. (2.22) do not depend on the

initial conditions since the equations are linear. All of the information about initial

conditions is now absorbed into P (k). From Eq. (2.20), (2.21), and (2.22) we get

Mlml′m′ =

∫

d3k

(2π)3
P (k)

∫

dΩ Y ∗
lm(n̂)

Θ(k,k · n̂)
ζ(k)

∫

dΩ′ Yl′m′(n̂′)
Θ∗(k,k · n̂′)

ζ∗(k)
.

(2.24)

Expanding Θ(k,k · n̂) into Legendre polynomials

Θ(k,k · n̂) =
∑

l

(−i)l(2l + 1)Pl(k̂ · n̂)Θl(k) , (2.25)

and using the identity
∫

dΩ Pl′(k̂ · n̂)Ylm(n̂) =
4π

2l + 1
δll′Ylm(k̂) , (2.26)
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we finally get

Mlml′m′ = (4π)2(−i)lil′
∫

d3k

(2π)3
P (k)

Θl(k)

ζ(k)

Θ∗
l′(k)

ζ∗(k)
Y ∗
lm(k̂)Yl′m′(k̂) . (2.27)

The standard result for an infinite universe is a special case of the above

analysis. In the infinite case, the angular part of the integral over k in Eq. (2.27)

can be done analytically giving

Mlml′m′ = δll′δmm′Cl , (2.28)

with

Cl =
2

π

∫

dk k2 P (k)

∣

∣

∣

∣

Θl(k)

ζ(k)

∣

∣

∣

∣

2

. (2.29)

The derivation remains the same in the finite case except that the k integral must

be replaced by the sum Eq. (2.18), so instead of Eq. (2.27) we get

Mlml′m′ = (4π)2(−i)lil′ 1

L1L2L3

∑

k

P (k)
Θl(k)

ζ(k)

Θ∗
l′(k)

ζ∗(k)
Y ∗
lm(k̂)Yl′m′(k̂) .(2.30)

Now we have to compute a three-dimensional sum Eq. (2.30) instead of a one-

dimensional integral Eq. (2.29) which requires much more computational time.

Also, we have to calculate all matrix elements with different l, m, l′, m′ whereas

in the infinite case all l 6= l′ or m 6= m′ (non-diagonal) elements vanish, while the

diagonal ones do not depend onm. The reason for this is clear. In the infinite case,

the problem has full rotational invariance, so that angular momentum is conserved.

In the cases we consider, rotational invariance is broken. Even though rotational

invariance is broken, there is still a large residual discrete symmetry group which

can be used to simplify the problem, and reduce the computational time. We will

refer to this residual symmetry group as G. For the T
2 × R

1 and S1 × R
2 cases,

G is the symmetry group of a rectangular parallelepiped with two sides equal, the

tetragonal group D4h with 16 elements, whereas for T3, G is the symmetry group

of the cube, the octahedral group Oh with 24 elements.

The angular part in the sum in Eq. (2.30) can be separated (this has been

suggested earlier in [17])

Mlml′m′ =
(4π)2(−i)lil′

L1L2L3

∑

k

P (k)
Θl(k)

ζ(k)

Θ∗
l′(k)

ζ∗(k)

∑

|k|=k

Y ∗
lm(k̂)Yl′m′(k̂) , (2.31)
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where the first sum is over all the allowed spheres in the k grid while the angular

sum is over a fixed sphere and depends only on the choice of that sphere.

We can simplify the computation using the discrete symmetry group G of

the manifolds M0,1,2. Consider a fixed sphere of radius k. If the point (θ, φ) of the

sphere is on the grid, then so are (θ, φ + π/2), (θ, φ + π), and (θ, φ + 3π/2). The

angular sum over these four points is proportional to

ei(m
′−m)φ

(

1 + ei(m
′−m)π

2 + ei(m
′−m)π + ei(m

′−m) 3π
2

)

,

which is 0 unless m′ − m is divisible by 4, in which case it becomes 4ei(m
′−m)φ.

Consider the points (θ, φ) and (−θ, φ), which both lie on the sphere. Since

Ylm(−θ, φ) = (−1)l−mYlm(θ, φ) ,

the sum over those two points is 0 unless l+ l′−m−m′ is even, but m+m′ is even

if m′ − m is divisible by 4, so the extra condition we get is that l′ − l has to be

even (this also follows from parity). The eight points (±θ, φ+ nπ/2), n = 0, 1, 2, 3

lie in the eight different octants, so the point (θ, φ) can be chosen to lie in the first

octant. To summarize, the angular sum is nonzero only if l′− l is even and m′−m

is divisible by 4, in which case it is equal to 8 times the sum over one octant. Extra

care is needed for points on the boundary of the octant to avoid double counting.

Consider the points (θ, φ) and (θ, π/2 − φ) corresponding to swapping n1

with n2. Taking into account that m′ −m is divisible by 4, we get

ei(m
′−m)φ + ei(m

′−m)(π
2
−φ) = 2 cos ((m′ −m)φ) ,

which implies that the angular sums are real. Furthermore, (−i)lil′ is also real

for even l′ − l and P (k) and Θl(k)/ζ(k) are real, so the covariance matrix ele-

ments Mlml′m′ are all real implying Mlml′m′ = Ml′m′lm. Also, since Yl,−m(θ, φ) =

(−1)mY ∗
lm(θ, φ) and m

′ −m is divisible by 4, we get Mlml′m′ =Ml,−m,l′,−m′ .

T
3 has more symmetries which can be used to further speed up the calcula-

tion for this case. For example, the sums in Eq. (2.31) over the spherical harmonics

are the same for all L. Changing L is a rescalling of the allowed momenta by 1/L.

Thus the angular sum for |k| = k for a T
3 of size L is the same as the angular sum
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for |k| = λk for T
3 of size L/λ. Thus the angular sums can be computed once,

and then used for all values of L.

Since the calculation of Θl(k)/ζ(k) is identical to the case of infinite flat

universe, we use the well-known CAMB software [27] (based on CMBFAST [37])

for that part of the calculation. Our code is a simple modification of CAMB,

replacing the intergral over k by a discrete sum. It takes the sides of the torus

as extra input parameters and outputs not only Cl but also the complete matrix

Mlml′m′ . For large values of l, the discrete sums over k approach the continuum

result, so we only use Eq. (2.31) for l ≤ 30, and use the continuum result for l > 30.

The difference between the discrete and continuum values for Mlml′m′ is less than

0.5% for l = 30. As an example, in Fig. 2.2, we have plotted the ratio of the power

spectrum Cl for M0, M1, and M2 to that for infinite space R3, where Cl has been

defined as

Cl =
1

2l + 1

l
∑

m=−l

Mlmlm . (2.32)

The sizes chosen are those that give the best fit to data (see section 2.5). The

l = 2 power is reduced by 20% for M0, and the ratio of power spectra oscillates

and rapidly approaches unity. The two differ by less than 0.5% at l = 30 for all

three topologies.

2.4 Likelihood Calculation

The matrix Mlml′m′ computed as discussed above is compared to the exper-

imental data from the 7-year WMAP survey. Since rotational invariance is broken,

we need to vary the orientation of the torus relative to axes fixed in space, to find

the best fit. We do this by rotating the data relative to the torus in computing the

likelihood function. We specify the orientation by three Euler angles (φ, θ, ψ) in

the following way. The axes x, y, z are fixed in the coordinate frame of the CMB

data, i.e. the observed universe, and the x′, y′, z′ axes are fixed in the torus. Start

with the CMB-fixed and torus-fixed axes aligned. Rotate the torus counterclock-

wise around the z-axis by angle φ, then around the new x-axis by angle θ, then
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Figure 2.2: Plot of the ratio of Cl for M0 = T
3 with L/L0 = 1.8 (blue), M1 =

T
2 × R

1 with L/L0 = 1.9 (red), and M3 = S1 × R
2 with L/L0 = 1.9 (green), to

that for infinite space R
3.

around the new z-axis by angle ψ to get the final torus orientation. The angles

θ and φ − π/2 give the spherical polar angles of the z-axis of the torus while the

angle ψ gives the orientation of the torus around its z-axis. We can make use of the

symmetries of our topologies to speed up the calculation since various Euler angles

can give equivalent orientations of the torus. Two sets of Euler angles (φ, θ, ψ) and

(φ′, θ′, ψ′) are equivalent if ∃g ∈ G such that

R(φ, θ, ψ) = R(g)R(φ′, θ′, ψ′) (2.33)

where R(φ, θ, ψ) is the coordinate transformation rotation matrix corresponding

to (φ, θ, ψ) and R(g) is that corresponding to the discrete element g. This defines

an equivalence relation on the set of all possible Euler angles. We take a uniform

grid on all possible angles, then divide that grid into equivalence classes according

to Eq. (2.33) and take one representative from each class. We have scanned over

∼ 4000 inequivalent angles.

Different orientations of the torus were considered in the previous analysis

of first-year WMAP data for T3 [17], but they only considered a uniform grid on

the range 0 ≤ φ, θ, ψ ≤ π/2. Note that this does not cover all possible orientations
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of T3. The first two angles describe the orientation of the z-axis and by their as-

sumption on the range of φ, θ, ψ, the z-axis always lies in the first octant. However

taking into account all the symmetries of the cube there are 6 equivalent axes that

can play the role of the z-axis, the ±x, ±y, and ±z axes, while there are 8 octants.

In other words, there are possible orientations of the cube for which none of the 6

axes lies in the first octant.

After choosing a torus orientation, we calculate the likelihood in the real

space of orientations on the last scattering surface. For Np pixels the likelihood

function is given by2

L =
1

(2π)Np/2(detC)1/2
exp

(

−1

2
∆TC−1∆

)

, (2.34)

and the χ2 function by

χ2 = ∆TC−1∆ , (2.35)

where ∆i is the vector of pixels and Cij is the covariance matrix. The indices i, j

label the different pixels, which are in directions n̂i,j on the sky. The covariance

matrix Cij in the WMAP code includes the theoretical covariance matrix, the

so-called cosmic variance, as well as an additional noise contribution. We use a

modified WMAP code in which the theoretical covariance matrix for the infinite

universe has been replaced by that for one of our topologies. The WMAP noise

covariance matrix is left unchanged.

We now describe how to convert the matrix Mlml′m′ to obtain the modified

covariance matrix Cij. The temperature fluctuation measured in a pixel i is given

by [36]

Θi =

∫

dn̂ Θ(n̂)Bi(n̂) , (2.36)

where Bi is the beam pattern at the pixel i and is specific to the experiment.

Usually the beam patterns have the same shape for every pixel and are axially

symmetric around the center of the pixel, as is the case for WMAP, so if we

denote the direction to the center of the pixel by n̂i then the beam pattern can be

2Likelihood is denoted by L everywhere in this chapter, to distinguish it from the length L.



20

decomposed into spherical harmonics

Bi(n̂) =
∑

lm

BlYlm(n̂i)Y
∗
lm(n̂) . (2.37)

Using Eq. (2.19) to decompose Θ(n̂) into spherical harmonics, we get for the the-

oretical covariance matrix

Cij ≡ 〈ΘiΘj〉 =
∑

lml′m′

Mlml′m′BlBl′Ylm(n̂i)Y
∗
l′m′(n̂j) . (2.38)

In computing Cij, we have to vary the orientation of the torus relative to the sky. In

implementing the Euler angle rotation, one can compute the Mlml′m′ matrix in the

torus-fixed coordinate system, so that it remains unchanged as the Euler angles are

varied. The pixel directions ni are changed to ni → R(φ, θ, ψ)ni. Equivalently,

one can work in the CMB-fixed coordinate system, and rotate the torus, which

gives Mlml′m′ transformed by the angular momentum rotation matrices,

Mlml′m′ →
∑

n,n′

Mlnl′n′D(l)∗
nm (R)D

(l′)
n′m′(R) . (2.39)

Note that in the infinite universe case, Eq. (2.28) holds, and the result Eq. (2.38)

simplifies to

Cij =
∑

l

2l + 1

4π
B2

l Cl Pl(n̂i · n̂j) , (2.40)

independent of the rotation R(φ, θ, ψ), which is the standard expression.

The computation of the covariance matrix using Eq. (2.38) is more involved

than the infinite case, Eq. (2.40), so the likelihood calculations require far more

computer time than the conventional case. Cij must be recalculated for each set of

Euler angles. There are 458403 independent elements in Mlml′m′ for 2 ≤ l ≤ 30 of

which 57840 satisfy the l ≡ l′ (mod 2), m ≡ m′ (mod 4) condition, and 2482 values

for each of the indices i and j. The slowest step in the computation is evaluating

the sums on l, m, l′, m′ in Eq. (2.38) for all values of {i, j}.
An Euler angle rotation of the sky maps points on the sphere to rotated

points on the sphere. For infinitesimal pixels, this corresponds to a reshuffling of

the pixels, i.e. if pixel i at ni is mapped by the rotation to nj, then pixel i →
pixel j. An exact reshuffling of pixels would greatly simplify the computation —
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instead of recomputing Cij , one could simply permute the indices on Cij to get

the transformed matrix. In particular, detC would remain invariant under this

transformation.

The WMAP pixels have been chosen using the HEALPix grid [38]. The

pixels are chosen to lie along lines of constant lattitude, and they have equal solid

angles. This implies that the spacing of the pixels varies as a function of lattitude.

As a result one cannot treat rotations of the sky as a pixel reshuffling transforma-

tion. One can approximate the rotations by a pixel transformation by mapping

the rotated pixel to the one closest to it in the HEALPix grid. The likelihood

computed using this method differs from the exact result using Eq. (2.38), and is

not accurate enough for our purposes. The above approximate relation between ro-

tations and pixel permutations does, however, explain why detC is approximately

independent of the Euler angles.

For a finite universe, one has to use Eq. (2.38) with the value for Mlml′m′

computed as described in Sec. 2.3. The finiteness of the universe only affects the

large-scale anisotropies, so the difference between the infinite and finite cases goes

to zero with increasing l. For that reason we will look only at low-l portion of

anisotropies, l ≤ 30, and use the infinite manifold result Eq. (2.40) for l > 30.

We calculate χ2 and the likelihood L using a modification of the likelihood code

provided by the WMAP team [28, 29, 30] as a function of the new parameters (L,

φ, θ, ψ). Since we are interested only in low-l effects we use the low-resolution

portion of the likelihood code. We use the experimental data in the exact same

form as provided by the WMAP team without any further modifications. The

temperature map used is the smoothed and degraded ILC map with the Kp2 mask

applied to remove the galactic plane and strong point sources. The map originally

has 3072 pixels, but only 2482 are left after the mask. For the reasons discussed in

section 2.1, we use only the temperature-temperature correlations for our analysis,

so we disregard the portion of the WMAP likelihood code that uses the polarization

data.

Ideally, one would have to do a fit to the experimental data varying the four

new parameters (L, φ, θ, ψ) in addition to all the other cosmological parameters.
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The cosmological parameters affect the whole spectrum of anisotropies while only

the low-l part of the spectrum is affected by the new parameters, so we fix the

other cosmological parameters at their best-fit values as given by the seven-year

WMAP data [30] and only vary the new parameters. The values of the cosmological

parameters that we use are [30] 100Ωbh
2 = 2.227, Ωch

2 = 0.1116, ΩΛ = 0.729,

ns = 0.966, τ = 0.085, ∆2
R(0.002Mpc−1) = 2.42× 10−9.

2.5 Results

We have computed the likelihood and χ2 for the three cases, M0 = T
3,

M1 = T
2 × R

1 and M2 = S1 × R
2, for different values of L/L0 as a function of

the Euler angles. L/L0 ranges between a minimum value of 0.5 − 1.0 depending

on the manifold, and a maximum value of L/L0 = 2.6, in steps of L/L0 = 0.1.

By the time L/L0 = 2.6, the results are almost identical to the flat-space case

M∞ = R
3. For the statistical analysis discussed later in this section, we have used

interpolation to construct a smooth function of L.

The relation between likelihood and χ2 is

−2 lnL = χ2 + ln detC/Cf + lndet(2πCf) (2.41)

where Cf is a fiducial covariance matrix used by the WMAP collaboration. Cf is

independent of L and the Euler angles, and drops out of all likelihood ratios. χ2

and −2 lnL differ by ln detC/Cf (up to an irrelevant constant). The likelihood

for M∞, three-dimensional flat space, will be denoted by L∞, and is −2 lnL∞ =

3573.4.3

As noted earlier, for fixed L/L0, ln detC/Cf varies weakly with the Euler

angles. In Fig. 2.3, we have plotted the variation of ln detC/Cf as a function of

ψ, for fixed values of the φ, θ, at L/L0 = 1.8. The overall variation of ln detC/Cf

against ψ is less than 1.

−2 lnL (and hence χ2) has a strong variation with Euler angles at fixed

L/L0. In Fig. 2.4, we have shown plots of the variation of 2 lnL∞ − 2 lnL with

3All the likelihood values given in this chapter are calculated using the temperature data only.



23

Figure 2.3: Plot of ln detC/Cf against the Euler angle ψ for fixed φ, θ for the
M0 topology at L/L0 = 1.8,

Euler angle ψ for fixed φ, θ for the M0 topology. L∞ is independent of the Euler

angles. The solid red curve has been chosen to have L/L0 = 1.8, and φ, θ values

that maximize the likelihood at this value of L/L0. There is a large variation of

−2 lnL with the remaining Euler angle ψ, and the global minum of −2 lnL is

2 lnL∞−2 lnL = −17.2 at ψ/(2π) ≈ 0.05. The strong dependence of −2 lnL on

orientation makes it difficult to find the true global minimum of the −2 lnL and

χ2 functions. We have done a scan over all Euler angles with a spacing of 0.05π,

to identify valleys, followed by a finer scan to find the mininum. By comparing

our numerical minimum with the next best point, we can estimate the uncertainty

in our minimum −2 lnL and χ2 values at less than 0.5. The dashed blue curve

in Fig. 2.4 is also for L/L0 = 1.8, but with φ, θ fixed at random values, rather

than those for which −2 lnL vs. ψ passes through the global minimum. There is

still considerable dependence as one varies the third angle ψ, but the dependence

is much weaker than for the solid red curve. The dependence of −2 lnL drops

rapidly with increasing L/L0. For L/L0 = 2.2, the dotted green curve in the figure,

the overall variation is about 6.5.

The plot of χ2 and −2 lnL against L/L0 is given in Fig. 2.5, 2.6, and 2.7 for
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Figure 2.4: Plot of 2 lnL∞ − 2 lnL against the Euler angle ψ for fixed φ, θ for
the M0 topology. The solid red and dashed blue curves are for two different values
of φ, θ at L/L0 = 1.8, and the dotted green curve is for L/L0 = 2.2. The solid red
curve is for L/L0 = 1.8 with φ, θ fixed to be the best fit values, the dashed blue
curve is for L/L0 = 1.8 with φ, θ fixed in a random direction, and the dotted green
curve is for L/L0 = 2.2 with φ, θ fixed to be the best fit values.
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the three cases, M0 = T
3, M1 = T

2×R
1 and M2 = S1×R

2, respectively. We have

plotted the maximum and minimum of χ2 over all possible orientations of the torus

at each value of L. There is a significant variation in χ2 as a function of orientation,

as noted earlier, and some orientations are strongly preferred over others. In each

plot, χ2 ranges between the uppermost and lowermost solid black curves, as one

varies the orientation of the manifold by varying the Euler angles (φ, θ, ψ). For the

smallest values of L/L0, ∆χ
2 between the worst and best orientations is 377, 191,

and 156 for M0,1,2, respectively. As L/L0 increases, the effect of a compactified

direction decreases. By the time L/L0 = 2.6, the fit results are very close to the

case of the infinite manifold R
3, and ∆χ2 ≤ 4 for the different orientations.

We have been unable to find any pattern to the best-fit orientation φ, θ, ψ

of the torus as a function of L/L0. We have examined the possibility that the

manifolds we consider are aligned along the axis of evil. To do this, we have

chosen the preferred axis of the manifold (the z-axis for T
3, the R direction for

T
2 ×R

1 and the S1 direction for S1 ×R
2) to point along the axis-of-evil direction

b = 60◦, l = −100◦ in galactic coordinates, and allowed for arbitrary rotations of

the manifold around this direction. All the angles are varied with step π/100 =

1.8◦. This gives a subset of all the orientations we have considered, and the χ2

range has been plotted as the dashed colored curves in the figure. The colored

curves lie between the black curves (as they must), but they do not lie towards the

best-fit χ2 line. This shows that there is nothing in our computation that picks

out the axis-of-evil as a preferred direction.

2.5.1 Limit on Size of Compact Directions

We use a goodness-of-fit test to see whether we can rule out the hypothesis

that the universe has topology Mi of size L. The minimum χ2 values are χ2 =

2469, 2467, 2472 at L/L0 = 2.1, 2.1, 2.2 for M0,1,2, respectively. The goodness-

of-fit test depends on the overall value of χ2 (rather than χ2 differences) to see

how well the compact universe hypothesis agrees with the data. We use Pearson’s

χ2 test with 2478 degrees of freedom (there are 2482 pixels, 4 free parameters) to

put a lower bound on L. Plots of χ2 as a function of L are shown in Fig. 2.5,
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Figure 2.5: Plot of−2 lnL and χ2 against L/L0 for different Euler angles (φ, θ, ψ)
for the topology M0 = T

3. The lower solid curve (solid triangles) is the minimum of
−2 lnL or χ2, and the upper solid curve (open squares) is the maximum of−2 lnL

and χ2 as the Euler angles are varied for fixed L. The lower dashed colored curve
(solid triangles) and upper dashed colored curve (open squares) are the minimum
and maximum of −2 lnL and χ2 with a symmetry axis of the manifold restricted
to point along the axis of evil.
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Figure 2.6: Plot of−2 lnL and χ2 against L/L0 for different Euler angles (φ, θ, ψ)
for the topology M1 = T

2 × R
1. See the caption of Fig. 2.5 for the explanation of

the different curves.
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Figure 2.7: Plot of−2 lnL and χ2 against L/L0 for different Euler angles (φ, θ, ψ)
for the topology M2 = S1 × R

2. See the caption of Fig. 2.5 for the explanation of
the different curves.
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Table 2.1: Limits on L/L0 using the χ2 goodness-of-fit test. Values of L/L0

less than those in the table are excluded at the confidence level given in the first
column.

C.L. M0 M1 M2

68% 1.48 1.29 0.96

90% 1.35 1.04 0.62

95% 1.27 0.97 0.57

2.6, and 2.7 for the three cases M0,1,2. Using the computed values of χ2 we have

the limits given in Table 2.1. Values of L/L0 smaller than those listed in the

table are excluded at the confidence levels given. The bounds get weaker from

M0 → M1 → M2, as the number of infinite dimensions increases from zero to one

to two.

Phillips and Kogut have also found a best fit value of L/L0 ∼ 2.1 for

M0 [17]. We put a slightly stronger constraint at 95% for M0 than [17] (1.27 vs.

1.2), but our 68% constraint is weaker (1.48 vs. 2.1). This discrepancy may be

explained by the fact that they did not consider all the non-equivalent orientations

of the torus (as discussed earlier in section 2.4). Also, as we have shown, χ2

oscillates very rapidly with changing the orientation, and it is important to use a

small enough step size to find the minimum of χ2.

2.5.2 Confidence Intervals

We estimate confidence intervals for L/L0 using the maximum likelihood

method. This depends on likelihood ratios, i.e. on differences of lnL . A detailed

discussion can be found in the Review of Particle Properties [39, §33], and in

Refs. [40, 41]. This is a standard method for estimating confidence intervals in

high energy physics. Plots of likelihood as a function of L are shown in Fig. 2.5,

2.6, and 2.7. The maximum likelihood value is at L/L0 = 1.8, 1.9, 1.9 for M0,1,2,
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Figure 2.8: Plot of the L/L0 confidence interval as a function of the confidence
level for M0 = T

3.

respectively. The confidence intervals for L/L0 are determined by using ∆ lnL , the

difference of lnL from the value that maximizes the likelihood function [40, 41].

Plots of the L/L0 confidence intervals as a function of 1 − α, where α is the

confidence level, are shown in Fig. 2.8, 2.9, and 2.10. The data shows a preference

for a finite universe with size L/L0 ∼ 1.9 corresponding to L ∼ 27 Gpc. The

allowed L range extends to L/L0 ≥ 2.6 at a confidence level α = 10−4 for M0, 2×
10−5 for M1 and 4×10−3 for M2. Thus the data show evidence for a finite universe

at a confidence level α = 2 × 10−5 for the T
2 × R

1 topology. The 95% confidence

intervals are L/L0 ∈ [1.7, 2.1] , [1.8, 2.0] , [1.2, 2.1] for M0,1,2, respectively.

Our best fit value of L/L0 ∼ 1.9 is at the edge of the exclusion region

obtained using the circles in the sky method [16] (they put a lower bound on

L of 27.9Gpc corresponding to L/L0 ≈ 1.94). All our 95% confidence intervals

extend into the allowed region. This means that we find no contradiction to that

previous result, but one might be able to get better constraints by combining the

two methods.

We have scanned over ∼ 4000 different orientations for each value of L, with
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Figure 2.9: Plot of the L/L0 confidence interval as a function of the confidence
level for M1 = T

2 × R
1.

Figure 2.10: Plot of the L/L0 confidence interval as a function of the confidence
level for M2 = S1 × R

2.
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a finer scan near the minima, so that the error in χ2 and −2 lnL is ≤ 0.5. The

difference in −2 lnL between its value at L → ∞ and its minimum value (which

occurs at L/L0 = 1.9 for M1) is 20.4, which is well outside possible numerical

errors. Note that the main numerical uncertainty is finding the true minimum of

−2 lnL for finite values of L. The minimum value of −2 lnL has been determined

with an accuracy ≤ 0.5. The actual difference in likelihoods between finite and

infinite L can only be greater than what we have found. There is an indication that

a finite universe fits the data better than an infinite one. However, the “standard”

5σ-criterion for a discovery, corresponding to a confidence level α = 5.7 × 10−7,

includes the value L = ∞.

The Euler angles for the best fit case M1 with L/L0 = 1.9 are (φ = 21◦ ±
2◦, θ = 53◦±2◦, ψ = 61◦±2◦) which corresponds, for the infinite direction, to (b =

37◦ ± 2◦, l = 291◦ ± 2◦) in galactic coordinates and (α = 182◦ ± 2◦, δ = −25◦ ± 2◦)

in J2000 equatorial coordinates. This is close to the direction (b = 30◦ ± 2◦, l =

276◦±3◦) of the velocity of the Local Group inferred from the CMB dipole [42]. We

discuss the possibility that our signal is due to a dipole contamination in Sec. 2.6.2.

For the topology M0 the best fit size is L/L0 = 1.8 and the Euler angles

are (φ = 117◦ ± 2◦, θ = 162◦ ± 2◦, ψ = 18◦ ± 2◦) which corresponds, for the

three axes, to (b = 5◦ ± 2◦, l = 100◦ ± 2◦), (b = 17◦ ± 2◦, l = 8◦ ± 2◦), and

(b = −72◦±2◦, l = 27◦±2◦) in galactic coordinates. The improvement in −2 lnL

is 17.2. For the topology M2 the best fit size is L/L0 = 1.9 and the Euler angles

are (φ = 9◦ ± 2◦, θ = 27◦ ± 2◦)4 which corresponds, for the finite direction, to

(b = 63◦±2◦, l = −81◦±2◦) in galactic coordinates. The improvement in −2 lnL

is 9.6. We can see that the best fit directions for the three topologies are all very

different from each other, which means that the improvement in likelihood for one

of the topologies is not simply mimicking the improvement for another topology.

4For M2 the likelihood has no dependence on the angle ψ because of the rotational symmetry
around the finite axis of M2.
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2.5.3 Fisher Information

The Fisher information can be used to compute the variance V of the length

L determined using the maximum likelihood method. The Fisher information is

given by

V −1 =
1

2

〈

(

∂h

∂L

)2
〉

= TrC
∂C−1

∂L
C
∂C−1

∂L

= TrC−1∂C

∂L
C−1∂C

∂L
. (2.42)

Using the covariance matrix C for the M1 topology with L/L0 = 1.9 gives

V −1 = 3.3× 103 (2.43)

so that the error estimate for L/L0 is
√
V = 0.017. The Fisher information error

Eq. (2.43) corresponds to using a quadratic approximation to the likelihood func-

tion about its minimum to determine the error, and gives a smaller error than that

obtained earlier using the exact likelihood function.

2.6 Checks

We have been unable to find a simple explanation for the better fit due to

a finite topology. However, there are some possibilities which we can test.

The measured cosmic microwave background anisotropy has a smaller value

for the quadrupole power C2 than the theoretical expectation value. There is a large

cosmic variance in C2, so this is not a discrepancy between theory and experiment.

Fig. 2.2 shows that the predicted value of C2 for a finite universe is reduced from

the infinite universe value. The greater likelihood for a finite universe is not due to

lowering the value of C2. We have checked this by determining the likelihood using

Mlml′m′ for the finite case, but with the l = l′ = 2 values replaced by their values

for the infinite universe. For M1 with L/L0 = 1.9, −2 lnL increases by 0.43,

which is much less than the 20.4 difference in −2 lnL from the infinite universe.

As another test, we have computed the likelihood for all three topologies

for their best fit sizes (L/L0 = 1.8 for M0, L/L0 = 1.9 for M1 and M2) by using a
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Figure 2.11: Plot of 2 lnL∞ − 2 lnL against the Euler angle ψ for fixed φ, θ for
the M0 topology for L/L0 = 1.8. The solid red curve uses the full matrix Mlml′m′ ,
the dashed blue curve uses the matrix truncated to 5 ≤ l, l′ ≤ 20, and the dotted
green curve uses the matrix Mlml′m′δll′ , retaining only the part diagonal in l.

Figure 2.12: Plot of 2 lnL∞ − 2 lnL against the Euler angle ψ for fixed φ, θ for
the M1 topology for L/L0 = 1.9. See the caption of Fig. 2.11 for the explanation
of the different curves.
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Figure 2.13: Plot of 2 lnL∞ − 2 lnL against the Euler angle θ for fixed φ, ψ for
the M2 topology for L/L0 = 1.9. The M2 plot uses θ, since the likelihood does
not depend on ψ. See the caption of Fig. 2.11 for the explanation of the different
curves.

truncated Mlml′m′ matrix. The truncated matrix is constructed by using Mlml′m′

for the finite topology for 5 ≤ l, l′ ≤ 20, and using Mlml′m′ for the infinite universe,

i.e. Mlml′m′ = Clδll′δmm′ , for l and or l′ outside this range. A plot of the likelihood

as a function of the Euler angle ψ for the topologies M0 and M1, and as a function

of the Euler angle θ for the topology M2
4 for this truncated Mlml′m′ is plotted

as the dashed blue curves in Fig. 2.11, 2.12, and 2.13, respectively. This can be

compared with the likelihood curves using the full Mlml′m′ for the finite topology,

shown as the solid red curves. The dip in the likelihood difference to −20.4 (for

M1 which gives the best fit) is the signal that the finite topology is a better fit

than the infinite universe. The plot for the truncated matrix is similar to that for

the full matrix, except that the small-angle fluctuations have been smoothed out,

as is to be expected since higher l terms have been dropped. Note that the dip in

2 lnL∞−2 lnL is very similar in both cases, and the minimum of 2 lnL∞−2 lnL

is nearly the same. This shows that the effect we find is not due to the low-l modes

(quadrupole, octupole), and is also not an edge effect as a result of only using l ≤ 30
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in the computation. For 5 ≤ l, l′ ≤ 20, Mlml′m′ has 86736 elements of which 11056

satisfy the l ≡ l′ (mod 2), m ≡ m′ (mod 4) condition and are non-zero.

The off-diagonal elements in Mlml′m′ are important for the calculations.

We have also computed the likelihood by retaining only the elements which are

diagonal in l, i.e. using Mlml′m′δll′ . This drops the elements in Mlml′m′δll′ which

are off-diagonal in l, while retaining the elements which are off-diagonal in m for

a given l. The likelihood with this matrix is the dashed green curves in Fig. 2.11,

2.12, and 2.13. With this matrix, the likelihood deviates much less from the infinite

universe, and the dip near ψ/(2π) ≈ 0.17 (for M1) is much less pronounced.

2.6.1 Monte-Carlo Skies

The results of the previous section were obtained using a likelihood analysis

of the WMAP7 data. One can study whether the better fit of a finite topology is

due to a statistical fluctuation. Since the big-bang is not a repeatable experiment,

this must be done by generating random Monte-Carlo data for the pixels ∆i, and

redoing the analysis for this Monte-Carlo data. To actually do this numerically is

beyond the computing power we have available. Luckily, for the problem at hand,

we can analyze the Monte-Carlo problem analytically, since the entire analysis

pipeline is linear.

Assume that the pixels ∆i are generated by the covariance matrix C∞ for

an infinite universe, so that the probability distribution is

p(∆) =
1

√

det(2πC∞)
exp

(

−1

2
∆TC−1

∞ ∆

)

. (2.44)

The likelihood function computed using ∆i and covariance matrix C (of a finite

universe) is

−2 logL = ∆TC−1∆+ lndet(2πC) , (2.45)

and the likelihood constructed using the covariance matrix C∞ of the infinite uni-

verse is

−2 logL∞ = ∆TC−1
∞ ∆+ lndet(2πC∞) . (2.46)
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Let

h ≡ (−2 logL∞)− (−2 logL ) , (2.47)

be the difference of the two log-likelihoods. In our analysis, we found h = 20.4 > 0,

so that the finite universe was more likely than the infinite universe. The average

value of h over Monte-Carlo data can be computed using Eq. (2.44) and Eq. (2.47).

The two-point function is

〈∆i∆j〉 = (C∞)ij , (2.48)

so that

〈h〉 = N − TrC−1C∞ + ln det(C∞)− ln det(C) . (2.49)

It is convenient to define the symmetric matrix

S = C1/2
∞ C−1C1/2

∞ , (2.50)

which is a positive matrix since C andC∞ are positive matrices, and has eigenvalues

si > 0. In terms of S,

〈h〉 = N − TrS + ln detS =
∑

i

[1− si + ln si] . (2.51)

The function 1− s+ ln s ≤ 0 with its maximum at 0 when s = 1. Thus

〈h〉 ≤ 0 (2.52)

and 〈h〉 = 0 only if S = 1, i.e. C = C∞. This gives the intuitively obvious result

that the best fit for data generated with covariance matrix C∞ is, on average, given

by fitting using the same covariance matrix C∞. Any other covariance matrix C

used for fitting, on average, gives a lower likelihood.

If instead of Eq. (2.47) we had used the difference of χ2,

hχ ≡ χ2
∞ − χ2, (2.53)

then

〈hχ〉 = N − TrC−1C∞ = N − TrS =
∑

i

[1− si] , (2.54)
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and 〈hχ〉 could have either sign, since si > 0, but need not be smaller than 1. For

example, a simple rescaling, C = λC∞, with λ → ∞ can always make χ2 → 0, its

minimum poissible value. This option is eliminated for likelihood because of the

det(2πC) term.

Using C for the best-fit topology M1 with L/L0 = 1.9, we find the numerical

values

N = 2482 ,

ln det(C∞/Cf) = 1097.8 ,

ln det(C/Cf) = 1082.73 ,

TrC−1C∞ = TrS = 2516.6 , (2.55)

so that

〈h〉 = −19.5 . (2.56)

This differs from the value we find of h = +20.4 by ∆h = h − 〈h〉 = 39.9. The

probability that ∆h is a statistical fluctuation can be determined by computing

the variance of h using the four-point function

〈∆i∆j∆k∆l〉 = (C∞)ij (C∞)kl + (C∞)ik (C∞)jl + (C∞)il (C∞)jk , (2.57)

to obtain

〈

(∆h)2
〉

= 2N + 2TrC−1C∞C
−1C∞ − 4

(

TrC−1C∞

)

= 2Tr
(

1− C−1C∞

)2
= 2Tr (1− S)2 . (2.58)

In our case,

TrC−1C∞C
−1C∞ = 2610.0 , (2.59)

so that

〈

(∆h)2
〉

= 117.6 = (10.8)2 . (2.60)

Our observed value of ∆h = 39.9 is 3.7 σ away from the mean, so the probability

that a fluctuation gives h larger than or equal to our observed value is 1.1× 10−4,

assuming a normal distribution.



39

While the distribution of the data ∆i is Gaussian, the distribution of the

likelihood difference h is no longer Gaussian. We can also compute higher order

connected correlation functions of h,

〈(∆h)r〉c = 2r (r − 1)! Tr
(

1− C−1C∞

)r
= 2r (r − 1)! Tr (1− S)r ,(2.61)

from the generating function

log
〈

eλ∆h
〉

= −λTr (1− C−1C∞)− 1

2
Tr ln

[

1− 2λ(1− C−1C∞)
]

= −λTr (1− S)− 1

2
Tr ln [1− 2λ(1− S)] , (2.62)

so that

〈

(∆h)3
〉

= 8 Tr
(

1− C−1C∞

)3

〈

(∆h)4
〉

c
= 48 Tr

(

1− C−1C∞

)4
, (2.63)

where the fourth-order correlation is

〈

(∆h)4
〉

=
〈

(∆h)4
〉

c
+ 3

〈

(∆h)2
〉2
, (2.64)

in terms of the connected correlation. The mean value 〈h〉, and all the connected

correlation functions 〈(∆h)r〉c are of order N , the number of data points. Thus

the relative correlation 〈(∆h)r〉 / 〈h〉r is of order N1−r.

The numerical values for our case are

〈

(∆h)3
〉

= −489.0 ,
〈

(∆h)4
〉

c
= 4303.7 . (2.65)

We can get a better estimate of the probability that h = 20.4 is due to a statistical

fluctuation by using these higher order moments. We have fit 〈h〉 and 〈(∆h)r〉,
r = 2, 3, 4 to a probability distribution

p(h) = p0 exp[−(h− h0)
2 − c2(h− h0)

2 − c3(h− h0)
3 − c4(h− h0)

4] ,(2.66)

and found using this distribution that the probability that h− 〈h〉 ≥ 39.9 is 10−6,

which is smaller than the value obtained earlier using a normal distribution for h.
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2.6.2 Dipole Contamination

The symmetry axis of M1 points in the direction (b = 37◦±2◦, l = 291◦±2◦),

which is close to the direction of the velocity of the Local Group (b = 30◦± 2◦, l =

276◦±3◦) [42]. The CMB has a large dipole asymmetry of 3.358±0.001±0.023mK

in the direction (b = 48.05◦±0.11◦, l = 264.31◦±0.2◦) [42]. Suppose that the data

is contaminated by a dipole contribution that has not been properly subtracted

out.5 Could a residual dipole explain the results we have found?

To study the effect of a residual dipole, assume that the observed pixels are

∆obs
i = ∆i + p · n̂i = ∆i + di, di = p · n̂i (2.67)

where ∆i are the true fluctuations given by the distribution Eq. (2.44), p is the

residual dipole contamination in the data, and n̂i are the directions of the pixels.

Then Eq. (2.45,2.46) are replaced by

−2 logL = (∆ + d)T C−1 (∆ + d) + ln det(2πC) ,

−2 logL∞ = (∆ + d)T C−1
∞ (∆ + d) + ln det(2πC∞) . (2.68)

From these, we find

〈h〉 = N − TrC−1C∞ + ln det(C∞)− ln det(C)

+(dTC−1
∞ d)− (dTC−1d) ,

〈

∆h2
〉

= 2N − 8dTC−1d+ 4dTC−1
∞ d+ 4dTC−1C∞C

−1d

+2TrC−1C∞C
−1C∞ − 4

(

TrC−1C∞

)

. (2.69)

Dipole contamination produces a systematic shift in h from its value in Eq. (2.49)

given by the (dTC−1
∞ d)− (dTC−1d) terms, which can be written as

(dTC−1
∞ d)− (dTC−1d) = pαpβDαβ (2.70)

in term of the components pα = (px, py, pz) of the dipole.

Dαβ = ((n̂i)
T
αC

−1
∞ (n̂i)α)− ((n̂i)

T
αC

−1(n̂i)α) (2.71)

5This possibility was suggested to us by B. Keating.
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Using the covariance matrices for the infinite universe C∞ and our best fit case C,

and the directions of the pixels n̂i in cartesian coordinates we find

D =









−1.22 −0.004 −0.114

−0.004 −0.0281 −0.003

−0.114 −0.003 −0.0127









mK−2 (2.72)

The largest eigenvalue is −1.23mK−2. To get a shift in −2 lnL of 20.4 requires a

dipole contamination |p| of around 4mK. This is larger than the observed dipole,

and several hundred times the quoted uncertainty in the CMB dipole [42]. Thus

any allowed dipole contamination (which must be much smaller than 4mK) only

has a negligible effect on the likelihood, and does not explain our results.

2.7 Conclusions

We have analyzed the possibility that the universe has compact topologies

M0 = T
3, M1 = T

2 × R
1 and M2 = S1 × R

2 using WMAP7 data. The analysis

used a simple modification of the available CAMB and WMAP 7-year likelihood

codes. The only changes to the standard code were to replace the integral over k by

a discrete sum in computing the theoretical covariance matrix (cosmic variance).

The Pearson goodness-of-fit test gives 95% bounds of L/L0 ≥ 1.27, 0.97, 0.57 for

the three cases, respectively.

Surprisingly, we find a statistically significant signal of ∆(−2 lnL ) = −20.4

for a universe with compact spatial dimensions, and the best fit topology is M1.

The best fit results for M1 have symmetry axis which is near (∼ 10◦) the direction

of the Local Group velocity. An infinite universe is compatible with the data at a

confidence level of 2 × 10−5 (i.e. 4.3 σ). The maximum likelihood 95% confidence

intervals are 1.7 ≤ L/L0 ≤ 2.1, 1.8 ≤ L/L0 ≤ 2.0, 1.2 ≤ L/L0 ≤ 2.1 for the three

cases, respectively. We find that the most probable universe has the compact

topology M1. We find no evidence of a preference for the axis-of-evil direction.

The improved fit for a finite universe is not due to the lowered prediction for the

quadrupole anisotropy; this accounts for only a small fraction of the increase in

likelihood.
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We have done several checks to investigate the reason for our results. We

find that the signal is predominantly due to off-diagonal elements in the covariance

matrix Mlml′m′ for 5 ≤ l ≤ 20. It would be useful to investigate whether any

systematic effects in the WMAP data introduce effects with cubic symmetry that

can mimic the effects of a torus topology. The best fit results do not pick out any

special orientation for the torus, such as a torus with symmetry axis perpendicular

to the galactic plane, that might lead to systematic effects that lead to a fake

signal. Pixelization of the data using the HEALPix grid also should not introduce

cubic symmetry terms along an axis not aligned with the galactic pole.

Chapter 2, in full, is a reprint of the material as it appears on JCAP 06

(2012) 003. Aslanyan, Grigor; Manohar, Aneesh V., 2012. The dissertation author

was the primary investigator and author of this paper.



Chapter 3

Constraints on Semiclassical

Fluctuations in Primordial

Universe

3.1 Introduction

The standard model of cosmology assumes a homogeneous and isotropic uni-

verse, and this assumption is in good agreement with the observational data from

the CMB (cosmic microwave background) radiation and galaxy surveys. However,

recent studies have shown possible deviations from this. One popular possibility

that has been discussed in the literature is the existence of the “axis of evil” - a

special direction in which the first few multipoles of CMB anisotropies seem to

be aligned [31, 32, 33]. The direction of the axis of evil is b = 60◦, l = −100◦ in

galactic coordinates.

A possible deviation from standard cosmology that has been extensively

studied in the literature is the non-trivial topology of the universe. In chapter 2

we showed that the trivial R3 topology is compatible with the seven-year WMAP

data only at 4.3σ level, unless there is some strong systematic error in the data or

some other yet undiscovered effect which mimics a non-trivial topology.

The fluctuations in CMB radiation are directly generated from the quantum

43
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perturbations during inflation, so it is possible that the observed anisotropy of

the universe comes directly from the inflationary perturbations. The possibility

of a linearly modulated primordial power spectrum was discussed in [43], where

an improvement in χ2 of about 9 was found for 3 extra parameters, using the

three-year WMAP data. They found the direction of the modulation to be b =

34+17+36+65
−17−35−51, l = 63+28+59+105

−26−58−213 with 68%, 95%, and 99.7% confidence respectively.

In this chapter we consider two other scenarios that might explain the possi-

ble anomalies on large scales mentioned above. Firstly, we consider a semiclassical

fluctuation in one of the Fourier modes of primordial perturbations. Since each

Fourier mode is periodic in space, this scenario may generate effects similar to that

of a non-trivial topology. We want to understand if a fluctuation in one mode can

give an alternative explanation for the results obtained in chapter 2.1 Since this

scenario brakes the isotropy of space by introducing a special direction, it might

also give an explanation to the axis of evil.

The second scenario we consider is a semiclassical gaussian fluctuation some-

where in space. This possibility might be a result of inflation not starting in the

Bunch-Davies vacuum state. Again, the isotropy of space is broken (unless the

fluctuation is centered directly at our position) so we check if the axis of evil could

be a result of such a fluctuation. We test these hypotheses using the most recent

seven-year temperature data from WMAP.

This chapter is organized as follows. In section 3.2 we describe the likelihood

calculation for CMB data, in section 3.3 we present our results, we discuss some

checks we have performed in section 3.4, and we conclude in section 3.5.

3.2 Likelihood Calculation

In order to test our hypotheses we calculate the likelihood of WMAP data

under the assumption of having a perturbation in one Fourier mode or a gaus-

sian perturbation. The likelihood calculation for standard cosmology is discussed

in some standard textbooks (see, e.g. [36]), here we will briefly summarize that

1This possibility was suggested to us by Lawrence Krauss.
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calculation and show how it needs to be modified for our case.

3.2.1 Standard Cosmology

The temperature anisotropies Θ(n̂,x) are decomposed into spherical har-

monics

Θ(n̂,x) =
∑

lm

alm(x)Ylm(n̂) (3.1)

where n̂ is the direction of observation, x is the location of observation, i.e. our

position in space. The coefficients alm(x) are further transformed to Fourier space

alm(x) =

∫

d3k

(2π)3
eik·x

∫

dΩ Y ∗
lm(n̂)Θ(n̂,k) (3.2)

Assuming gaussian perturbations, we have

〈alm(x)〉 = 0 (3.3)

and all the information is in the two-point function

Mlml′m′ ≡ 〈alm(x)a∗l′m′(x)〉 (3.4)

The temperature anisotropies Θ(k, n̂) can be expressed in terms of initial

gauge invariant curvature perturbations ζ(k) on uniform density hypersurfaces

Θ(k, n̂) = ζ(k)
Θ(k,k · n̂)

ζ(k)
(3.5)

where the ratio Θ(k,k · n̂)/ζ(k) does not depend on the initial curvature pertur-

bations. It is determined from the evolution of Θ and ζ , and only depends on the

magnitude of k and the direction of n̂ relative to k [36].

For homogeneous and isotropic gaussian perturbations the initial curvature

perturbations are completely described by the power spectrum

〈ζ(k)ζ∗(k′)〉 ≡ (2π)3δ3(k− k′)P (k) (3.6)



46

Expanding Θ(k,k · n̂) into Legendre polynomials

Θ(k,k · n̂) =
∑

l

(−i)l(2l + 1)Pl(k̂ · n̂)Θl(k) (3.7)

the covariance matrix (3.4) takes the form

Mlml′m′ = δll′δmm′Cl (3.8)

with

Cl =
2

π

∫

dk k2 P (k)

∣

∣

∣

∣

Θl(k)

ζ(k)

∣

∣

∣

∣

2

. (3.9)

Likelihood is calculated in real space. For Np pixels the likelihood function

has the form

L =
1

(2π)Np/2(detC)1/2
exp

(

−1

2
∆TC−1∆

)

(3.10)

where ∆i is the vector of pixels of temperature anisotropies and Cij is the covari-

ance matrix, including noise. This covariance matrix is obtained by transforming

Mlml′m′ into real space. This way the likelihood function becomes a function of the

cosmological parameters since the covariance matrix depends on them.

3.2.2 Semiclassical Fluctuation in One Fourier Mode

Now suppose that in addition to the standard fluctuations (3.6) there is a

fixed periodic fluctuation with momentum k0:

ζ(x) = ζst(x) + a0 cos(k0 · x) (3.11)

where ζst(x) are the standard fluctuations. Then

ζ(k) = ζst(k) + (2π)3a0
δ3(k− k0) + δ3(k + k0)

2
(3.12)

which results in

alm(x) = astlm(x) + alplm(x) (3.13)

alplm(x) = 2πa0(−i)l
Θl(k0)

ζ(k0)
Y ∗
lm(k̂0)

(

eiα + (−1)le−iα
)

(3.14)
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where astlm is the standard part, alplm(x) is the extra term from the large perturbation,

α is a phase depending on our position x relative to the fluctuation:

α = k0 · x (3.15)

The covariance matrix takes the form

Mlml′m′ = δll′δmm′Cl + (4π)2(−i)lil′a20
Θl(k0)

ζ(k0)

Θ∗
l′(k0)

ζ(k0)
Y ∗
lm(k̂0)Yl′m′(k̂0)

×1 + (−1)l+l′ + (−1)l
′

e2iα + (−1)le−2iα

4
(3.16)

The large perturbation is described by 5 parameters - the magnitude a0,

the wavelength λ = 2π/k0, the direction k̂0 (2 parameters), and the phase α. In

order to find the maximum likelihood we need to use this new covariance matrix

(3.16) in likelihood (3.10), and maximize it as a function of all the cosmological

parameters plus our newly introduced 5 parameters. However, this is very time

consuming, mainly because the covariance matrix now has non-diagonal terms as

well. We will take a slightly different approach.

As we mentioned before, one of the main reasons of considering a large

perturbation is to try to give an alternative explanation for the observed signal of

non-trivial topology in chapter 2. Since the size of possible non-trivial topology

found in chapter 2 and other works is comparable to the size of the observable

universe, we will assume that the large perturbation wavelength is also of the same

order as the size of the observable universe. This means that our modification will

affect only the low-l part of the covariance matrix. Since the standard cosmological

parameters are determined from the whole spectrum of l, we fix their values at their

best-fit values as given by the seven-year WMAP data [30] and only vary the new

parameters.2 So the covariance matrix for the gaussian part of perturbations is

fixed, and we can calculate the likelihood using (3.10) with the standard gaussian

covariance matrix, but replacing ∆i by ∆i −∆lp
i with

∆lp
i =

∫

dn̂Θlp(n̂)Bi(n̂) (3.17)

2The values of the cosmological parameters that we use are 100Ωbh
2 = 2.227, Ωch

2 = 0.1116,
ΩΛ = 0.729, ns = 0.966, τ = 0.085, ∆2

R(0.002Mpc−1) = 2.42× 10−9.
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where Bi(n̂) is the beam pattern of pixel i and

Θlp(n̂,x) =
∑

lm

alplm(x)Ylm(n̂) (3.18)

is the additional large perturbation term to the temperature fluctuations in real

space.

The beam pattern is specific to the experiment. Usually the beam patterns

have the same shape for every pixel and are axially symmetric around the center

of the pixel, as is the case for WMAP, so if we denote the direction to the center of

the pixel by n̂i then the beam pattern can be decomposed into spherical harmonics

Bi(n̂) =
∑

lm

BlYlm(n̂i)Y
∗
lm(n̂) . (3.19)

Then (3.17) takes the form

∆lp
i =

∑

lml′m′

∫

dn̂ alplm(x)Ylm(n̂)Bl′Yl′m′(n̂i)Y
∗
l′m′(n̂)

=
∑

lm

alplm(x)BlYlm(n̂i)

= 2πa0
∑

lm

BlYlm(n̂i)(−i)l
Θl(k0)

ζ(k0)
Y ∗
lm(k̂0)

(

eiα + (−1)le−iα
)

∆lp
i =

a0
2

∑

l

(2l + 1)(−i)lBlPl(n̂i · k̂0)
(

eiα + (−1)le−iα
) Θl(k0)

ζ(k0)
(3.20)

Now likelihood becomes a function of only our 5 parameters, with a fixed

covariance matrix. Since the normalization constant for likelihood is now fixed, all

we need to worry about is χ2

χ2 = ∆TC−1∆ (3.21)

3.2.3 Semiclassical Gaussian Fluctuation in Space

Let us now consider the second scenario, namely a semiclassical gaussian

“bump” somewhere in space in addition to (3.6):

ζ(x) = ζst(x) + a0e
−(x−xc)2/w2

(3.22)
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ζ(k) = ζst(k) + a0w
3π3/2e−k

2w2/4e−ik·xc (3.23)

alm(x) = astlm(x) + aglm(x) (3.24)

where aglm is the extra term from the gaussian bump

aglm(x) =
∑

LM

4π(−i)La0w3π3/2

∫

d3k

(2π)3
eik·x

×
∫

dn̂Y ∗
lm(n̂)Y

∗
LM(k̂)YLM(n̂)

θL(k)

ζ(k)
e−k

2w2/4e−ik·xc

Denoting

r = xc − x (3.25)

and using the Rayleigh expansion

eik·r = 4π
∑

l1m1

il1jl1(kr)Y
∗
l1m1

(k̂)Yl1m1
(r̂) (3.26)

we get

aglm(x) = (4π)2a0w
3π3/2

∑

LMl1m1

(−i)L+l1

∫

d3k

(2π)3

×
∫

dn̂Y ∗
lm(n̂)Y

∗
LM(k̂)YLM(n̂)

θL(k)

ζ(k)
e−k2w2/4jl1(kr)Yl1m1

(k̂)Y ∗
l1m1

(r̂)

=
2

π
a0w

3π3/2
∑

LMl1m1

(−i)L+l1

∫

k2dk
θL(k)

ζ(k)
e−k2w2/4jl1(kr)Y

∗
l1m1

(r̂)

×δLl1δMm1
δLlδMm

aglm(x) =
2

π
a0w

3π3/2(−1)l
∫

k2dk e−k2w2/4 θl(k)

ζ(k)
jl(kr)Y

∗
lm(r̂) (3.27)

The corrections to temperature fluctuations in real space from this gaussian

bump take the form

∆g
i =

∫

dn̂Θg(n̂)Bi(n̂) (3.28)

where

Θg(n̂,x) =
∑

lm

aglm(x)Ylm(n̂) (3.29)

so

∆g
i =

∑

lml′m′

∫

dn̂ aglm(x)Ylm(n̂)Bl′Yl′m′(n̂i)Y
∗
l′m′(n̂)



50

=
∑

lm

aglm(x)BlYlm(n̂i)

=
∑

lm

BlYlm(n̂i)
2

π
a0w

3π3/2(−1)l
∫

k2dk e−k2w2/4 θl(k)

ζ(k)
jl(kr)Y

∗
lm(r̂)

=
1

2π2
a0w

3π3/2
∑

l

(−1)l(2l + 1)BlPl(n̂i · r̂)
∫

k2dk e−k2w2/4 θl(k)

ζ(k)
jl(kr)

∆g
i =

1

2
√
π
a0
∑

l

(−1)l(2l + 1)BlPl(n̂i · r̂)Fl(r, w) (3.30)

where

Fl(r, w) = w3

∫

k2dk e−k2w2/4 θl(k)

ζ(k)
jl(kr)

=

∫

k2dk e−k2/4 θl(k/w)

ζ(k/w)
jl(kr/w) (3.31)

does not depend on the direction r̂ or the amplitude a0.

In this case we again have 5 new parameters - the amplitude a0, the distance

of the center of the bump from us r, the radius of the bump w, and the direction

r̂ (2 parameters). We consider only fluctuations on large scales (i.e. big w) so

that only the low-l portion of the spectrum is affected. As for the perturbation

in one Fourier mode, we fix the standard cosmological parameters to their best fit

values2 and use a fixed covariance matrix. We simply replace ∆i by ∆i−∆g
i before

calculating χ2 (3.21).

We use the publicly available CAMB code [27] for calculating the standard

covariance matrix and Θl(k)/ζ(k), and a modification of the likelihood code pro-

vided by WMAP [28, 29, 30] for calculating χ2. Since our modification affects only

the low-l part of the spectrum, we use the low-resolution part of the likelihood

code. The sky map used in this code is the smoothed and degraded ILC map

with Kp2 mask. This map is in HEALPIX format [38] with resolution 4 (corre-

sponding to Nside = 16) and has 3072 pixels, of which 2482 are left after the mask.

HEALPIX maps describe modes reliably up to lmax ∼ 2Nside, so we restrict the

sums (3.20) and (3.30) to lmax = 30. We also exclude l = 1 terms since the dipole

has already been removed from the data.
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3.3 Results

We calculate χ2 in the space of our new 5 parameters (keeping the standard

cosmological parameters fixed to their best fit values) and compare it to the best

fit χ2
st for standard cosmology

∆χ2(a0, b, l, p1, p2) = χ2(a0, b, l, p1, p2)− χ2
st (3.32)

where b and l are the galactic latitude and longitude of the direction (k̂0 or r̂0),

(p1, p2) = (λ, α) for the fluctuation in one Fourier mode and (r, w) for the gaussian

bump,

χ2
st = 2475.3

∆χ2 is a quadratic function of a0

∆χ2 = A(b, l, p1, p2)a
2
0 +B(b, l, p1, p2)a0 (3.33)

We calculate A and B in the space of the remaining 4 parameters then

calculate ∆χ2 as a function of the amplitude as well. We use both Pearson’s χ2

test and the maximum likelihood method to put limits on our new parameters.

3.3.1 Semiclassical Fluctuation in One Fourier Mode

As mentioned before, we are assuming that λ is of the order of the size

of the observable universe, so we will give λ in terms of the distance to the last

scattering surface L0 = 14.4Gpc. In these units we vary λ in the range [0.7, 2.6]

with step 0.1. In order to have a uniform distribution of directions k̂0 we vary it

on a HEALPIX grid [38] with the same resolution 4 as the sky map, which means

that we consider 3072 different directions. We vary the phase α in its full range

[0, 2π] with step π/10, and a0 in the range [0, 7× 10−4].

We obtain a best fit value of ∆χ2 = −12.7 corresponding to a0 = 4.21×10−5,

λ = 1.0, b = −66◦, l = 186◦, α = 4.71. Since we have 5 extra parameters, this

means that the standard cosmology is compatible with the data at 2.8σ.

We first use a goodness-of-fit test to put an upper bound on the magnitude

of perturbation a0. This test is sensitive to the overall value of χ2 rather than the
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Figure 3.1: Plot of ∆χ2 against a0 for a fluctuation in one Fourier mode, mini-
mized with respect to the other parameters.

Table 3.1: Upper limits on the magnitude a0 of the fluctuation in one Fourier
mode from Pearson’s χ2 test.

C.L. a0,max/10
−4

68% 4.07

90% 5.85

95% 6.45
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Figure 3.2: Plot of ∆χ2 against λ, minimized with respect to the other
parameters.

difference. We use Pearson’s χ2 test with 2477 degrees of freedom (2482 pixels,

5 free parameters). ∆χ2 as a function of a0 is shown in Fig. 3.1, where we have

minimized with respect to the other 4 parameters. It is smooth, except around

the point a0 = 7.4 × 10−5 where there is a sharp jump from one parabola (3.33)

to another, with different values of the other 4 parameters. The bounds obtained

from this test are shown in Table 3.1.

Next we use the maximum likelihood method to find confidence regions for

all of our newly introduced parameters. This method is sensitive to likelihood ratios

only (see [39, §33], and [40, 41] for detailed discussions of the method). Since in

this case the covariance matrix is fixed, the likelihood ratio only depends on ∆χ2.

∆χ2 as a function of λ, minimized with respect to all the other parameters, is

shown in Fig. 3.2. The analogous plot for α is shown in Fig. 3.3. The confidence

regions for a0, λ, and α are summarized in Table 3.2.

The dependence of ∆χ2 on the direction k̂0 is shown in Fig. 3.4, and the
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Figure 3.3: Plot of ∆χ2 against α, minimized with respect to the other
parameters.

Table 3.2: Confidence regions for parameters a0, λ, and α from the maximum
likelihood method.

C.L. a0/10
−5 λ/L0 α

68.3% [2.8, 5.7] [0.9, 1.1] [1.1, 1.8] ∪ [4.5, 5.2]

95.5% [1.5, 7.1] ≤ 1.3 [0.7, 2.6] ∪ [3.7, 5.6]

99.7% [0.5, 15.9] [0, 2π]
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Figure 3.4: Plot of ∆χ2 against k̂0, minimized with respect to the other
parameters.
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Figure 3.5: 68.3% (red), 95.5% (yellow), and 99.7% (light blue) confidence regions
for k̂0.
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Figure 3.6: Plot of ∆χ2 against r for a gaussian fluctuation, with all the other
parameters fixed (w = 5Gpc, a0 = 10−3).

68.3%, 95.5%, and 99.7% confidence regions in Fig. 3.5. We get ∆χ2 = −2.58 for

the axis of evil direction b = 60◦, l = −100◦. For the best fit direction b = 34◦, l =

63◦ found by [43] we get ∆χ2 = −3.08. Finally, we consider the best fit direction

for a torus topology found in chapter 2, b = 37◦, l = 291◦, to get ∆χ2 = −4.29.

All of these special directions are outside the 95.5% region, which means that a

semiclassical fluctuation in one Fourier mode can not mimic these effects.

3.3.2 Semiclassical Gaussian Fluctuation in Space

We again restrict our analysis to fluctuations on large scales, which means

that the parameter w needs to be not much smaller than the distance to the last

scattering surface L0 = 14.4Gpc. We also need to make sure that the fluctuation

has a significant causal contact with the last scattering surface, otherwise it will

not have an observable effect on the temperature fluctuations. The other issue to
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Figure 3.7: Plot of ∆χ2 against a0 for a gaussian fluctuation, minimized with
respect to the other parameters.

keep in mind is that if the center of the bump is very close to our position then

the corrections to the temperature fluctuations will be nearly constant and will

be absorbed into the constant background temperature. The same thing is true

if the center is not very close to us but w is very large. As an example, we plot

the dependence of ∆χ2 on r with all the other parameters fixed in Fig. 3.6. In

particular we choose w = 5 Gpc and a0 = 10−3. As we can see, it is peaked near L0

and the dependence becomes very week for r outside the range [9, 20] Gpc, which

roughly corresponds to [L0 − w,L0 + w]. So we will not consider the values of

r that are outside that range. This is equivalent to the requirement that the 1σ

surface of the gaussian fluctuation must intersect the last scattering surface. We

check for four different values of w: 2 Gpc, 3 Gpc, 4 Gpc and 5 Gpc. We vary r

with a step of 1 Gpc in the range [L0 −w,L0+w]. As in the previous scenario, we

vary the direction r̂ on a HEALPIX grid with resolution 4, i.e. we consider 3072

different directions. In this case negative amplitudes are not equivalent to positive
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Table 3.3: Limits on the magnitude a0 of the gaussian fluctuation from Pearson’s
χ2 test.

C.L. a0,min/10
−2 a0,max/10

−2

68% −3.56 3.53

90% −4.75 4.68

95% −5.16 5.07

Figure 3.8: Plot of ∆χ2 against r, minimized with respect to the other
parameters.
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Table 3.4: Confidence regions for parameters a0 and r from the maximum likeli-
hood method.

C.L. a0/10
−3 r (Gpc)

68.3% [0.3, 0.7] [13.7, 16.3]

95.5% [−0.7,−0.6] ∪ [0.2, 1.3] ∪ [3.0, 5.4] [9.5, 17.0]

99.7% [−19.1,−0.1] ∪ [0.1, 19.6] ≥ 4.0

amplitudes, so we vary a0 in the range [−6× 10−2, 6× 10−2] (as we will see below,

the dependence on the amplitude is weaker in this case).

The best fit value we get in this case is ∆χ2 = −17.8 for a0 = 6 × 10−4,

r = 16Gpc, w = 2Gpc, b = 57◦, l = −61◦. We have 5 new parameters, so the

standard cosmology is compatible with the data at 3.6σ.

We first impose upper and lower bounds on the amplitude a0 from a goodness-

of-fit test. As for the fluctuation in one Fourier mode, we use Pearson’s χ2 test

with 2477 degrees of freedom since there are 2482 pixels and 5 free parameters.

The dependence of ∆χ2 on a0 is shown in Fig. 3.7, where ∆χ2 is minimized with

respect to all the other parameters. The results of this test are summarized in

Table 3.3.

Finally, we use the maximum likelihood method to put bounds on all of the

new parameters. The dependence of ∆χ2 on r is shown in Fig. 3.8, where we have

minimized with respect to all the other parameters. The confidence regions for a0

and r are shown in Table 3.4.

The dependence of ∆χ2 on the direction r̂ is shown in Fig. 3.9, and the

68.3%, 95.5%, and 99.7% confidence regions in Fig. 3.10. For the axis of evil

direction b = 60◦, l = −100◦ we get ∆χ2 = −8.40. This is within the 99.7% region

but outside the 95.5% region. For the best fit direction b = 34◦, l = 63◦ for a

linearly modulated power spectrum [43] we get ∆χ2 = −3.99. This is outside the

99.7% region. There is a slight indication that the axis of evil might be a result
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Figure 3.9: Plot of ∆χ2 against r̂, minimized with respect to the other
parameters.
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Figure 3.10: 68.3% (red), 95.5% (yellow), and 99.7% (light blue) confidence
regions for r̂.
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Figure 3.11: Plot of 〈|ag|〉 against l for a gaussian fluctuation in units of the
CMB temperature 2.73K.

of a semiclassical gaussian fluctuation in space. However, the signal we see is far

from the 5σ criterion to be claimed as a detection.

3.4 Checks

We first want to check that cutting off at lmax = 30 does not have a sig-

nificant effect on our results for the scales we consider. For the fluctuation in one

Fourier mode the l = 15 terms in (3.18) are already 3 orders of magnitude smaller

than the l = 2 terms for the wavelengths λ under consideration. This means that

the effect of the cutoff can be completely neglected. For the gaussian bump the

decay with l is not as fast. In Fig. 3.11 we plot the dependence of

〈|ag|〉 ≡ 1

2l + 1

l
∑

m=−l

|aglm| (3.34)
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Figure 3.12: Plot of 〈|φg|〉 against l for a gaussian fluctuation.

on l for the smallest scale w = 2 Gpc we consider with a typical amplitude of

a0 = 10−3 (all the other parameters are also fixed). The l = 30 term is 2 orders

of magnitude smaller than the l = 2 term, therefore the cutoff cannot have a

significant effect in this case either.

The cosmic microwave background radiation gets lensed by the large scale

structure before we observe it. Any semiclassical fluctuation in primordial per-

turbations translates to a fluctuation in large scale structure as well, therefore it

contributes to the lensing of photons. We discuss the effects of lensing in Appendix

B. Lensing is described by the lensing potential φ. The correction in temperature

anisotropies from lensing in harmonic space is given by (B.6)

δalm =
∑

LM

∑

l′m′

φLM ãl′m′Iml
M
L

m′

l′ (3.35)

where ãlm denotes the unlensed anisotropies. The lensing potential itself from the

semiclassical fluctuations is proportional to the amplitude a0, so is ãl′m′ , which
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Figure 3.13: Plot of 〈|δag|〉 against l for a gaussian fluctuation in units of the
CMB temperature 2.73K.

means that the correction from lensing is proportional to a20. Since the highest

bounds we obtain for a0 are of the order of 10
−2 the lensing effects can be completely

neglected, as is done in our analysis. As an example we calculate the lensing

potential for a typical case a0 = 10−3 (the same as in Fig. 3.11) and plot it in

Fig. 3.12 (here again we plot the average of |φlm| as in equation (3.34)). The

correction to temperature fluctuations from lensing effects is shown in Fig. 3.13.

As we can see, the correction from lensing is 4 orders of magnitude smaller than

the semiclassical fluctuations (compare with Fig. 3.11), meaning that the lensing

effect can be safely ignored.

3.5 Conclusions

For a semiclassical fluctuation in one Fourier mode we get an improvement

in χ2 of 12.7 for 5 extra parameters, corresponding to 2.8σ. The best fit direction
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that we find does not coincide with any known special direction. In particular, the

axis of evil can not be explained by a semiclassical fluctuation in one mode with

large wavelength. Also, we find no indication of a fluctuation in a mode in the

direction of the torus axis obtained in chapter 2, so it is unlikely that the torus

signal is an artifact of a semiclassical fluctuation in one mode.

A semiclassical gaussian fluctuation in space gives a better fit to the data.

The improvement in χ2 is 17.8 for 5 extra parameters, corresponding to 3.6σ. The

best fit direction towards the center of the fluctuation does not coincide with the

axis of evil. For the axis of evil direction we find an improvement of 8.4 in χ2,

which gives a slight indication that the axis of evil can be due to a semiclassical

gaussian bump in space. However, the improvement is not big enough to claim a

detection.

Overall, our results show that it is unlikely that the scenarios we consider

for breaking the isotropy of space can explain the previously suggested possible

deviations from isotropy. Note, however, that a torus topology implies periodicity

in all the directions, not just the axes of the torus. And we have considered a

fluctuation in one single mode only and found an improvement corresponding to

2.8σ. Further investigation with more than one mode, perhaps an infinite spectrum

of modes, would be of interest and could possibly give an alternative explanation

to the torus topology signal. One scenario discussed in literature that modifies

the primordial power spectrum of fluctuations is modifications of Bunch-Davies

vacuum (see, e.g. [44, 45]). Our results imply that considering a non-isotropic

vacuum state for inflation could be of interest. Multi-field inflationary models may

also generate non-isotropic perturbations [46].

Chapter 3, in part is currently being prepared for submission for publication

of the material. Aslanyan, Grigor; Manohar, Aneesh, V. The dissertation author

was the primary investigator and author of this material.



Chapter 4

Summary

Firstly, we considered the possibility that the universe is not infinite. We

studied flat topologies compactified in three, two, or one dimensions. The exper-

imental data fits the model with two compactified dimensions the best. Infinite

universe is compatible with the data only at 4.3σ level. Although we did not

obtain the standard 5σ criterion to claim a discovery, we found a surprisingly

high signal for a finite topology. The maximum likelihood 95% intervals for the

size L of the compactified dimensions are 1.7 ≤ L/L0 ≤ 2.1, 1.8 ≤ L/L0 ≤ 2.0,

1.2 ≤ L/L0 ≤ 2.1 for the three cases, respectively, in terms of the distance to the

last scattering surface L0 = 14.4 Gpc. The 95% bounds obtained from Pearson’s

χ2 test are L/L0 ≥ 1.27, 0.97, 0.57 for the three cases, respectively.

Next, we considered semiclassical fluctuations of primordial perturbations

on large scales. We analyzed two possibilities - a fluctuation in one Fourier

mode and a gaussian fluctuation in space. Both of these possibilities fit the

data better than the standard primordial perturbations, but we find no strong

evidence. The 95% confidence intervals for the amplitude a0 of these fluctua-

tions from the maximum likelihood method are |a0| ∈ [1.5× 10−5, 7.1× 10−5] and

a0 ∈ [−0.7×10−3,−0.6×10−3]∪ [0.2×10−3, 1.3×10−3]∪ [3.0×10−3, 5.4×10−3] for

the two cases, respectively. Pearson’s χ2 test gives the bounds |a0| ≤ 6.45× 10−4

and −5.16 × 10−2 ≤ a0 ≤ 5.07 × 10−2 for the two cases, respectively, at 95%

confidence level.

All of the models we discussed break the isotropy of space, but none of

67
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them gives an explanation to the axis of evil.

We have performed multiple checks to make sure that the better fits we

obtain are not artifacts of some other effects. Although we find no such evidence,

further checks of the data are important.

Our results indicate that it is of interest to further study the scenarios we

consider. It is very important to verify our findings about the finite topology of

space with some independent data. The polarization data from the Planck satellite

to be released soon is a good candidate. The simple semiclassical modifications

of primordial perturbations we considered fit the data better, which means that

studies of more complex scenarios are in order. In particular, fluctuations in more

than one Fourier mode can be generated, in multi-field models of inflation for

example, and their analysis can be of interest.



Appendix A

The Standard Cosmological

Model and Inflation

The standard big-bang cosmology is extremely successful in describing the

evolution of the universe from at least the epoch of the synthesis of light elements

until now. Observational data has strongly confirmed the predictions of this model,

and we have seen no disagreements between the theory and the observations so

far. However, there is a number of fundamental cosmological problems for which

the model has no explanations. Inflationary theory, which is an extension to the

standard cosmology, has been proposed to address these difficulties of the model.

While being remarkably successful in solving the fundamental problems of stan-

dard cosmology, it also provides a natural way of explaining the anisotropies of

the cosmic microwave background and the large-scale structure (stars, galaxies,

clusters of galaxies, etc.) of the universe. In this appendix we briefly discuss the

standard model of cosmology and the basics of the theory of inflation.

We will use the “God-given” units ~ = c = 1. It is also convenient to use

the reduced Planck mass Mpl = (8πG)−1/2 ≈ 2.436 × 1018GeV ≈ 4.342 × 10−6g

instead of the gravitational constant G.
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A.1 The Standard Model of Cosmology

In this section we will give a very brief introduction to the standard big-bang

cosmology (for extensive discussion of the model see e.g., [50] [51]).

On large scales the observable universe is homogeneous and isotropic (cos-

mological principle). Even when considering the small-scale highly inhomogeneous

structure of the universe (such as stars and galaxies) it is convenient to assume a

homogeneous and isotropic background metric and impose the small-scale inhomo-

geneities as small perturbations. The background is described by the maximally-

symmetric Friedmann-Robertson-Walker metric:

ds2 = −dt2 + a2(t)

(

dr2

1−Kr2
+ r2

(

dθ2 + sin2 θdφ2
)

)

(A.1)

where (t, r, θ, φ) are the comoving coordinates (t being the cosmic time), K

is the spatial curvature, a(t) is the cosmic scale factor. It is convenient to

rewrite the metric in the form:

ds2 = −dt2 + a2(t)
(

dχ2 + F 2(χ)
(

dθ2 + sin2 θdφ2
))

(A.2)

where

F (χ) ≡















sinhχ

χ

sinχ

K = −1

K = 0

K = +1

(A.3)

The energy-momentum-stress tensor is that of a homogeneous and isotropic

fluid in the rest frame. It is diagonal with equal spatial components:

T µ
ν =















−ρ
p

p

p















(A.4)

where ρ is the density and p is the pressure of the fluid, which depend only on time.

To find the time dependence of the scale factor and the energy-momentum-stress

tensor, we must solve the Einstein field equations in General Relativity (see e.g.,

[52]):

Gµν ≡ Rµν −
1

2
gµνR =

Tµν
M2

pl

(A.5)
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The 0− 0 component of (A.5) gives the Friedmann equation:

H2 =
ρ

3M2
pl

−
KM2

pl

a2
(A.6)

while the conservation of the energy-momentum-stress tensor T µν
;ν = 0 gives the

continuity equation:

ρ̇+ 3H(ρ+ p) = 0 (A.7)

Here H ≡ ȧ/a is the Hubble parameter. Combining (A.6) and (A.7) we

can get an equation for the acceleration ä:

ä

a
= −ρ+ 3p

6M2
pl

(A.8)

which may also be obtained from the i− i component of (A.5).

To solve the equations (A.6), (A.7) we need the relation between ρ and p

(the equation of state). Of interest are the following cases:

1. Particles at rest (called matter hereafter):

p = 0 (A.9)

2. Radiation and ultra-relativistic particles (called radiation hereafter):

p =
1

3
ρ (A.10)

3. Vacuum energy (also referred to as the cosmological constant):

p = −ρ (A.11)

We can easily solve (A.7) for these cases to get for matter:

ρ ∝ a−3 (A.12)

For radiation:

ρ ∝ a−4 (A.13)

And for vacuum energy:

ρ = const (A.14)
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The universe contains all the three types of energy mentioned above. It is

convenient to introduce unitless density parameters as follows:

Ωi = ρi/ρc (A.15)

where

ρc = 3H2M2
pl (A.16)

is the so-called critical density (the density of the universe with 0 spatial curva-

ture) and the index i may denote matter (M), radiation (R), or vacuum energy

(Λ). We also introduce a “curvature density parameter”:

ΩK = −
KM2

pl

a2H2
(A.17)

Then the Friedmann equation (A.6) may be written in the form:

ΩΛ + ΩM + ΩR + ΩK = 1 (A.18)

Using (A.12), (A.13), (A.14), we can rewrite the Friedmann equation (A.6)

in the form:
(

H

H0

)2

= ΩΛ,0 + ΩM,0

(a0
a

)3

+ ΩR,0

(a0
a

)4

+ ΩK,0

(a0
a

)2

(A.19)

where the subscript 0 denotes the values at the present epoch. From (A.19) it is

clear that at an earlier epoch, when a is sufficiently small, matter density dominates

(matter domination epoch), and all the other terms can be neglected. In this

case the solution can be simply written:

a ∝ t2/3 (A.20)

Although the radiation density is negligibly small at the present time, be-

cause of a−4 dependence it is dominant at even earlier times than the matter

domination (radiation domination epoch), and in this case the solution be-

comes:

a ∝ t1/2 (A.21)
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As we will see below, of crucial importance to the inflationary theory is the

case when vacuum energy dominates the universe, with the solution:

a ∝ eHt (A.22)

where H = const.

Often it is convenient to use the conformal time η instead of the cosmic

time t, defined by:

dt = a(η)dη (A.23)

in terms of which the metric (A.2) can be written in the form:

ds2 = a2(η)
(

−dη2 + dχ2 + F 2(χ)
(

dθ2 + sin2 θdφ2
))

(A.24)

The solutions (A.20)-(A.22) can be rewritten in terms of the conformal time

as follows. For matter domination epoch we get:

a ∝ η2 (A.25)

For radiation domination:

a ∝ η (A.26)

And finally, for vacuum energy domination:

a ∝ −η−1 (A.27)

Note that for matter and radiation domination we chose η → 0 when a→ 0

and η → ∞ when a → ∞, but for vacuum energy domination we have η → −∞
when a→ 0 and η → 0 when a→ ∞.

Let us now introduce the concepts of particle and event horizons. The

horizons are defined for a given time η and a given comoving observer, i.e. a

point with fixed comoving spatial coordinates, which we will choose to be the origin

for convenience. The particle horizon is defined for a given initial time ηi (which

is usually chosen to be 0 for the standard cosmology since that is the point of

singularity) to be the set of comoving points from which a light signal could reach
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the given point from time ηi (or later) until time η. Since for light signals we have

ds = 0, from (A.24) we immediately get the radius of the particle horizon:

χp(η) = η − ηi (A.28)

The event horizon is defined in a similar way, but now it is for a given final

time ηf (usually chosen to be infinity for standard cosmology) and is the set of

comoving points to which a light signal can travel from time η until time ηf (or

earlier). The radius of the event horizon is:

χe(η) = ηf − η (A.29)

Note that for matter and radiation domination there is a finite particle

horizon but an infinite event horizon, however for vacuum energy domination there

is an infinite particle horizon but a finite event horizon.

Another useful way of characterizing time is the redshift of light that

has been emitted at the given time and is being observed today. Because of the

expansion of the universe the wavelength of light also changes in the same way as

all the other physical distances, and the redshift z is defined by the relation:

1 + z =
λobs
λemit

=
a(t0)

a(t)
(A.30)

For some of the measurements it is convenient to deal with some other

notions of distance. Suppose we are observing a star of known intrinsic luminosity

L and we want to determine the distance to that star by the measured flux f . The

luminosity distance dL is defined by the relation:

f =
L

4πd2L
(A.31)

To find the relation between dL and the comoving distance let us assume

that the star is at the origin of coordinates and we are a comoving distance χ away.

Assuming that the current value of the cosmic scale factor is 1 we can calculate

the surface area of a sphere centered at the star and passing through our position

χ from the metric (A.2) to be

A = 4πF 2(χ)
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Then the total energy of photons that passes through that sphere in time

dt is

E = fAdt

But that energy is not the energy emitted by the star in time dt since the

rate at which the photons arrive is lower than the rate at which they were emitted

by the redshift factor (1 + z). Also, the energy of each photon is redshifted by the

same factor, so the energy E is related to the luminosity L by

E =
Ldt

(1 + z)2

Collecting everything together, we get

dL = (1 + z)F (χ) (A.32)

Now suppose we are looking at a star of known physical size l and we

measure the small angle subtended by it to be θ. We define the angular diameter

distance dA by the relation:

θ =
l

dA
(A.33)

From the metric (A.2) we can calculate the physical circumference of a

circle around our position (assumed to be the origin of coordinates) at the time of

emission. Assuming that the comoving distance to the star is χ we get:

L = 2πa(t)F (χ) =
2πF (χ)

(1 + z)

Then the angle subtended by an object of physical size l is given by:

θ = 2π
l

L
=

(1 + z)l

f(χ)

So the angular diameter distance is

dA =
F (χ)

(1 + z)
=

dL
(1 + z)2

(A.34)

Let us now turn to the currently observed values of cosmological parameters.

The matter part of the universe consists of baryons and cold dark matter,

we will define their density parameters to be ΩB and ΩC respectively, so that
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ΩM = ΩB + ΩC . The radiation part of the universe at the epoch of matter-

radiation equality (i.e. when ΩM = ΩR) consisted of photons and relativistic

neutrinos (at later times the neutrinos might have become non-relativistic, but it

is of not much importance since their contribution to the energy density of the

universe becomes negligible shortly after matter-radiation equality). The observed

values of the parameters by combining WMAP7+BAO+H0 [30] are as follows

ΩB,0 = 0.0456± 0.00163

ΩC,0 = 0.227± 0.014

ΩΛ = 0.728+0.015
−0.016

H0 = 70.4+1.3
−1.4km/s/Mpc

Tcmb = 2.725K

zeq = 3209+85
−89 (A.35)

where Tcmb is the temperature of the cosmic microwave background radiation, i.e.

photons measured today, and zeq is the redshift of matter-radiation equality.

A.2 Shortcomings of the Standard Big-Bang Cos-

mology

A.2.1 Horizon Problem

The cosmic microwave background radiation was emitted at about redshift

of 1100 [1] and has been traveling to us freely since then, so it effectively gives

a snapshot of the universe at that time. One important feature of the CMB is

that it is extremely homogeneous all across the sky (the anisotropies are about 5

orders of magnitude smaller than the background)! However, as we saw earlier, the

particle horizon grows with time during radiation and matter domination epochs,

so it was smaller at the time CMB was emitted. The conformal time (which is

equal to the comoving size of the particle horizon) corresponding to the emission

of CMB (which is called the last scattering surface or LSS since after that time
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photons undergo no scatterings) is given by:

ηLSS =

∫ tLSS

0

dt

a(t)
(A.36)

while the comoving distance to LSS is given by:

χLSS =

∫ t0

tLSS

dt

a(t)
(A.37)

The scale factor a(t) can be found by integrating eq. (A.19). If we use

the values of the parameters in (A.35) we find the current age of the universe,

t0 = 13.75Gyr, and the time of last scattering, tLSS = 371000yr. Assuming flat

universe, which is in good agreement with (A.35) we can find the angle that the

particle horizon at the time of CMB emission currently subtends on the sky:

θLSS =
ηLSS
χLSS

= 1.15◦ (A.38)

meaning that cmb photons coming from wider separation of angles have never been

in causal contact before. The question then naturally arises, how did the CMB

become so homogeneous?

A.2.2 Flatness Problem

Consider

Ω = ΩM + ΩΛ + ΩR (A.39)

We can rewrite the Friedmann equation (A.18) in the form:

Ω− 1 =
KM2

pl

a2H2
(A.40)

Now, if a(t) ∝ tn with n < 1 (which is the case for both matter and

radiation domination epochs) a2H2 ≡ ȧ2 ∝ t2(n−1) decreases, hence Ω shifts away

from 1 with time. However, the present value of Ω is very close to 1, |Ω0−1|<∼10−2,

which means that Ω has to be extremely close to 1 at earlier epochs. For example,

at the time of big bang nucleosynthesis (or BBN), which was about 3 minutes

after big bang, we must have |ΩBBN − 1|<∼10−16 (BBN is the earliest epoch that

has been very well tested observationally), at the GUT scale the accuracy becomes
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|ΩGUT − 1|<∼10−54, while at the Planck scale (the scale at which quantum effects

of gravity become important) we get |Ωpl − 1|<∼10−60. In differential geometry a

flat manifold is just one point in the continuum of different curvatures, i.e. there

is nothing special about it, so that extreme fine tuning of the density parameter

requires explanation.

A.3 Inflation

A.3.1 Inflation in the Abstract, the Solution of the Cos-

mological Problems

By definition, inflation is an epoch during which the universe expands with

acceleration:

ä > 0 (A.41)

which is, of course, equivalent to increasing a2H2. If inflation happens at some

earlier time and lasts sufficiently long then it can solve the above mentioned prob-

lems of standard cosmology. Since BBN has been tested observationally, inflation

must have happened (if at all) before that time. Furthermore, the energy scale

of BBN is of the order of 0.1MeV , while accelerators have tested physics to the

energy scale of about 1TeV , so inflation must have happened before that energy

scale. The typical models suggest that inflation happened at around GUT scale.

Let us analyze the problems quantitatively.

1. Horizon problem

Let us assume exponential expansion during inflation (the expansion must

be very close to exponential to be in agreement with the observed CMB

anisotropies) and that immediately after the end of inflation the universe

enters radiation domination. Let inflation start at tbeg and end at tend, and

during that time a(t) = a1e
HT . Since the hubble parameter is related to the

energy density of the universe by Friedmann equation and the energy density

changes continuously, the hubble parameter during inflation (constant during

that time) must be the same after entering radiation domination. To solve



79

the horizon problem we need the comoving particle horizon at the time of

CMB (tLSS) since the beginning of inflation to be at least the comoving size

of the current observable universe (or, more precisely, the radius of LSS, but

it is very close to the size of the universe as we saw above). So we need

χLSS ≤
∫ tend

tbeg

dt

a(t)
+

∫ tLSS

tend

dt

a(t)
(A.42)

However,
∫ tLSS

tend

dt

a(t)
≤
∫ tLSS

0

dt

a(t)
= ηLSS

which is much less than χLSS, as we saw above. So we can neglect the second

tem in (A.42) to get:

χLSS ≤
∫ tend

tbeg

dt

a1eHt
=

1

H

(

1

abeg
− 1

aend

)

But aend ≫ abeg (as we will see shortly), so we can neglect the second term

to get:

χLSS ≤ 1

Habeg
=

1

Haend

aend
abeg

We define the number of e-folds during inflation to be:

N = ln(aend/abeg) (A.43)

and we get from above:

N ≥ ln(HaendχLSS) (A.44)

Assuming that inflation happens at GUT scale we get N ≥ 60. Even if we

assumed that inflation happened at TeV scale we would get N ≥ 30. The

unrealistic assumption that inflation happened right before BBN would give

N ≥ 16. So even under very strict conditions on inflation, we need many

orders of magnitude of expansion during inflation to explain the horizon

problem. That is why a close to exponential expansion is needed with vacuum

energy domination.
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2. Flatness problem

Assuming that at the beginning of inflation |Ω−1| ∼ 1 and using the numbers

from subsection A.2.2 we get for inflation happening at GUT scale N ≥ 62,

while for inflation ending right before BBN N ≥ 18. So again, a similar

number of e-folds is necessary to explain the flatness problem.

As we saw above, a large number of e-folds is needed to solve the problems

of the standard cosmology. So during inflation the universe must be very close to

vacuum energy domination and should change slowly to make sure that inflation

lasts long enough. To quantitatively describe the “slowness” of inflation we intro-

duce the dimensionless slow-roll parameters ǫ and η (not to be confused with

the conformal time!):

ǫ ≡ − Ḣ

H2
(A.45)

η ≡ dǫ

dN
=

ǫ̇

Hǫ
(A.46)

where

dN ≡ Hdt

By definition of inflation, it will end as soon as ǫ equals to 1. In order to get

long enough slow-roll inflation we need ǫ≪ 1 and we also need it to change slowly

so that it does not become 1 very early, that is the reason why we introduced

the second parameter η which we also need to stay much smaller than 1. These

parameters play an important role in the calculation of CMB anisotropies, and in

order to be in agreement with observations we do need these parameters to be very

small!

A.3.2 The Simplest Model of Inflation

The simplest way to physically realize the conditions needed for inflation

is through a single scalar field. The action of such a field, minimally coupled to

gravity is

S = SEH + Sφ =

∫

d4x
√−g

[

M2
pl

2
R − 1

2
gµν∂µφ∂νφ− V (φ)

]

(A.47)
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The energy-momentum tensor of the scalar field is1

Tµν ≡ − 2√−g
δSφ

δgµν
= ∂µφ∂νφ− gµν

(

1

2
∂σφ∂σφ+ V (φ)

)

(A.48)

Even if the universe is not flat, it will get very close to being flat after a few

e-folds during inflation, as we saw above, so for simplicity we will assume that the

universe is flat from now on. Using the FRWmetric (A.1) in Cartesian coordinates,

and assuming homogeneous field φ(t, ~x) = φ(t), the energy-momentum tensor takes

the form (A.4) with

ρφ =
1

2
φ̇2 + V (φ) (A.49)

pφ =
1

2
φ̇2 − V (φ) (A.50)

so the condition p = −ρ for exponential expansion can be approximately satisfied

if the kinetic term φ̇2/2 is much smaller than the potential term V (φ).

The Friedmann equation (A.6) takes the form:

H2 =
1

3M2
pl

(

1

2
φ̇2 + V (φ)

)

(A.51)

And the continuity equation (A.7) becomes (after dividing by φ̇):

φ̈+ 3Hφ̇+ V,φ = 0 (A.52)

Taking the time derivative of (A.52) and using (A.51) we get

Ḣ = − φ̇2

2M2
pl

(A.53)

and the slow-roll parameter (A.45) takes the form

ǫ =
1

2M2
pl

φ̇2

H2
(A.54)

Using (A.49), (A.50), and (A.51) the acceleration equation (A.8) can be

written as
ä

a
= H2(1− ǫ) (A.55)

Once again, we see that inflation ends as soon as ǫ becomes 1.

1δg = −ggµνδgµν
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The second slow-roll parameter (A.46) takes the form

η = − φ̈

Hφ̇
(A.56)

As we noted earlier, inflation will last long enough to solve the problems of

standard cosmology if ǫ≪ 1 and η ≪ 1, which implies

φ̇2 ≪ V (φ) (A.57)

|φ̈| ≪ |3Hφ̇|, |V,φ| (A.58)

We can also introduce the potential slow-roll parameters which depend

only on the shape of the potential V (φ)

ǫv ≡
M2

pl

2

(

V,φ
V

)2

(A.59)

ηv ≡M2
pl

V,φφ
V

(A.60)

It is not hard to show that in slow-roll regime the two sets of parameters

are related as follows

ǫ ≃ ǫv, η ≃ ηv − ǫv (A.61)

and

H2 ≃ V (φ)

3M2
pl

≃ const (A.62)

φ̇ ≃ − V,φ
3H

(A.63)

implying

a(t) ∝ eHt (A.64)

Finally, we can calculate the total number of e-folds N(φ) starting with

some value of the field φ until the end φend

N(φ) =

∫ tend

t

H dt =

∫ φend

φ

H

φ̇
dφ

which, using (A.62) and (A.63), takes the form

N(φ) ≃ 1

M2
pl

∫ φ

φend

V

V,φ
dφ

N(φ) ≃ 1

Mpl

∫ φ

φend

dφ√
2ǫv

≃ 1

Mpl

∫ φ

φend

dφ√
2ǫ

(A.65)



Appendix B

CMB Lensing

As the CMB photons travel through the universe after recombination with-

out scattering off charged particles, they are affected only by gravity, under which

they get redshifted but also deflected. Lensing refers to the deflection of pho-

tons. In a homogeneous universe there is no lensing, lensing results only from

anisotropies. Since only large scales contribute to lensing significantly, and these

large scales have stayed in the linear regime up to now, we calculate the deflection

angle only up to first order in anisotropies. CMB lensing is discussed in some

standard textbooks, such as [36], as well as in [47, 48, 49]. In this appendix we

will briefly summarize the main results.

The scalar metric can be written in the Newtonian gauge in the form (vector

and tensor modes do not contribute to lensing)

ds2 = −(1 + 2Ψ)dt2 + a2(t)(1 + 2Φ)δijdx
idxj (B.1)

There is no anisotropic stress in the late universe (after recombination),

which implies

Φ = −Ψ (B.2)

The geodesic equation for photons from this metric takes the form

d2

dχ2
(χθi) = −2Ψ,i (B.3)
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where χ is the conformal distance to the photon, θ is the direction.

Integrating, we get

d

dχ
(χθi)

∣

∣

∣

∣

χ

0

= −2

∫ χ

0

dχ′Ψ,i(x(χ
′))

d

dχ
(χθi) = −2

∫ χ

0

dχ′Ψ,i(x(χ
′)) + θi(0)

χθi
∣

∣

χ

0
= −2

∫ χ

0

dχ′′

∫ χ′′

0

dχ′Ψ,i(x(χ
′)) + χθi(0)

θi(χ) = − 2

χ

∫ χ

0

dχ′′

∫ χ′′

0

dχ′Ψ,i(x(χ
′)) + θi(0)

Changing the order of integration, we get

θi(χ) = θi(0)− 2

χ

∫ χ

0

dχ′Ψ,i(x(χ
′))(χ− χ′)

Let χ∗ be the conformal distance to the last scattering surface. Then

θ(χ∗) ≡ θ̃ is the original (unlensed) angle, θ(0) ≡ θ is the observed angle:

θ̃i = θi − 2

χ∗

∫ χ∗

0

dχΨ,i(x(χ))(χ
∗ − χ)

Since xi = χθi

Ψ,i =
1

χ

d

dθi
Ψ

We denote

φ(n̂) ≡ −2

∫ χ∗

0

dχΨ(χn̂, η0 − χ)
χ∗ − χ

χ∗χ
(B.4)

and call the lensing potential, where η0 is the current conformal time. Denoting

the lensed and unlensed temperature anisotropies (or any other scalar function)

by Θ and Θ̃ respectively, we can write

Θ(θ) = Θ̃(θ̃)

which gives

Θ(n̂) = Θ̃(n̂+∇φ(n̂)) (B.5)
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where ∇ is the covariant derivative on the sphere. To first order

Θ(n̂) = Θ̃(n̂) +∇iφ(n̂)∇iΘ̃(n̂)

In harmonic space this takes the form

δΘlm =
∑

LM

∑

l′m′

φLMΘ̃l′m′Iml
M
L

m′

l′ (B.6)

where

Iml
M
L

m′

l′ =

∫

dn̂Y ∗
lm∇iYLM∇iYl′m′ (B.7)

Iml
M
L

m′

l′ = (−1)m

(

l L l′

−m M m′

)

0FlLl′ (B.8)

sFlLl′ = [L(L+ 1) + l′(l′ + 1)− l(l + 1)]

√

(2L+ 1)(2l + 1)(2l′ + 1)

16π

(

l L l′

s 0 −s

)

(B.9)

Let us now obtain the relationship between the lensing potential and pri-

mordial perturbations. Since we consider only linear order, the calculation is done

in Fourier space

Ψ(~x, η) =

∫

d3k

(2π)3
Ψ(~k, η)ei

~k·~x

The gravitational potential is related to primordial curvature perturbation

by the transfer function

Ψ(~k, η) = TΨ(k, η)R(~k) (B.10)

Note that the transfer function does not depend on the direction of ~k. The

lensing potential takes the form

φ(n̂) =

∫

d3k

(2π)3
R(~k)

∫ χ∗

0

dχ(−2)
χ∗ − χ

χ∗χ
ei(

~k·n̂)χTΨ(k, η0 − χ)

Denoting1

RΨ(k, k̂ · n̂) ≡
∫ χ∗

0

dχ(−2)
χ∗ − χ

χ∗χ
eikχ(k̂·n̂)χTΨ(k, η0 − χ) (B.11)

1TΨ, as well as RΨ can be calculated numerically, for example using the publicly available
code CAMB.
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we get

φ(n̂) =

∫

d3k

(2π)3
R(~k)RΨ(k, k̂ · n̂) (B.12)

In harmonic space

φlm =

∫

dΩY ∗
lm(n̂)φ(n̂)

φlm =

∫

d3k

(2π)3
R(~k)

∫

dΩY ∗
lm(n̂)RΨ(k, k̂ · n̂)

Decomposing RΨ into Legendre polynomials

RΨ(k, k̂ · n̂) =
∑

l

(−i)l(2l + 1)Pl(k̂ · n̂)Rl
Ψ(k)

we get
∫

dΩY ∗
lm(n̂)RΨ(k, k̂ · n̂) = 4π(−i)lY ∗

lm(k̂)R
l
Ψ(k)

φlm = 4π(−i)l
∫

d3k

(2π)3
R(~k)Y ∗

lm(k̂)R
l
Ψ(k) (B.13)

Assuming the standard correlation

〈

R(~k)R∗(~k′)
〉

= (2π)3PR(k)δ
3(~k − ~k′) (B.14)

with

PR(k) ≡
2π2

k3
∆2

R(k) (B.15)

where ∆2
R
(k) is the unitless power spectrum, the correlation between φlm’s takes

the form

〈φlmφ
∗
l′m′〉 = δll′δmm′Cφ

l (B.16)

Cφ
l = 4π

∫

dk

k
∆2

R(k)|Rl
Ψ(k)|2 (B.17)

Rl
Ψ can be calculated in terms of spherical Bessel functions

Rl
Ψ(k) = 2(−1)l

∫ χ∗

o

dχ
χ∗ − χ

χ∗χ
jl(kχ)TΨ(k, η0 − χ) (B.18)
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