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ABSTRACT 

 
This paper presents a numerical method to model kinematic wave (KW) traffic streams 

containing slow vehicles. The slow vehicles are modeled discretely as moving boundaries that can affect 

the traffic stream. The proposed scheme converges in flows, densities and speeds without oscillations, 

and therefore can be readily used in situations where one wishes to model the effect of the traffic stream 

on the bottlenecks too. The approach is more accurate than Godunov’s method in situations where the 

latter can be applied.  
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1. INTRODUCTION 

This paper is a sequel to Daganzo and Laval (2003), which proposed a way to treat moving 

bottlenecks numerically within the context of kinematic wave (KW) theory. This reference showed that if 

the moving bottlenecks are replaced by sequences of fixed bottlenecks that are restricted to be on a space-

time lattice, then the difference between the exact and approximate vehicle counts at any point in space-

time are uniformly bounded by a quantity that tends to zero as the lattice spacing is reduced. Good 

features of this procedure are: (i) if exact solution methods are used to solve the approximate problem, the 

solution error in vehicle count is uniformly bounded; and (ii) “off-the-shelf” software can be used to solve 

the approximate problems. The main disadvantage is that the approximate flows, densities and speeds do 

not converge to the exact ones, even as vehicle counts do; thus, to provide estimates of these quantities, 

one needs to average their values over multiple cells. We present below a new numerical scheme that 

overcomes this disadvantage, albeit by doing away with the good points.  

 

2.  COMPOSITE-RIEMANN PROBLEMS 

 A building block of the proposed method is the solution of a class of initial value problems 

containing two moving bottlenecks, i and i+1, with linear trajectories. These problems will be called 

composite Riemann problems, or CRP’s. The space-time geometry of a typical CRP and its input data are 

depicted in Fig. 1. Given are the following constants: (i) the locations of the bottlenecks at time zero (xi 

and xi+1); (ii) the initial vehicle numbers (Ni) at the location of the bottlenecks;1 (iii) downstream and 

upstream densities (kd and ku); (iv) the speeds and maximum passing rates associated with each bottleneck 

(vi, Qi); and (v) a time of interest, ∆t, such that bottleneck trajectories do not cross: 

 

∆t ≤ (xi+1 − xi)/(vi − vi+1);    if   vi > vi+ 1      (no crossing condition).                 (1)  

 

It is assumed that the initial density is uniform in the three intervals demarcated by the bottleneck 

positions. The density in the middle interval is (Ni − Ni+1)/(xi+1 − xi). For maximum generality, bottlenecks 

are allowed to travel faster than the traffic stream—they do not have to be embedded in it. We then look 

for the vehicle numbers, Ni(t) and Ni+1(t), on the trajectories of the bottlenecks at time t = ∆t.   

This is a well-posed problem in kinematic wave theory. Its solution can be obtained with standard 

recipes. For problems with piecewise linear data, as is the case with the CRP, the exact solution can 

                                                           
1 As is conventional, vehicles are assumed to travel in the direction of increasing x and to be numbered in 
decreasing order with x. Thus, the Moskowitz function of vehicle number N(t, x) is non-decreasing in t at every x.  
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always be obtained with a finite number of calculations if the fundamental diagram is piece-wise linear. 

Appendix A shows a simple procedure that can be used when the flow-density relation is triangular.  

 

3.  THE SOLUTION METHOD  

The general procedure works on a rectangular space-time lattice with a fixed spatial spacing, ∆x, 

and variable time spacing ∆t.  We assume that at the current discrete time point we know the vehicle 

numbers at all the lattice points and bottleneck locations, that the density is constant between points and 

that the bottleneck speeds are also constant during the ensuing time step. The objective is predicting the 

vehicle numbers at the new bottleneck locations and all lattice points. The recipes of Sec. 2 do the job if 

we treat mesh lines as moving bottlenecks with zero speed and maximum passing rate equal to the road 

capacity, Qmax. We simply need to ensure that the time step is short enough to ensure that (1) applies 

(bottlenecks do not cross) and also that the domain of dependence for the “end-point” of bottleneck i 

includes at most one bottleneck root other than its own; i.e., that the new counts are CRP counts.  If we let 

the range of feasible wave velocities be denoted [-w, vf ], and also assume that bottleneck speeds are in the 

range, the CRP condition is: 
 

∆t  ≤  (xi+2 − xi)/ (w+ vi) ,  ∆t ≤ (xi − xi−2)/ (vf − vi) ,     and 

∆t  ≤  max{(xi+1 − xi)/ (w+ vi) ; (xi − xi−1)/ (vf − vi)}   for all i.             (2) 
 

This conditions ensures that bottleneck i interacts at most with one other companion bottleneck; either i or 

i+1. Thus, we propose choosing the largest ∆t consistent with (1), (2) and with the assumption of constant 

bottleneck speed.  An iteration of the procedure is as follows: 
 

Step 1. Calculate the (uniform) densities between points i and i+1 with, ki,i+1 = (Ni − Ni+1)/(xi+1−xi); if 

xi+1 = xi put ki,i+1= 0. Do for all i. 

Step 2. Determine the new bottleneck speeds, the new step size with (1) and (2), and the final 

bottleneck positions. 

Step 3.  Predict the new counts by solving a CRP for each i (with its appropriate companion, if any.)   

Step 4. Update the bottleneck positions and predict the new maximum passing rates. If two bottlenecks 

coincide and will pass, reverse their indices. Update time. Stop or go to step 1. 

 

4.  DISCUSSION 

We note that step 1 involves an averaging approximation. This introduces some error into the 

result.  This error is smaller than in the best first order methods. For example the technique compares 

favorably with Godunov’s method when there are no moving bottlenecks and vf > w.  This happens 
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because the time steps with the proposed method can be longer than those of conventional methods, 

which have to satisfy Courant’s condition. In particular, the proposed procedure is exact if the flow-

density relation is triangular with vf = 2w, whereas Godunov’s method yields a significant truncation 

error. Note too that the recipe is numerically stable because it is the composition of two contraction 

mappings in the space of N-curves: an averaging operation (step 1) and the exact solution of a KW 

problem (steps 2-4); for more information on these mappings, see Daganzo (2001).  

 This procedure avoids the stalling problems that arise when bottleneck interactions are not 

allowed and bottlenecks pass each other.  Figure 2a shows how the series of time steps {ti− ti-1} obtained 

with a no-interaction procedure stalls near the crossing point of two bottlenecks.  Figure 2b shows how 

the proposed procedure performs in the same situation. The new procedure can only stall if three or more 

bottlenecks coincide at a point in space-time, or two bottlenecks coincide with a lattice line. This, 

however, can be easily avoided by locally perturbing the trajectory of the bottlenecks.  

 Figures 3 and 4 show the result of the method when applied to examples 1 and 2 of Daganzo and 

Laval (2003). Note the smooth flows and the fine match even though the average time step is considerably 

longer now (3 secs in example 1 and 1.5 secs in example 2.) Close examination of Fig. 4, however, 

confirms that the proposed method introduces some numerical error in the N-values. This is due to the 

small time steps that need to be introduced when bottlenecks cross, which magnify the averaging errors of 

step 1.  These errors can be reduced if one uses longer steps and CRP’s with three-bottleneck interactions. 

The procedure can be used with inhomogeneous lattices and can be applied to inhomogeneous 

highways. The procedure is also well suited to deal with endogenous bottlenecks, since any reasonable 

rule can be used in step 4 to modify the maximum passing rates and in step 2 to modify the bottleneck 

trajectories; including rules that account for road geometry and the presence of other nearby bottlenecks. 
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APPENDIX 

The results in this appendix, are based on the following two facts, specific to CRP’s: 
 

Fact a. Consideration of all possible wave-maps reveals that in a CRP, there can be at most 

one flow change on each bottleneck. Further consideration reveals that if there is a singularity 

where the bottleneck changes status (from active to inactive or vice versa) the singularity must be 

at one of the four locations marked by dots in Figure A1. (The slopes of the slanted lines in this 

figure that are not bottleneck trajectories are either −w or vf  ; they determine the location of the 

dots uniquely.)  

Fact b. Consider now an arbitrary point “P” on one of the bottleneck trajectories and let kj be 

the “jam density”. The vehicle number at this point can be obtained from the vehicle numbers at 

three anchor points {PU, PM, PD} (see figure) by: 
 

NP  = min{NPU ; NPD + tPD wkj ; NPM + tPM Qi }            (A1) 
 

if (as occurs in Fig. A1) the CRP anchors satisfy the following conditions: (1) PU is on the other 

bottleneck trajectory (or on the boundary) and a fast forward wave goes from PU to P without 

crossing any bottleneck trajectories; (2) PD is on the boundary (or on the other bottleneck 

trajectory) and a fast backward wave goes from PD to P in time tPD without crossing any 

bottleneck trajectories; (3) the middle anchor is on the same bottleneck trajectory as P and the 

time separation between PM and P is tPM ; and (4) all singularities in the domain of dependence of 

P are in the union of the domains of dependence of PU, PM and PD.   
 

Fact (b) can be proven using Newell’s minimum principle for triangular flow-density relations (Newell, 

1993), modified to allow for homogeneous (constant-speed-constant-maximum-passing-rate) bottlenecks. 

The proof is beyond the scope of this note. The two facts can be used to obtain the solution in three simple 

steps that avoid the singularities.  The procedure is described with reference to the point labels of Fig. A2: 
 

       Step1.  Use (A1) to determine NB, using {D,A,G} as anchors. The passing rate along AB is 

(NB − NA)/tB at all points. Repeat for segment DE, using as anchors {H,D,A}. The passing rate is also 

constant along DE. This determines Ni(t) and Ni+1(t) up to points E and B.  

       Step 2. Again, use (A1) to determine NC and NF, with{E, B, I} and {J, E, B} as anchors. The 

passing rates along segments BC and EF are again constant and equal to (NC −NB)/(tC −tB) and 

(NF −NE)/(tF −tE), respectively. Thus, Ni(t) and Ni+1(t) are now determined up to F and C. 

       Step 3. Using {F,C,K} and {L,F,C} as anchors, determine NM and NN, and the ensuing (constant) 

passing rates. This yields Ni(t) and Ni+1(t) from points F and C onward. 
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Figure 1: Data for a CRP 
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Figure 2: Time steps of two numerical procedures: (a) conventional; (b) proposed (assume 
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Figure 3: Numerical solution of example 1 (∆t = 3 sec). 
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Figure 4: Density map (top) and cumulative counts (bottom) for example 2. 
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Figure A1: Basic properties of CRP’s: dots denote possible singularities; squares denote 
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Figure A2: Points used in the solution of a CRP. (All the slanted lines that are not bottleneck 
trajectories have slopes - w or vf .) Points B, E, C and F are potentially singular.  
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