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Figure 1: Battle of the Sexes

1 Introduction

Many economic settings can be modeled as games of strict strategic complementar-
ities. Here we show that for such games, properly-mixed Nash equilibria (i.e., Nash
equilibria that are not in pure strategies, referred to as PMNE hereafter) are unstable
under a broad class of learning processes, and so are not likely to be good predictions
of play.

We shall give a flavor of our results using the “Battle of the Sexes” game in
Figure 1. Players 1 and 2 each simultaneously choose an element, from {0, B}. Payoffs
are specified in the bimatrix to the left. Let p; be the probability with which player
i selects . The best responses are shown in Figure 1 on the right. When 2 plays
O with probability smaller than 2/3,-1 sets p; = 0; when p, equals 2/3 player 1 is
indifferent between O and B, so any choice of p; is a best response; when 2 sets
py larger than 2/3, 1 will optimally respond by choosing p; = 1. There are three
Nash equilibria of this game, indicated by the three points where the best-response
functions intersect: They are (0,0),(1/3,2/3) and (1,1).

Battle of the Sexes is a game of strict strategic complementarities. To check for
complementarities we need an order on players’ strategies: say that O is “larger”
than B. Then the players’ best responses are monotone increasing. For example, if
1 increases her strategy from B to O then 2 increases her best response from B to
O. That best-responses are increasing is only necessary for the game to have strict
strategic complementarities, but for now it will suffice.

Suppose that our prediction of play for Battle of the Sexes is the PMNE (p1,p2) =




(1/3,2/3); but suppose that the players’ beliefs about their opponent’s play are
slightly wrong. In particular, suppose 1 believes 2 will select the larger action (O)
with probability 2/3+ ¢ and that 2 believes 1 will select the larger action with proba-
bility 1/3+ €. By choosing € > 0 small enough, these perturbed beliefs are arbitrarily
close to the equilibrium beliefs. Now, as can be seen from the best-response functions
in Figure 1, given these beliefs both players will select O with probability 1.

We shall now argue that, if the players repeatedly play Battle of the Sexes, each
time best-responding (myopically) to their beliefs, they will move away from our
original prediction. Both players observed their opponent choosing O, so they might
infer that they were right in giving O larger weight than what (1/3,2/3) does. They
might “update” their beliefs and give the larger action, O, more weight after observing
larger play (we will say that beliefs are monotone if they behave in this way). Suppose
that the game is repeated. Given these new beliefs, with O receiving yet higher
weight, play will still be (O,0). It is-easy to see that repeated play of Battle of
the Sexes will then always reinforce the initial deviation from the Nash equilibrium
beliefs (1/3,2/3)—so (1/3,2/3) is unstable.

Note that there is nothing non-generic or knife-edge about the perturbations we
consider, it is plausible that players would end up with perturbed beliefs like those
above. As players start myopically playing the PMNE, they will play (O, 0) with
probability 2/9, and any finite sequence of (O, O) play has positive probability. It is
plausible that, after observing several rounds of (O, O), players change their beliefs in
the direction of giving “my opponent plays O” larger probability. Our point is that
deviations like these will, under our assumptions, not be corrected by subsequent
play. Fudenberg and Kreps (1993) show that, under appropriate assumptions on
learning dynarmics, play in the long run cen resemble a PMNE. They show that any
equilibrium is a steady state of their learning dynamics. Our point is that PMNE are
repelling steady states, and therefore may not be good predictions.

Games with strict strategic complementarities are common in economics, and we
believe that our results are useful for economists. For example, consider the Bertrand
oligopoly model with differentiated products (Tirole 1988, p. 280): Pure strategies in
this model are easy to analyze both using calculus techniques (as in Tirole), or lattice-
theoretic techniques (Milgrom and Roberts 1990). Mixed strategies are difficult to




analyze in the Bertrand model, so our paper provides a justification for focusing
on pure-strategy equilibria. The problem in Bertrand oligopoly is quite common in
other contexts as well. The textbooks by Topkis (1998) and Vives (1999) contain
many economic examples of games with strategic complementarities. Complemen-
tarities provide tools for working with pure-strategy equilibria (see Topkis (1998}
and Vives (1999) for an overview of these tools), but not mixed strategy equilibria
(Echenique 2000). In addition, economists want to take derivatives, and find first-
order conditions, which requires them to ignore mixed-strategy equilibria.

The literature on learning PMNE has mostly studied restrictive subclasses of
games. We believe that ours are the first results for a class of games that is widely used
by economists. Hofbauer and Hopkins (2001) is the paper closest to ours. Hofbauer
and Hopkins study the stability of PMNE in two-player finite games of identical
interests. Fudenberg and Kreps (1993), Benaim and Hirsch (1999), Kaniovski and
Young {1995) and Ellison and Fudenberg (2000) focus mostly on 2X2 and 3X3 games.

The paper is organized as follows. In Section 2 we give some basic definitions.
In Section 3 we describe the learning model that we will use. Section 4 contains the
main result, and gives some intuition for its proof. In Section 5 we consider purified
mixed-strategy equilibria. In Section 6 we justify the assumption of weakly monotone
beliefs. In Section 7 we prove Theorems 1 and 2.

2 Preliminaries

2.1 Lattice-theoretic definitions

The definitions in this subsection, and the application of lattice theory to game theory
and economics, is discussed at length in Topkis (1998) and Vives (1999). A set X
with a transitive, reflexive, antisymmetric binary relation < is a lattice if whenever
z,y € X, both z Ay = inf {z,y} and £ V y = sup {z,y} exist in X. It is complete
if for every nonempty subset A of X, inf A4,sup A exist in X. Note that any finite
lattice is complete. A nonempty subset A of X is a sublattice if for all z,y € A,
TAxy,&Vxy € A, where £ Ax y and z Vx y are obtained taking the infimum and
supremum as elements of X (as opposed to using the relative order on A). A nonempty
subset A C X is subcomplete if B C A, B # 0 implies infx B,supx B € A, again
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taking inf and sup of B as a subset of X. The order-interval topology on a
lattice is the topology obtained by taking the closed order intervals as a sub-basis of
the closed sets. In Euclidean spaces the order-interval topology coincides with the
usual topology. A lattice is complete if and only if it is compact in its order-interval
topology.

Let X be a lattice and T a partially ordered set; f : X — R is supermodular
if, forall z,y € X f(z)+ f(v) < flzAy)+ flzvy); f: X xT - R has increasing
differences in (z,t) if, whenever z < 2, ¢t < t, f(z',1) — f(z,?) £ f(2',¥) — fl=z,1);
f: X xT — R has strictly increasing differences in (z.1) if z < z',t < t/, then

fl@8) = fla,t) < fla, ) — [z, 7).

2.2 Probability measures and first-order stochastic dominance

Let X be a lattice endowed with a topology finer than its order-interval topology. 1
Let P(X) denote the set of (Borel) probability measures over X. A subset A C X
is increasing if, forall z € A,y € X and z < y imply y € A. For example, if
X C R, and R has the usual order, A is increasing if and only if 1t is an open or
closed half-interval, i.e. either of the form [z,00) or {z,00). For u,v € P(X}, p is
smaller than v in the first-order stochastic dominance order (denoted p < v)
if, for all increasing sets A C X, p{4) < v(4).

Let X be a complete lattice. The support of u € P(X) is the intersection
of all closed probability-one events; it is denoted supp (). 2 For any z € X, the
singleton {z} is measurable, as it is a closed order interval, and thus closed in the
order-interval topology. Let 8. € P(X) denote the degenerate probability measure
that gives probability one to z. A probability measure p € P(X) is properly mized
if supp (1) is not a singleton.

Remarks:

1Ty check that a topology T is finer than the order-interval topology it is sufficient to prove that
closed intervals are closed under 7—the order-interval topology is the coarsest topology for which
order intervals are closed. For example, if P(X) is ordered by first-order stochastic dominance it is
easy to show that its order-interval topology is coarser than its weak topology, see Remark 2 below.

ZDefined in this way, every measure has a non-empty support, in contrast with other definitions
of support, see e.g. Royden (1988).




1. If 1 € P(X) is properly mixed then there is no z € X with full measure as a
subset of X, ie. there is no z € X such that p({z}) = 1. To see this, let {z}
be of full measure, then supp (1) C {z} because {z} is closed. Since supp (u)
is nonempty, supp (1) = {z}, and p is not properly mixed.

2. If P(X) is ordered by first-order stochastic dominance, closed order-intervals
are weakly closed. That is, for any y, ' € P(X), (i, it'] is weakly closed. Let A
be the collection of all increasing subsets of X. Then, the order-interval [y, 4]
is:

wvl= n  ({pePX): E) < p(E)}n{peP(X):p(E) < p(E)}).

{EcA}

But for all z, {p € P(X) : u(E) < p(E)} and {p € P(X): p(E) < p/(E)} are
weakly closed sets (Aliprantis and Border (1999) Theorem 14.6). Then, order-
intervals are weakly closed.

2.3 Complementarities, strategies and beliefs

A game in normal form is described by (N, {(S;,u;} : i € N}), where N is a finite set
of players, and each player i € N is endowed with a strategy space S; and a payoff
function u; : § = X;enSi — R. Let n be the number of players in V.

Definition 1 A normal-form game T = (N, {(S;,u:) : ¢ € N}) is a game of strate-
gic complementarities (GSC) if, for alli € N,

1. S; is a complete latlice;

2. u; is bounded, s; — ui(si, s_;) is supermodular for all s_; € S_;, (8,5-¢) =

u;(8;, 5-;) has increasing differences, and
8. s; = u;(8i, 5_;) is upper semicontinuous for all s_; € S_;.

I’ is a game of strict strategic complementarities (GSSC) if it is a GSC

and, in addition, (s;, 8_;) — ui(8;, 5_;) has strictly increasing differences.




The mized extension of a game I' = (N, {(S;,u;): i € N}) is the game (N,
{(P(S;),U;) : i € N}), where each player i is allowed to choose any mixed strategy
o; € P(S;), and where a mixed-strategy profile ¢ = (01,...0,) gives player i the
payoff Ui(0) = [ ui(s)dXien0i(s;). We shall identify a vector of probability measures
o = (04,...0,) € X2, P(S;) with the corresponding product measure in P(S5). So,
for example, U;(0) = [, ui(s)do(s).

Player #’s beliefs about her opponents’ play is represented by a probability dis-
tribution p; € P(S_;). Belief space is then ¥ = XuenP(S¢). A mixed-strategy
Nash equilibrium ¢* = (o},...07,) is a situation where ¢ chooses the strategy o}
optimally given that her beliefs about opponents’ play is “right”, that is ¢’s be-
lief is o*; € P(S_;). So there is a natural “copy” of o* in belief space, the vec-
tor (¢*,,0%,,...0%,) € ¥. More generally, to each mixed strategy profile ¢ =
(01,...0,) € X2, P(S;), there corresponds beliefs o_; € P(S_;) for player i. We shall
denote by % : x2;P(S;) — ¥ the map from strategy profiles to beliefs: ¥;0 = o_s,
and Yo = (Y,;0)ien = (0-1,0-9,...0_3).

The set of player i’s possible beliefs P{S_;) is endowed with the weak topology and
the first-order stochastic dominance order. Belief space, ¥ = X;cxP(5_;) is endowed
with the product topology and the product order.

3 Learning Model

Learning takes place through repeated play of a stage game, I' = (N, {(S;, w;} : ¢ € N -
In each stage, player i observes (privately) a signal w; € €);, given some probability
space (€, F;, p;). These signals are not payoff-relevant; player : uses them as ran-
domization mechanisms, making her choice of a pure strategy conditional on the
realization of the signal. If (£, 3, p;) is rich enough this does not restrict her choice
of randomization over pure strategies. The set of all signal profiles is Q = X;en (2.

At each stage, a pure-strategy profile s € S results from the players’ choices.
Histories of play (s!,...s') are denoted hi. The set of all histories of length ¢ is
H! = St and H = U2, H* is the set of all histories of finite length, including H® = {8},
the “null history.”

Fach player i chooses a repeated-game strategy &; : £; x H — S, and is endowed




with repeated-game beliefs p; : H — P(S5_;). The interpretation is that, at each time
t and history ht, p,;(ht) € P(S_;) represents ¢’s assessment of her opponents’ play in
stage t + 1 of the game. Given this assessment, and the realization of w, she chooses
a stage-game strategy £;(w, h*) € S;. Note that we allow player i to believe that her
opponents’ play is correlated—correlated beliefs arise naturally even if players mix
independently, see e.g. Fudenberg and Kreps (1993).

Let £ = (£;)ien be a collection of strategies for all players and p = (y;)ien be a
collection of beliefs. The pair (£, i) is a system of behavior and beliefs. Note
that £: QO x H— Sand pu: H— .

Player 4’s best-response correspondence §; : P(S_;) — S; is defined by

B(vs) = angmascs, | (i a-)dvi(a-)

So, B;(v;) is the set of best responses to beliefs v; € P(S_;) about opponents’ play.
The set of best responses to strategy s.; is then 3;(d,_,). The players’ joint best-
response correspondence is 8: ¥ — S, defined as S(v) = (8;(vi))ien-

Definition 2 A system of behavior and beliefs (£, 1) is myopic if for all 4 € N,
ht € H and w; € €,
Ei{wi, BY) € Isz'(-u'i(h’t)) = ﬂTgmMg,-esif wi(8i, 8-5) i (RF) (ds ).

The assumption of myopic behavior is very commeon in the literature on learning in
games. It is restrictive because it implies that players do not attempt to manipulate
the future behavior of their opponents—they simply maximize current payoffs based
on current beliefs. Myopic behavior is usually justified by assuming that, in each
period of time, players are selected at random from a large population to play the
stage game, so the likelihood that two particular players will meet more than once to
play the stage game is negligible (see chapter 1 of Fudenberg and Levine (1998) for a
discussion).

Qur results on learning will rely on an important assumption: if a player has a
certain prediction about her opponents’ play, and then observes play that is weakly
larger than any strategy she attached a positive probability to, then she will “up-
date” her beliefs about opponents’ behavior and predict weakly larger play. This
requirement on beliefs we call weak monotonicity. To be precise:
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Definition 3 Beliefs u are weakly monotone if, for alli € N, and h' € H,
(sup [supp p;(R")] < 87, for T=1+1,.. T = (m(h') <at 1 (RT)).

Where hT is any history that coincides with ht in periods 7 = 0,...t and where i’s
opponents play s7, in periods T =1t +1,...T.

The idea behind this definition is that, if p;(h*) gives i's beliefs at time ¢ +1 and
history hf, and if play at times £ + 1,t + 2,...T is weakly larger than any play ¢
believed possible at time ¢, then i will have weakly larger beliefs at time T

Weak monotonicity is the only condition we need on beliefs, and it is rather mild.
Beliefs in Cournot best-response dynamics satisfy weak monotonicity. We show in
Section 6 that fictitious-play beliefs, and beliefs updated by Bayes’ rule, satisfy weak
monotonicity (see Fudenberg and Levine (1998) for definitions and discussion of these
learning models). As a simple justification for weakly monotone beliefs, note that, if
beliefs are weakly monotone then play will, under our assumptions, be monotone, so
beliefs are “right” in being weakly monotone. Monotonicity is then, in a sense, self
enforcing.

We have used the qualifier “weak” to differentiate our condition from the stronger
requirement that any larger play produce larger beliefs (e.g. in Hopenhayn and Prescott
(1992) and Echenique (2000)). The stronger condition does not arise naturally in
standard learning models.

4 Instability of Mixed Equilibria

We now prove that, at any PMNE ¢ of a GSSC, there are arbitrarily small per-
turbations that set off learning dynamics so that strategies are always outside of a
neighborhood of . Qurs is an instability result: these small perturbations from o
are never “corrected” by subsequent dynamics. The perturbation takes the form of
slightly wrong beliefs. * We shall first give a heuristic argument for why the instability

obtains.

3 As an alternative, we could perturb behavior. It seems that, of the two equilibrium assumptions,
that behavior is rational given beliefs and that beliefs are “correct”, it is the second that most of the
non-equilibrium literature seeks to weaken. In any case, we obtain the same results if we perturb
behavior instead of beliefs.
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Figure 2: Unstable mixed equilibrium

4.1 Intuition for the instability result

Let ({1,2}, {(S;,u:) : i=1,2}) be a two-player GSSC. If each strategy space is a
subset of R, we can represent the joint strategy spaces in R?—see the drawing on
the left in Figure 2. Let o be a mixed-strategy equilibrium where both players select
a properly mixed strategy. The set of pure-strategy best respenses to o, Bl{yo), is
a subcomplete sublattice (Topkis 1998), for example the rectangle in Figure 2. The
support of o must lie in B(vo), and likewise sup B(vo) € B(¢o).

Lets perturb beliefs in the direction of the largest element in B(¢o). Consider
beliefs pu® = (1—€)0 +€dsup spoy. With beliefs 4°, player i mixes equilibrium beliefs
1,0 with degenerate beliefs that #’s opponent will play their largest best responses to
their equilibrium beliefs. This was the perturbation we used in “Battle of the Sexes”
in the Introduction.

Observe that Yo <, u°, and that, by choosing € > 0 small enough, 1° can be
taken arbitrarily close to 1o. The support of p° lies in B(3o), which is crucial for
our results. We represent the situation in Figure 2. On the left is the strategy space,
where any best response to y® must lie to the north-east of sup 8 (1pg). On the right
is belief space, ¥-—we represent ¥ as a subset of the plane, which is inaccurate and
just a means of visualizing the ideas behind our results.

Consider any learning dynamics that starts off at the perturbed beliefs u°. Because
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complementarities are strict, any best response to perturbed beliefs 1® is (weakly)
larger than any best response to 9o. In particular, then, play is weakly larger than
any element in the support of 4°. Then, if beliefs are monotone, “updated” beliefs,
after observing first-period play, are weakly larger than 1%, Now the argument follows
by induction: if play in all periods 1,2,...¢t—1 is larger than sup 3(¢c), then period
t beliefs must be weakly larger than 1°, and period ¢ play must be weakly larger than
sup B(1po). So, pt = p(h?) is always to the north-east of 1%, and therefore beliefs
never approach o.

If the perturbation p® = (1 — €)¥o + e¥doyp (o) Seems arbitrary, note that any
beliefs in the interval [, ¥ésup p(po)] Would work.

The crucial components of our argument are then:

1. Because ¢ is properly mixed, there is a wedge in pure strategies, so there are
perturbed beliefs 1 that are larger than o, while still having support in 8(¢o).
These perturbed beliefs can be taken arbitrarily close to ¥o.

2. Strict complementarities between players’ choices provokes an “overshooting”

response to larger beliefs, so that any best response to u? is larger than sup S(o).

3. By monotone beliefs, the initial deviation toward larger play is reinforced. But
note that the monotonicity used is weak; since play is weakly larger than any
element in the support of 4°, beliefs in each moment ¢ must be weakly larger
than uf.

4.2 Main result

Here we formalize the heuristic argument just given, but we defer the proof to sec-
tion 7. ' '

Definition 4 Let (N {(S;,u;) : i € N}) be a game. A mized-strategy profile o is un-
stable if, for every weak neighborhood V of Yo in U, there is ' € V such that any
myopic system of behavior and beliefs (p, &) with weakly monotone beliefs and ul =y,
remains outside of a neighborhood of po. That is, there is a neighborhood W of Yo
such that, for allt > 1, u(ht) ¢ W.

10




That o is unstable means that there are arbitrarily close perturbed beliefs u°
such that, if learning starts at these perturbed beliefs, then beliefs never approach o.
The definition of unstable equilibrium is an adaptation to the present context, of the
 definition of asymptotic instability used in the dynamical systems literature (Hirsch
and Smale 1974).

Theorem 1 Let T* be a GSSC, and o be ¢ Nash Equilibrium of the mized extension
of T'. If at least two players’ strategies in o are properly mized, then o is unstable.

Proof: See section 7.

Remarks:

1. The set of perturbations that give us instability is not small, it contains a non-
empty open interval. If the S; are finite, for any open neighborhood V of 9o,
(2, €) starting at p° € V N (30, Ydsup prpe)) does not aproach 9o. 4

2. In finite games, for generic payoffs, there are no PMNE where only one player
selects a properly mixed strategy (because best responses to pure strategies are
generically unique). In many non-finite games, it is not hard to rule out that

only one player selects a properly mixed strategy.

Theorem 1 has a simple consequence for 2X2 games. For generic payoffs, 2X2
games either have a unique Nash equilibrium, or two pure equilibria and one PMNE.
In this last case, it is easy to order strategies so that the game is a GSSC. Then, we
get

Corollary 1 For generic payoffs, PMNE in 2X2 games are either unique or unstable.

Generically, then, a 2X2 game is either isomorphic to Matching Pennies or its
mixed equilibrium is unstable. > For 2X2 games, Fudenberg and Kreps (1993) show
that, when the PMNE is the unique equilibrium, it is globally stable. This paper
completes the picture for all other 2X2 games.

41n non-finite games, the same is true for p® € V N Uge(o,1)(#(€)s ¥0sup p(ws)), Where ule) =
(1-eppo + Ewasupﬁ(gbcr) .

5For generic payofls, if a 2X2 game has a unique equilibrium, and this equilibrium is a PMNE, then
there is a re-labeling of each player’s strategies into {Heads, Tails} so that the resulting preferences
over {Heads, Tails} equal the Matching Pennies preferences (i.e. one player wants to match and the
other wants to mis-match). This re-labeling is an isomorphism.
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5 Purified Mixed Equilibria

A textbook criticism of PMNE goes like this (see e.g. Osborne and Rubinstein (1994)):
In a PMNE, each player i is required to randomize in exactly the way that leaves
the other players indifferent between the clements in the support of their equilib-
rium strategies. But ¢ has no reason to randomize in this way, precisely because i
too is indifferent between the elements in the support of her equilibrium strategies.
The standard response to this criticism is Harsanyi’s Purification Theorem—if we
introduce a small amount of incomplete information, then pure-strategy equilibrium
behavior can resemble the original PMNE.

In this section we show that “purified” PMNE in GSSC are also unstable. So, if
o is a PMNE then sufficiently close pure-strategy Nash equilibria of the game with
incomplete information are unstable. ¢ In other words, purification addresses the
standard critique but not our instability critique.

Consider the Battle of the Sexes game from the Introduction, and let o be its
PMNE. We shall first introduce incomplete information and “purify” o. Let each
player i receive a payoff-relevant signal w;. The signals are independently uniformly
distributed on {0,1]. The players’ payoffs are iri Figure 3; > 0 is the parameter
that controls the importance of the signals, we shall call the game in Figure 3 the
n-augmented game.

Player 2
O B
O 12,1+ n{w —2/3) 0,0
Pl 1 : :
Ve B 0,0 1+ 1wz — 2/9), 2

Figure 3: Augmented Battle of the Sexes

1t is easy to see that the pair of (pure) strategies (f1, f2},

_J Ofw £2/3 _J Oifwy, >2/3
f1(w1)—{ Bifwi>2/3 M“’?)“‘{ Bifw§52/3 ’

8 A number of papers on learning mixed strategy equilibria have focused on purified mixed strate-
gies, see for example Fudenberg and Kreps (1993),Ellison and Fudenberg (2000), and Ely and Sand-
holm (2001).
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is a Nash equilibrium of the augmented game, no matter the value of . Note that,
for almost all w;, player ¢ is selecting a strict best response to f_;.

The distribution of (fi(wy), f2{w2)) is the same as the PMNE distribution in the
original Battle of the Sexes. This is a particularly nice example of a purification;
we can be as close as we want to the original game by taking #n small enough, get
the same prediction as the PMNE, and avoid assuming that players select arbitrarily
among a set of indifferent strategies.

Now, given € > 0, consider a perturbation 10 = (1 - e)o + ed(p,0y. Doing some

< min 2¢ Je
n 24+ 1—¢€}’

then, no matter the value of w;, player ¢'s best response to beliefs % is to play O.
Y Hi

algebra, it turns out that, if

We can then repeat the argument in the Introduction (and in Section 4.1) that play
only reinforces the initial perturbed beliefs. So if behavior is myopic and beliefs are
weakly monotone, the purified equilibrium is unstable.

In this example, for each of our perturbations 0 = (1~ e)Yo + ePdsypprya)s
there is 7 such that if # < 7 then the purified equilibrium in the n-augmented game
is unstable to the 0 perturbation. Note that the order of limits matters: We do
not say that, for  small enough, the purified equilibrium is unstable to arbitrarily
small perturbations. 7 Ely and Sandholm (2001) discover a similar phenomenon using
perturbed evolutionary dynamics. '

Now we present a general result for purified PMNE. For simplicity, we assume
finite strategy spaces. The setup is from Fudenberg and Tirole’s (1991) presentation
of Harsanyi’s Purification Theorem. Let I'® = (N, {(S;, i) : ¢ € N}) be a finite game.
Forn > 0,7 = (N, {(S;,4]) : i € N}) is the n-augmented game, where each player
i is endowed with type space £; = [-1, 1]#5" and selects a strategy [ : ; — S;. Types
w; € §; are drawn independently according to probability distribution p;. Payoffs are
u] (83, 8miy wi) = Gi{8i, S—i) + Nwi(8).

Harsanyi’s Purification Theorem says that, in generic finite games, for any PMNE
o of T, there is a collection (f");>0 such that: a) for all 7, [7 is a (pure) equilibrium

7This may be due to our brute-force approach to dealing with randomizations—we control best
responses at, all values of w;. It may be possible to do better with more sophisticated methods.
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of I'; b) the distributions of [7(w) converge to ¢ as n — 0. We shall call (T, [7),50
a purification sequence of o.

We need to control the relative sizes of the perturbations in beliefs and the aug-
mentation of I'°. The following definition helps us do that.

Definition 5 Let (N {(S;,u;) : i € N}) be a game. A mized-strategy profile ¢ is un-
stable to an e-perturbation for ¢ > 0 if there is a strategy profile o’ such that
any myopic system of behavior and beliefs (u, &) with weakly monotone beliefs and
1 = (1 — €)vo + eypo’ remains outside of a neighborhood of Yo. That is, there is a
neighborhood W of o in U such that, for everyt, u(ht) ¢ W.

Theorem 2 Let I be a finite GSSC, and o be a Nash Equilibrium of the mized
extension of I' such that at least two players’ strategies in o are properly mized. Let
(T7, [} be a purification sequence of 0. For any € > 0, there is n > 0 such that if
n < 7 then [" is unstable to an e-periurbation.

Proof: See section 7.

6 Justifying Weakly Monotone Beliefs

We show that, in two specifications that are common in learning models, beliefs are
weakly monotone. In particular, we show in (1.) that fictitious-play beliefs are weakly
monotone, and in (2.} that beliefs in Bayesian learning are weakly monotone.

1. We shall first describe a model of fictitious play following Chapter 2 in Fu-
denberg and Levine (1998). Let (V,{(S;,u:) : ¢ € N}) be a normal-form game. Fix
a player 4. Let &) : S_; —+ R+ be an exogenous “initial weight function” that is not
identically zero. Player ¢’s weight function is updated each period ¢ > 1. So, if play

in ¢ — 1 is 87", then the period-¢ weight function is
Ki(s_5) = "‘3?_1 (5-3) + X{s_iigt_—il}(s—i)- §))
The function x, -1} takes the value 1if s_; = 53! and 0 if s_; # 5.

Now we can define fictitious play beliefs. Player i's beliefs at the null history

are
K7 (5-4) )
§_4ES_4 K’?(S_i) ’

0 s ) =
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and, after history ht = ((s},s%;), (s%,s%) ... (st 8%.));

Ki(5_4)
ZSM,GS_, 1 (S_%)

where we get the x! weight function recursively from £ and h* by formula L.

Ms(ht) (5-3) =

Proposition 1 Let (N, {(Si, ) : i € N}) be a game where each S; is a finite lattice.

Fictitious play beliefs in this game are weakly monotone.

Proof: Let A be a history, and sup [supp p(hf)] < s7, for7 = ¢+ 1,...T. Fixa
player 4. For each subset A of S_;, let ki(A) = 3, 4 #i(s-4)-

Let E C S_; be an increasing set. Case 1. If ENsupp p(hf) = 0 then p(R')(E) =
0 < u(ht). Case 2. If ENnsupp p(h*) # B then, because F is increasing, sup [supp p(R)] €
E. Then, also because E is increasing, 5™ € E, for 7 = ¢+ 1,...T. Then £{(E) =
(T - ) + &L(E), so

uETNE) = HEs
_ (T-t)+el(E)
T AT t)+kE{S)

¢
> bty = u(h*)(E);

the inequality is because z +— (a +z)/(b+ ) is a monotone increasing function when
o < b. We have shown that u(h*)(E) < p(hT)(E) for every increasing set E, so
p(hty <g p(hT). 8

2. Now we show that Bayesian updating respects weak monotonicity. Let II; C
P(S_;) be a set of possible (correlated) strategies by ¢’s opponents. Suppose that 3
has beliefs u; € P(S_;) that she obtains from some prior distribution 7; over II;. So,
n; € P(IL;) and p(B) = [, #(B)dn;(r) for all events B C S_i.

Suppose that, after an event E C S_; occurs, ¢ updates her beliefs by Bayes’ rule.
The updated posterior 7,|g € P(IL;) is

Jpm(B)dni(m)
Jo, 7 (B)dni(m)’

whenever fn x(E)dn;(r) > 0. The resulting updated beliefs y;|r € P(S_;) are defined
by p;|e(B) = fn n{B)dn;|g{n). When fn 7(E)dn;(r) = 0, p;|5 is arbitrary.

n|e(B) =
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Theorem 3 Let S_; be a complete lattice, and let E C [sup supp p;,sup S—;]. If II;
is totally ordered by first-order stochastic dominance, then p; <q i;le.

Proof: We shall drop the i-subindexes to simplify. Only if [ 7(E)dn(7) > 0 is there
something to prove. First we shall prove that 7 < n|e-

Let D = [supsupp p,supS—;]. Let B C II be an increasing, measurable set.
Because II is a chain under first-order stochastic dominance, and D is an increasing
set, m(D) < #(D) for all m € B, # € B (since 7 <, 7). Then, integrating over
# € B on both sides, [ 7(D)dn(#) = n(D) fB dn(#) < [ #(D)dn(#); so m(D)n(B) <
[y #(D)dn(#) for any = € Be. Similarly, n(B) [5. 7(D)dn(m) < n(B°) [ #(D)dn(7).

Now, u(E) = [;w(E)dn(r) > 0 lmphes that [ w(E)dn(r) = [, m(D)dn(r), or
we would not get [ {[inf S_;, sup supp p))dn(z) = pflinf S_;, supsupp p]) = 1. So,

B) [, n(E)dn(r) < n(B°) [, #(E)dn(#). Then,

Jge 7(E)dn(r)

oy o F(E)dn(R)
"B e < 1B

Ja7(B)dn(r)’

which implies that 7(B)n|g(B¢) < n(B)n|e(B). But 1|s(B) + nle(B) = n(B) +
n(B°) = 1, so 7(B) < n|g(B). The increasing event B is arbitrary, so 7(B) <g
nle(B).

Let F be an increasing event in S_;, then the map 7 — 7 (F’) is monotone increas-
ing, as Il is ordered by first-order stochastic dominance. Then, n <;; n|g implies that
Jum(FYdn(n) < fp7(F)dnle(n). By the definition of the player's beliefs over S_;,
then, u(F) < p|p(F). So, u < plp. 0

The requirement that IT; is totally ordered does not imply that the resulting beliefs
are totally ordered, only that all priors are ranked according to the “aggressiveness”
of the potential strategies.

The problem with the strong monotonicity condition “any larger play produce
larger beliefs” (Hopenhayn and Prescott 1992) is that it will not hold under Bayesian
updating unless priors are ordered according to monotone likelihood ratio (Milgrom
1981).
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7 Proofs

The proof of Theorem 1 requires two preliminary lemmas. Lemma 2 is of some interest

independent of Theorem 1. Both lemmas are used in the proof of Theorem 2 as well.

Lemma 1 Let X be a lattice and A C X a subcomplete sublattice. Let p € P(X) be
properly mized, and such that supp p C A. If A € (0,1) thenp <g (1-A)p+Asupa <ot

5sup A-

Proof: Let E be an increasing subset of X. Since A is a subcomplete sublattice,
sup A € A. Case 1. If ENA =, then p(E) = 85up 4(E) = 0,50 [(1 = X)p + AMspa] (E) =
0. Case 2. If there isz € EN A, then z < sup A, so sup A € F, as E is increasing.
Then bgyp 4(E) = 1, which implies that

p(E) = (1= A)p(E) + Ap(E) < (1 — X)p(E) + A
= (1 - A)p(E) +A581JPA(E) S 1= 5supA(E)-

In either case, then, p{E) < [(1 — A)p + Adsup a) (B) < sup a(E) for every increasing
set B, 50 p <o (1= A)p + Adoup 4 st Osupa-

Now we show that the inequalities are strict. Let £ = {z € X :supA < z}.
Observe that supA € E. Since p is properly mixed, p(E) =p [E M supp (p)] <
p({sup A}) < 1 (see Remark 1 in Section 2). Then,

p(E) = (1= Np(E) + Mp(E) < (1 — Np(E) + A < 1 = SqpalB).
S0, p <g (1 — A)p + Adsupa <st Osupa- B
Lemma 2 Let T'= (N, {{Si,u;) : 1 € N}) be ¢ GSC. Suppose ¢ is a PMNE, and that
sup B{tpo) < inf B((1 — €)vo + e¥daup pyo)) (ID)
for some € > 0; then o is unstable to an e-perturbation.

Proof: Let u’ = (1 — €)Y0 + edsuppe). Since I' is a GSC, 8 is non-empty-,
subcomplete- and sublattice-valued. Also, the support of ¢ is contained in B(vo).
Then, by Lemma 1, 0 <g p° <q ¥0supsipo)-
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Let {1, £) be 2 system of myopic behavior and monotone beliefs, with initial beliefs
1°. Fix a sequence of realizations of type profiles {w',w?,...) = w® € 0%. We will
show by induction that, if the sequence {s'} with s* = &(w!, u(h*"")) is the realized
play, then sup S(tho) < s* and p® < pf for every t.

First, we will show that sup B(¢o) < s and that p® < u' = p(h'). By hypoth-
esis, sup B(o) < § for all § € S(u°). Then, sup f(yo) < s, as behavior is myopic,
so supsupp o < s!. Since h! = (0, s'), this implies, by monotonicity of beliefs, that
10 <, ' = ph'), completing the first step of the proof by induction.

Second, suppose that for a given ¢ > 1, u® <, p'~! = pu(ht~1), and sup B(yo) < 5"
fort=1,2,...t—1. I'is a GSC, so the map Yo ~+ inf S(1)0) is monotone increasing
(see e.g. Topkis (1998)). Then, o <qu p° <, p* implies that

sup §(1o) < inf B(p°) < infB(u") < &(WhpT) = 5"

This inequality, and the inductive hypothesis, imply that u® < wtl = p(ht), as
beliefs are weakly monotone. By induction then, for every {, both pt and the copy in
belief space of the distribution of w + £(w, h*) are larger than 1o,

Let W = [1, ¥daups]’ = {p € ¥ : 4° <. p}°. By Remark 2 of Section 2, W is a
weak open neighborhood of o in ¥. We have shown that W satisfies the condition
in the definition of unstable to an e-perturbation. i

Remark: If a strategy profile ¢ is unstable to an e-perturbation for all € > 0, then
it is unstable. To see this, note that that (1 — €)¥o + eppo’ = Yo as e = 0. 8 Then,
given a neighborhood V' of 9o, there is € € (0, 1) such that = {(1-e)po+epo’ € V.
Hence, for any neighborhood there is a point p° such that, if the dynamics start at
4%, then the state of the system never lies in a neighborhood W of 1. Therefore,

learning never approaches 1o °

Proof of Theorem 1. Let € > 0, and consider any PMNE o in the conditions of
the Theorem. We shall prove that the inequality II in Lemma 2 is satisfied.

Fix i € N and let i, = (1 = €)9;0 + e¥;0jcupsyoy- Since at least two players
select a properly mixed strategy, ;0 is properly mixed. T is a GSC, so 5, (ir;) is a

8Since, for any bounded, continuous, real-valued g, (1 —¢) f gdo + ¢ [ gdo’ — [ gdo.
%In fact, in our results the copy of the distribution of w = £ {w, p(k?)) in belief space is not in W
either.
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subcomplete sublattice, and supp (1;0) C [B(10)]_; because ¢ is a Nash equilibrium.
Then, Lemma 1 implies that ¥,0 <y ;.

Let T = {3;0, ji;}, and U; : 5;xXT — R be defined by U;(s;, 7) = fs_i i (85, 8-4)dT(54)-.
Hence, B;(7) = argmax, . Ui{s;, 7) for T € T.

We claim that f; satisfies the strict single crossing property in (s;, 7). Let s; < &
and suppose U;(s},1;0) — Ui(si, 1;0) > 0. Since 4,0 <. f1;, to show that the strict
single-crossing property holds, we must show that 2(s}, ;) — Us(ss, i) > 0. Denote
by I : §_; — R the function s_; — [u;(s}, 5_;) — ui(s;,5_3)]. So, forany 7 € T,

Us(si, 1) — Us(si,T) = f [ui(s, s_s) — wi(si, s—i)] dT(s55) = f 'l(S__z-)dT(Sw.;).

i 1

Now, U (s}, f1;) — Us(s4, ;) =

(1—e) fs_,- Us_i)do_i(s.:) + € fs_,- 1(5-)d0sup piwo)—s (5-i)
= (1~ €) Bh(s} $,0) — (s, 6:0)] + ellsup B() ).
Suppose, by way of contradiction, that 4 (s, fi;) — Ui(s:, ;) < 0. Then Us(s}, ¥;0) -
Ui(si,%,0) > 0 implies that I{sup B(o)~;} < 0.
Note that { is strictly increasing because I' is a GSSC. Then I(s_;) < 0 for all
s_i € B(vo)_;\ {sup B(¥o)_;}, as I(sup B(1po)_;) < 0. We claim that

o-i(B(¢o)-i\ {sup B(¥0)i}) = 0.

To see this, note that o_;(8(xo)_;\ {sup B(¥o)_;}) > 0 and I(s_;) < Oforall s_; €
B(wo)_;\ {sup B(¥pc)_;} imply that

0 > Jagor-i\tsuppwe)—sy H5-1)d0~i(s-3)
>[5, Us-i)do_ifs-:)
= Ui(s, ¥;0) — Ui(si, 1h;0)-
The first inequality follows from a simple result in integration theory, '° the sec-
ond because I(sup A(1o)—;) < 0 and supp o_; C B(tpo)-;. But this violates that
U (s, ,0) — Us(5:,%;0) > 0, so it must be that o_;(B(xho)_;\ {sup B(¢o)-i}) = 0.

10The integral of a strictly negative function over a region of positive measure is strictly negative.
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But supp o_; C f(¥o)_;, as o is a Nash equilibrium. Then o_; (sup B(yo)—:) = 1,
which is a contradiction because ¢ is properly mixed (see Remark 1 in Section 2).
This shows that I4; satisfies the strict single-crossing property.

The strict single crossing of 4; implies, by Milgrom and Shannon’s (1994) Mono-
tone Selection Theorem, that & < z' for every z € fB;(¢o) and 7' € B;(f). Thus
sup B,(¢o) < inf §;(i). This is true for all 4, hence the inequality II in Lemma 2 is
satisfied. 1

Proof of Theorem 2. In Step 1 we prove a mini-lemma, which we then use in Step
2 to prove the theorem.

Step 1. Let (u),>0 be any collection of beliefs in W; such that u — p;, for some
u; € U;, as 7 — 0. We shall first show that there is 7 with the property that, for all
n <, if J; is a best response to 4 in the 7-augmented game, then [; (w;) € B;(n;) for
all w;; where 8,(u;) C S; is the set of best responses to y; in Io.

Let ‘

k= iﬂf{[s i(3:, s-i)dp;(5—4) —f gilsi 5-a)dp;(5-3) 5 & By, 3: € 5;'(!%)} :

Since S is finite, k > 0. Let 0 < 1 < k/4 and let 7" > 0 be such that, if 0 <n < 7"
then | fg__ gi(si, s-)dp;(s—:) — s, 9:(si8-3)dp] (s-5)| < k/4 for all 5; € S;, which
again is possible because S; is finite. Let 7 = min {7/, 7"}.

Let s; ¢ B,(1;), & € Bi(1;), and 7 < 7. The gain to playing 5; over s; in the 7-
angmented game, and in state w;, is fg ] (3i, 5, wi)dps (s—s)— Jo_, vl (56, 5-swi)dp (s—) =

Jo_, 0:lBn, s)dul (=) — f_, gi(ss s—0)dp(5-5) +  [wil8:) — wilsi)]
2 fs_,. i (3, s_i)d;,c?(s_,:) - fs_,. e s_a)dp;(5-4)

+ fs_, 9i(Bir s-a)dpi(5-3) — [5_, 9i(si 5-:)dpi(5-3)

+ fs_, @i(ss s-iddpi(s-1) = [5_, 9i(si, )i (5-) — 217
> —kf4+k—k/4—-2k/4=0.

The first inequality obtains because w;(s;), w;(5:) € [—1,1], the second because 5 < .

We have shown that, for all 7 < #, no matter the value of w;, any §; € 8;(u;) is
a better response to 4] than any s; ¢ B;(1;). As [’ is a best response to beliefs T
this implies that [7{w;) € B;(p;) for all w;.
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STEP 2. For each 7, let 67 be the distribution of [f(w;). Note that, for all 7,
/7 is a best response to beliefs 1,07, and ¢ = lim,_, 0", as (['", [7) is a purification
sequence of o. By Step 1, there is 7 such that, if < 7, then []'(w;) € B;(1;0) for all
w; € §. In particular, f{{w;) < sup B;(¢;0) for all w; € (2.

Let J7 be a best response to beliefs v = (1 — €)9;0 + €¥;0aupp(wo), in the 7-
augmented game. Beliefs # do not depend on 7, so applying Step 1 with p" = »
for all n, there is 7 such that, if 5 < 7 then [[{w;) € B;(v) for all w;. In particular,
inf B,(v) < [Mw;) for all w;.

Let = min {#,7}. Repeating the argument in the proof of Theorem 1, we have
that sup 8{1o) < inf S(v). Then, if n < 7, for every ¢ and w;, @; € €, [{'(w;) < K CAD
By Lemma 2, we are done. §
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