
UC Berkeley
Research Reports

Title
Fault Detection And Identification With Application To Advanced Vehicle Control Systems

Permalink
https://escholarship.org/uc/item/1jb6z0qm

Authors
Douglas, Randal K.
Chung, Walter H.
Malladi, Durga P.
et al.

Publication Date
1997

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/1jb6z0qm
https://escholarship.org/uc/item/1jb6z0qm#author
https://escholarship.org
http://www.cdlib.org/


ISSN 1055-1425

November 1997

This work was performed as part of the California PATH Program of the
University of California, in cooperation with the State of California Business,
Transportation, and Housing Agency, Department of Transportation; and the
United States Department of Transportation, Federal Highway Administration.

The contents of this report reflect the views of the authors who are responsible
for the facts and the accuracy of the data presented herein. The contents do not
necessarily reflect the official views or policies of the State of California. This
report does not constitute a standard, specification, or regulation.

Report for MOU 257

CALIFORNIA PATH PROGRAM
INSTITUTE OF TRANSPORTATION STUDIES
UNIVERSITY OF CALIFORNIA, BERKELEY

Development of Binocular Stereopsis for
Vehicle Lateral Control, Longitudinal
Control and Obstable Detection

UCB-ITS-PRR-97-41
California PATH Research Report

Jitendra Malik, Camillo J. Taylor,
Philip McLauchlan, Jana Kosecka



Fault Detection and Identiflcation

With Application to

Advanced Vehicle Control Systems

Randal K. Douglas, Walter H. Chung, Durga P. Malladi, Robert H. Chen,

Jason L. Speyer and D. Lewis Mingori

Mechanical and Aerospace Engineering Department
University of California, Los Angeles

Los Angeles, California 90095





Fault Detection and Identiflcation
With Application to

Advanced Vehicle Control Systems

Randal K. Douglas, Walter H. Chung, Durga P. Malladi,

Robert H. Chen, Jason L. Speyer and D. Lewis Mingori

Mechanical and Aerospace Engineering Department
University of California, Los Angeles

Los Angeles, California 90095

December 5, 1997





Fault Detection and Identiflcation With Application to
Advanced Vehicle Control Systems

Randal K. Douglas, Walter H. Chung, Durga P. Malladi, Robert H. Chen, Jason L. Speyer
and D. Lewis Mingori

Mechanical and Aerospace Engineering Department
University of California, Los Angeles

Los Angeles, California 90095

December 5, 1997

Abstract

This report is a continuation of the work of (Douglas et al. 1996) in which a preliminary

design of a health monitoring system for automated vehicles is described. The approach

is to fuse data from dissimilar instruments using modeled dynamic relationships and fault

detection and identification filters. The filters are constructed so that the residual process

has static directional characteristics associated with the presence of a fault. Refinements

to the residual generation scheme are described that bring our systems in closer alignment

with the needs of the U.C. Berkeley group. Eleven sensors and two actuators associated

with the longitudinal dyanmics are now considered and hardware redundancy is taken into

account.

Keywords. Automated Highway Systems, Automatic Vehicle Monitoring, Fault Detection

and Fault Tolerant Control, Reliability, Sensors, Vehicle Monitoring.
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Executive Summary

This report is a continuation of the work of (Douglas et al. 1996) in which a preliminary

design of a health monitoring system for automated vehicles is described. The approach

is to fuse data from dissimilar instruments using modeled dynamic relationships and fault

detection and identification filters. The filters are constructed so that the residual process

has static directional characteristics associated with the presence of a fault. Refinements

to the residual generation scheme are described that bring our systems in closer alignment

with the needs of the U.C. Berkeley group. Eleven sensors and two actuators associated

with the longitudinal dyanmics are now considered and hardware redundancy is taken into

account.
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Chapter 1

Introduction

This report is a continuation of the work of (Douglas et al. 1996) in which a preliminary

design of a health monitoring system for automated vehicles is described. A system view of

vehicle health management is summarized by Figure 1.1. Vehicle dynamics are driven by

throttle, brake and steering commands and various unmeasured exogenous influences such

as road variations and wind and faults. Sensors measure a possible nonlinear function of the

dynamic states and are corrupted by noise, biases and faults of their own. A fault detection

module uses the sensor measurements and known dynamic inputs to produce a conditional

probability of a fault hypothesis. The fault hypothesis is generated in two stages. First, a

residual generator formed as a combination of linear observers and algebraic parity equations

produces a static pattern uniquely identified with a given fault or no-fault condition. Since

the static patterns are only clearly identifiable in nominal operating conditions, the second

stage, a residual processor, interogates the residual and matches it to one of many known

patterns. The pattern matching is done with a probabilistically based algorithm so the
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2 Chapter 1: Introduction

residual processor produces a fault hypothesis probability rather than a simple binary

announcement. A simple threshold mapping could be added very easily to produce a

binary announcement if that were needed. A fault hypothesis probability is passed to a

vehicle health monitoring and reconfiguration system. These components determine the

impact of the possible fault on safe vehicle operation and adjust control laws if necessary

to accomodate a degraded operating condition. These components are being developed by

the UC Berkeley team.

Detection
Filters

Residual
Processing

Threshold
Selection

Res
Fault

Declaration

Faults

Commands

Health Management
System

Controller
Reconfiguration

Decision

System
Information

¥ Vehicle
¥ Platoon

Plant
Disturbances

Inputs
and

Outputs

Controller

Redundancy Management

Figure 1.1: A System View of Vehicle Health Management.

Chapters 2 and 3 describe a residual generator that is designed as a component of

a fault detection and identification module in a comprehensive health monitoring and

reconfiguration system under development at UC Berkeley. The system is a point design.

It is designed to detect faults in eleven sensors and two actuators associated with the

longitudinal motion of the modeled vehicle. The vehicle has a nominal operating speed of

25 meters per second on a straight pathway. The nonlinear vehicle and road model used

for simulation and the reduced-order linear models used for fault detection filter design are

described in Chapter 2. The fault detection filter design is discussed in Chapter 3. An

evaluation of the performance of the fault detection filters is deferred to the final report for

PATH MOU 291 (Douglas et al. 1997). A residual processor design based on a multiple
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hypothesis Shiryayev sequential probability ratio test is also described there. Finally, for

continuity, all material presented in this report is also given in (Douglas et al. 1997).





Chapter 2

Vehicle Model

In this chapter, vehicle models are developed for the design and evaluation of fault

detection filters. A high-fidelity six degree of freedom nonlinear vehicle model described

in last year’s report (Douglas et al. 1996) allows for arbitrary variations in road slope and

road noise. An object-oriented vehicle simulation is implemented in C++ and is currently

hosted on an Apple Macintosh PowerPC 8100 computer.

Linear models for the longitudinal vehicle dynamics are derived numerically from the

nonlinear vehicle simulation using a central differences method. The models are described

in Section 2.1 and the derivation method is described in (Douglas et al. 1996). Model order

reduction issues related to the suspension model are discussed in Section 2.2.

The manifold temperature measurement model is discussed in Section 2.3. To monitor

the health of the manifold temperature sensor, an analytically redundant relationship for

the manifold temperature has to be found. Since the temperature enters the engine model

as a constant, a state model would introduce an unobservable integrator. An alternative is

to let the temperature be a known, that is measured, input to the engine.

5



6 Chapter 2: Vehicle Model

2.1 Linear Model

The linearized longitudinal dynamics of the vehicle are derived numerically from high-fidelity

nonlinear simulation using a central differences method. The nonlinear model and the

central differences method are described in detail in (Douglas et al. 1996). The linearization

is done at a single nominal operating point of 25 meters per second, about 56 miles

per hour, where the car is travelling straight ahead. Since the car is not in a turn,

the linear longitudinal dynamics decouple completely from the linear lateral dynamics.

The longitudinal model has thirteen states and three inputs. Two of the inputs, throttle

and brake actuator commands are regarded as controls. The third input is the manifold

temperature and is regarded as a known, that is measured, exogenous input.

States: ma : Manifold air mass.

ωe : Engine speed.

vx : Longitudinal velocity.

z : Vertical position.

vz : Vertical velocity.

θ : Pitch angle.

q : Pitch rate.

ω̄f : Sum of front wheel speeds.

ω̄r : Sum of rear wheel speeds.

F̄f : Sum of front suspension forces.

F̄r : Sum of rear suspension forces.

α : Throttle state.

Tb : Brake state.

Control inputs: uα : Throttle command.

uTb : Brake command.
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Exogenous input: ωTm : Manifold temperature.

The lateral model states and inputs are given for completeness although they are not used.

States: vy : Lateral velocity.

φ : Roll angle.

p : Roll rate.

r : Yaw rate.

ω̃f : Difference of front wheel speeds.

ω̃r : Difference of rear wheel speeds.

F̃f : Difference of front suspension forces.

F̃r : Difference of rear suspension forces.

γ : Steering state.

Control inputs: uγ : Steering command.

2.1.1 Linear Model Reduction

The thirteenth-order longitudinal model has eigenvalues: −215.62, −160.79, −136.03±1.67i,

−90.91, −31.56, −26.26, −2.00±6.55i, −1.32±5.56i, −1.25 and −0.0418. Observe that five

of these eigenvalues are significantly faster than the rest. By inspection of the eigenvectors,

it is determined that the fast eigenvalues are associated with the states ω̄f , ω̄r, F̄f , F̄r and

α.

A model order reduction is done by dynamic truncation with a steady-state correction.

First, the derivatives of the fast states ω̄f , ω̄r, F̄f , F̄r and α are set to zero. Then, the linear

dynamic equations are solved for the fast states in terms of the remaining states: ma, ωe,

vx, z, vz, θ, q and Tb. The result is substituted into the state equations of the remaining

states. This process is described in more detail in Section 2.3 of (Douglas et al. 1996).

The eigenvalues of the eighth-order reduced-order longitudinal model are −33.01, −25.87,

−2.08 ± 6.45i, −1.44 ± 5.47i, −1.25 and −0.0451 which are close to the eigenvalues of the
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full-order longitudinal model. Also the frequency responses of the reduced and full-order

models are close to each other.

The reduced-order linear longitudinal dynamics data are given in Appendix A.

2.1.2 Vehicle Measurements

There are thirteen sensors on the car.

yma : Manifold air mass sensor.

yωe : Engine speed sensor.

yTm : Manifold temperature sensor.

ypm : Manifold pressure sensor.

yvx : Longitudinal velocity sensor.

yax : Longitudinal accelerometer.

yaz : Vertical accelerometer.

yωfl : Front left wheel speed sensor.

yωfr : Front right wheel speed sensor.

yωrl : Rear left wheel speed sensor.

yωrr : Rear right wheel speed sensor.

yα : Throttle sensor.

yTb : Brake sensor.

Since the dynamics naturally decompose into longitudinal and lateral components, the

following processed wheel speed sensors form a more natural set of measurements:

yω̄f : Sum of front wheel speeds.

yω̄r : Sum of rear wheel speeds.

yω̃f : Difference of front wheel speeds.

yω̃r : Difference of rear wheel speeds.
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For the longitudinal dynamics, the wheel speed difference sensors yω̃f and yω̃r are not

relevant. Also, the throttle and brake sensors yα and yTb measure control inputs rather

than states. The manifold temperature sensor yTm measures an exogenous input. Finally,

the manifold pressure ypm and manifold air mass yma are linearly dependent. Thus, there

are only seven sensors that provide measurements linearly related to the vehicle longitudinal

states: yma , yωe , yvx , yax , yaz , yω̄f and yω̄r

The reduced-order linear longitudinal measurement data are given in Appendix A.

2.2 Suspension Model

The suspension system is modelled as a nonlinear spring and linear damper. The tire is

a mass and linear spring. Since the mass of the tire is very small relative to the car,

the tire model is simplified to a linear spring as shown in Figure 2.1. It is possible to

C1 D1

Kt

mg

r

x1

x2

x3

Figure 2.1: Simplified suspension and tire model.

express the dynamics of the suspension model using either suspension force or suspension

length as states. Although both realizations are meant to model the same physical system,

their reduced-order linearized dynamics can be very different. In the following sections,
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two representations of the suspension model and their reduced-order linearized models are

derived. In Section 2.2.1, suspension length is used as the suspension state. In Section 2.2.2,

suspension force is used as the suspension state. Section 2.2.3 provides more discussion and

a numerical example is given to illustrate the modelling difficulty.

2.2.1 Suspension Model With Suspension Length State

In this section, the suspension model uses suspension length as the state. The suspension

force Fs acting on each wheel is given by

Fs = −C1(x3 − x30)[1 + C2(x3 − x30)4]−D1ẋ3 +mg (2.1)

where x30 is the length of the suspension system when a nominal load mg is applied.

Compare this with Equation 2.3 of (Douglas et al. 1996).

The force Ft transmitted to the suspension by the tire spring is given by

Ft = −Kt(x2 − x3 − r − x10) (2.2)

where Kt is the tire spring stiffness and x10 is the nominal tire radius. Since the tire is

massless, the tire spring force is equal to the suspension force.

Ft = Fs (2.3)

Put (2.1) and (2.2) into (2.3),

ẋ3 =
1
D1

[−(Kt + C1)x3 +Ktx2 − C1C2(x3 − x30)5 −Ktr + (mg + C1x30 −Ktx10)] (2.4)

An equation of motion for the chassis given by

mẍ2 = Kt(−x2 + x3 + r + x10) (2.5)

provides another relation between x2 and x3.

The dynamics (2.4, 2.5) after a linearization become

d

dt

 x2

ẋ2

x3

 =

 0 1 0
−Kt

m 0 Kt
m

Kt
D1

0 −Kt+C1
D1

 x2

ẋ2

x3

+

 0
Kt
m

−Kt
D1

 r
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with the characteristic equation

s3 +
Kt + C1

D1
s2 +

Kt

m
s+

KtC1

mD1
= 0 (2.6)

The linearized dynamics order is reduced by noting that the suspension length state x3

is fast. See the example in Section 2.2.3. Let ẋ3 = 0 and algebraically eliminate x3 as a

linear combination of x2 and ẋ2.

d

dt

[
x2

ẋ2

]
=

[
0 1

− KtC1
m(Kt+C1) 0

] [
x2

ẋ2

]
+

[
0

KtC1
m(Kt+C1)

]
r

The reduced-order dynamics characteristic equation is

s2 +
KtC1

m(Kt + C1)
= 0 (2.7)

Clearly, the reduced-order dynamics (2.7) are very different from the full-order dynamics

(2.6) since the reduced-order dynamics exhibit no damping. The eigenvalues of the full and

reduced-order linearized models are evaluated in the example of Section 2.2.3.

2.2.2 Suspension Model With Suspension Force State

In this section, the suspension model uses suspension force as the state. Start with (2.1,

2.2, 2.3) of the last section

Fs = −C1(x2 − x1 − x30)[1 + C2(x2 − x1 − x30)4]−D1(ẋ2 − ẋ1) +mg (2.8a)

Ft = −Kt(x1 − r − x10) (2.8b)

Ft = Fs (2.8c)

The tire spring force Ft is eliminated by rearranging (2.5) to get

x1 = r + x10 −
Ft
Kt

(2.9a)

ẋ1 = ṙ − Ḟt
Kt

(2.9b)
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and then combining (2.8a), (2.8c) and (2.9) as

Ḟ =
Kt

D1
{−F +mg − C1(x2 − r − x10 − x30 +

F

Kt
)

[1 + C2(x2 − r − x10 − x30 +
F

Kt
)4]−D1(ẋ2− ṙ)}

where F
4
= Fs. An equation of motion for the chassis is given by combining (2.5) with (2.8b)

and (2.8c)

mẍ2 = F

The linearized model is

d

dt

 x2

ẋ2

F

 =

 0 1 0
0 0 1

m

−KtC1
D1

−Kt −Kt+C1
D1

 x2

ẋ2

F

+

 0 0
0 0

KtC1
D1

Kt

[ r
ṙ

]
with the characteristic equation

s3 +
Kt + C1

D1
s2 +

Kt

m
s+

KtC1

mD1
= 0 (2.10)

which is the same as (2.6) as expected.

Again, since the suspension force state F is fast, the reduced-order linearized model is

derived by letting Ḟ = 0 and algebraically eliminating F as a linear combination of x2 and

ẋ2.

d

dt

[
x2

ẋ2

]
=

[
0 1

− KtC1
m(Kt+C1) − KtD1

m(Kt+C1)

] [
x2

ẋ2

]
+

[
0 0

KtC1
m(Kt+C1)

KtD1
m(Kt+C1)

] [
r
ṙ

]

The reduced-order dynamics characteristic equation is

s2 +
KtD1

m(Kt + C1)
s+

KtC1

m(Kt + C1)
= 0 (2.11)

This reduced-order model includes a damping term and is probably a more realistic model

than the reduced-order model of Section 2.2.1. However, note that this model regards road

displacement r and road displacement rate ṙ as two independent inputs. In the physical

system being modelled, they are not independent. The eigenvalues of this model are also

evaluated in Section 2.2.3.
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2.2.3 Example

Here is a numerical example of a suspension model. The parameters are obtained from the

vehicle simulation code from U.C. Berkeley.

m = 393.25 kg Mass of a quarter car.

Kt = 190632
N
m

Tire spring constant.

C1 = 17000
N
m

Suspension spring constant.

D1 = 1500
N · s
m

Suspension damper constant.

The eigenvalues of both full-order models in Section 2.2.1 and 2.2.2 are the same: −135.13,

−1.64± 6.16i. The eigenvalues of the reduced-order model in Section 2.2.1 are ±6.30i and

the eigenvalues of the reduced-order model in Section 2.2.2 are −1.75 ± 6.05i. The light

damping of the force-state model of Section 2.2.2 is more realistic so this model is considered

to be a better representation of the suspension dynamics.

Remark 1. If the model reduction is done by balanced realization and truncation, the

length-state and force-state realizations should have similar reduced-order linear models.

Balanced realization and truncation, discussed in detail in (Douglas et al. 1996), truncates

the least observable and controllable modes as determined by inspection of the observability

and controllability Grammians. By this method, the truncated modes are not necessarily

the fast modes so that the eigenvalues of the reduced-order model might be very different

from those of the full-order model. Further, when fast modes are truncated, the simple

state truncation with steady-state correction method illustrated in Sections 2.2.1 and 2.2.2

produces results that are dependent on the state basis. Regarding a balanced realization

as just another basis, it is possible that for some problems, a balanced realization does not

provide a best reduced-order model. Best is problem dependent but is generally determined

by comparing the full and reduced-order frequency responses and eigenstructures.
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2.3 Manifold Temperature Model

In the engine model the manifold temperature is taken to be a constant. If a manifold

temperature sensor is to be monitored for a fault, two sensor models are possible. One model

has the manifold temperature as an engine state and appends an integrator to the engine

dynamics. Another model considers the manifold temperature as a measured exogenous

input.

Since manifold temperature changes are on a much longer time scale than the engine

dynamics, it is a natural choice to model the manifold temperature as a constant. With a

constant manifold temperature as an engine state, an integrator is appended to the engine

dynamics. [
ẋ
ẋTm

]
=
[
A BTm
0 0

] [
x
xTm

]
+
[
B
0

]
u

y =
[
C 0
0 1

] [
x
xTm

]
where xTm is the manifold temperature state and x are the rest of the states. A problem

with this model is that the observability Grammian is ill-defined because the eigenvalue at

the origin is associated with a measured state, the temperature xTm .

An alternate model has the temperature as a known, that is measured, input to the

engine.

ẋ = Ax+Bu+BTmωTm

yx = Cx

yω = ωTm

This approach avoids the observability Grammian problem and seems more reasonable in

that the manifold temperature is an environmental factor which cannot be controlled.



Chapter 3

Fault Detection By Analytic Redundancy

Analytic redundancy is an approach to health monitoring that compares dissimilar

instruments using a detailed system model. The approach is to find dynamic or algebraic

relationships between sensors and actuators. That is, information provided by a monitored

sensor is, in some form, also provided by other sensors or, through the dynamics, by actuator

commands. In automated vehicles, these requirements preclude monitoring nonredundant

sensors such as obstacle detection or lane position sensors. The information provided by

a radar or infrared sensor designed to detect objects in the vehicle’s path has no dynamic

correlation with other sensors on the vehicle. A sensor that detects the vehicle’s position in

a lane is the only sensor that can provide this information. Actuators that do no observable

action are also difficult to monitor. For example, the health of a power window actuator is

easily monitored by the driver. But, unless specialized sensors are installed, no other part

of the car is affected by the operation of this actuator and there is no analytic redundancy.

A range sensor is another example of a sensor for which a vehicle has no redundant

information. In some configurations, range information is provided by several different

15



16 Chapter 3: Fault Detection By Analytic Redundancy

types of sensors, for example, radar and optical range sensors. In this type of design, the

sensor measurements are fused at the vehicle regulation layer. So, for the purposes of vehicle

control and fault detection, the range sensors are regarded as providing a single synthesized,

and nonredundant, measurement.

Analytic dynamic redundancy requires a detailed model of the dynamic relationship

between sensors and actuator commands. This information is encoded in a fault detection

filter that detects and isolates faults by producing a static pattern in a linear observer

residual. Most sensors and actuators associated with the vehicle longitudinal dynamics

are monitored this way. Fault detection filter design is described in Section 3.1. Algebraic

redundancy provides a simple algebraic parity equation that must be satisfied. For example,

since the throttle actuator dynamics are very fast, the throttle actuator command minus

the throttle actuator position is nominally zero. Parity equation design is described in 3.2.

The fault detection and isolation system is summarized in Section 3.3.

3.1 Analytic Redundancy

Eleven sensors and two actuators are to be monitored. The sensors are the manifold air mass

sensor yma , engine speed sensor yωe , manifold temperature sensor yTm , manifold pressure

sensor ypm, longitudinal velocity sensor yvx and accelerometer yax , vertical accelerometer

yaz , the sum of front wheel speed sensors yω̄f , the sum of rear wheel speed sensors yω̄r ,

throttle sensor yα and brake sensor yTb . The two actuators are the throttle uα and brake

uTb . Three of the sensors yα, yTb and ypm, are monitored with algebraically redundant

information. Hence, eight sensors and two actuators are included in the fault detection

filter design.

A very brief review of the fault detection filter is provided in Section 3.1.1. Section 3.1.2

describes the sensor and actuator fault models. Section 3.1.3 discusses several design

considerations that are specific to the longitudinal vehicle dynamics health monitoring

problem. Section 3.1.4 discusses how multiple faults are grouped among several filters. The

fault detection filter designs are sensor and actuator fault groups described in Sections 3.1.5
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and 3.1.6.

3.1.1 Beard-Jones Fault Detection Filter Background

A detailed review of fault detection filter design is provided in Appendix A of last year’s

report (Douglas et al. 1996). For a thorough background, several references are available,

a few of which are (Douglas 1993), (White and Speyer 1987) and (Massoumnia 1986).

Consider a linear time-invariant system with q failure modes and no disturbances or

sensor noise

ẋ = Ax+Bu+
q∑
i=1

Fimi (3.1a)

y = Cx+Du (3.1b)

The system variables x, u, y and the mi belong to real vector spaces and the system maps

A, B, C, D and the Fi are of compatible dimensions. Assume that the input u and the

output y both are known. The Fi are the failure signatures. They are known and fixed and

model the directional characteristics of the faults. The mi are the failure modes and model

the unknown time-varying amplitude of faults. The mi do not have to be scalar values.

A fault detection filter is a linear observer that, like any other linear observer, forms a

residual process sensitive to unknown inputs. Consider a full-order observer with dynamics

and residual

˙̂x = (A+ LC)x̂+Bu− Ly (3.2a)

r = Cx̂+Du− y (3.2b)

Form the state estimation error e = x̂− x and the dynamics and residual are

ė = (A+ LC)e−
q∑
i=1

Fimi

r = Ce

In steady-state, the residual is driven by the faults when they are present. If the system

is (C,A) observable, and the observer dynamics are stable, then in steady-state and in the
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absence of disturbances and modeling errors, the residual r is nonzero only if a fault has

occurred, that is, if some mi is nonzero. Furthermore, when a fault does occur, the residual

is nonzero except in certain theoretically relevant but physically unrealistic situations. This

means that any stable observer can detect the presence of a fault. Simply monitor the

residual and when it is nonzero a fault has occurred.

In addition to detecting a fault, a fault detection filter provides information to determine

which fault has occurred. An observer such as (3.2) becomes a fault detection filter when

the observer gain L is chosen so that the residual has certain directional properties that

immediately identify the fault. The gain is chosen to partition the residual space where each

partition is uniquely associated with one of the design fault directions Fi. A fault is identified

by projecting the residual onto each of the residual subspaces and then determining which

projections are nonzero.

In a detection filter, the state estimation error in response to a fault in the direction

Fi remains in a state subspace T ∗i , an unobservability subspace or detection space. See

Appendix A of last year’s report (Douglas et al. 1996) for details. The ability to identify

a fault, to distinguish one fault from another, requires, for an observable system, that the

detection spaces be independent. Thus, the number of faults that can be detected and

identified by a fault detection filter is limited by the size of the state space and the sizes of

the detection spaces associated with each of the faults. If the problem considered has more

faults than can be accommodated by one fault detection filter, then a bank of filters will

have to be constructed.

For a fault Fi, the approach to finding the detection space T ∗i is to find the minimal

(C,A)-invariant subspaceW∗i that contains Fi and then to find the invariant zero directions

of the triple (C,A, Fi), if any. With the invariant zero directions denoted by V i, the minimal

unobservability subspace T ∗i is given by

T ∗i =W∗i + V i

Before the fault detection filter design (3.2) can begin, a system model with faults has

to be found with the form (3.1). This is discussed in the next section.
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3.1.2 Fault Modelling

This section describes sensor and actuator fault models used for fault detection filter design.

Two classes of sensor fault are considered. One measures a linear combination of states. For

the longitudinal vehicle dynamics these include yma , yωe , yvx , yax , yaz , yω̄f and yω̄r . Another

class of sensor fault is one that measures exogenous inputs. The manifold temperature sensor

is the only sensor in this class.

The fault of a sensor which measures system states can be modelled as an additive term

in the measurement equation

y = Cx+ Eiµi (3.3)

where Ei is a column vector of zeros except for a one in the ith position and where µi is an

arbitrary time-varying scalar. This is explained in last year’s report (Douglas et al. 1996)

but is included here for completeness. Since, for fault detection filter design, faults are

expressed as additive terms to the system dynamics, a way must be found to convert the

Ei sensor fault form of (3.3) to an equivalent Fi form as in (3.1). Let Fi satisfy

CFi = Ei

and define a state estimation error e as

e = x− x̂+ Fiµi

Using (3.2), the error dynamics are

ė = (A+ LC)e+ Fiµ̇i −AFiµi (3.4)

and a sensor fault Ei in (3.3) is equivalent to a two-dimensional fault Fi

ẋ = Ax+Bu+ Fimi with Fi =
[
F 1
i , F

2
i

]
where the directions F 1

i and F 2
i are given by

Ei = CF 1
i (3.5a)

F 2
i = AF 1

i (3.5b)
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An interpretation of the effect of a sensor fault on observer error dynamics follows from

(3.4) where F 1
i is the sensor fault rate µ̇i direction and F 2

i is the sensor fault magnitude

µi direction. This interpretation suggests a possible simplification when information about

the spectral content of the sensor fault is available. If it is known that a sensor fault has

persistent and significant high frequency components, such as in the case of a noisy sensor,

the fault direction could be approximated by the F 1
i direction alone. Or, if it is known

that a sensor fault has only low frequency components, such as in the case of a bias, the

fault direction could be approximated by the F 2
i direction alone. For example, if a sensor

were to develop a bias, a transient would be likely to appear in all fault directions but, in

steady-state, only the residual associated with the faulty sensor should be nonzero.

A linear model partitioned to isolate first-order actuator dynamics can be expressed as

[
ẋ
ẋa

]
=
[
A B
0 −ω

] [
x
xa

]
+
[

0
ω

]
u+Bωω

where xa is a vector of actuator states and ω is an exogenous input. Typically, exogenous

inputs are dynamic disturbances such as road noise and wind gusts and are not known or

measured. However, as described in Section 2.3, the manifold temperature is modelled as a

dynamic input and is measured. A fault in this sensor is modelled as a direction given by

the associated column of the Bω matrix.

A fault in a control input is also modeled as an additive term in the system dynamics.

In the case of a fault appearing at the input of an actuator, that is the actuator command,

the fault has the same direction as the associated column of the [0, ω]T matrix. A fault

appearing at the output of an actuator, the actuator position, has the same direction as the

associated column of the [BT , 0]T matrix. In the vehicle model, the actuator dynamics are

relatively fast and, in an approximation made here, are removed from the system model.

Thus, the control inputs are applied directly to the system through a column of the B

matrix.
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3.1.3 Special Design Considerations

Several design considerations arise that are specific to the longitudinal vehicle dynamics

health monitoring problem. One problem is a conditioning problem that arises from the

model order reduction done in Section 2.1. Another concerns the output separability of the

modeled faults. A third problem concerns a reasonable expectation that a fault detection

filter should produce a nonzero fault residual for as long as a modeled fault is present.

Ill-conditioned fault direction

For all sensor and throttle actuator faults described in Section 3.1.2, the detection or

minimal unobservability subspaces are given by the fault directions themselves, that is,

T ∗i =W∗i + V i = ImFi

For example, for the brake actuator, T ∗i = ImFi because CFuTb 6= 0, (Douglas et al. 1996).

However, CFuTb 6= 0 only holds for the reduced, eighth-order model. For the full-order

model, CFuTb = 0 so FuTb should be considered as a very weakly observable direction. For

fault detection filter design, the brake actuator unobservability subspace is taken to be the

second-order space given by

T ∗uTb = Im
[
FuTb , AFuTb

]
Output separability

The output separability design requirement states that the residuals produced by design

faults be pairwise linearly independent. Faults that are not output separable generate

co-linear residuals and cannot be isolated. Output separability of two faults Fi and Fj is

determined by

CT ∗i ∩ CT ∗j = 0 (3.6)

which may be checked by the column independence of realizations for CT i and CT j .
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Performing the check (3.6) reveals that two pairs of faults are not output separable.

The throttle actuator uα and manifold air mass sensor yma faults are not output separable

and the manifold temperature sensor yTm and manifold air mass sensor yma faults are not

output separable. The problem is summarized as

T ∗uα = Fuα

T ∗yTm = FyTm

T ∗yma =
[
Fyma AFyma

]
Fuα = Fyma

FyTm = AFyma

First, consider the throttle actuator and manifold air mass sensor faults where CFuα =

CFyma indicates that they cannot be isolated. As explained in Section 3.1.2, the direction

of the air mass sensor fault magnitude is AFyma while the direction of the fault rate is Fyma .

The throttle actuator and air mass sensor faults become output separable if only the sensor

fault magnitude direction is used. This design decision could allow a noisy but zero mean

sensor fault to remain undetected through the direction CAFyma . Also, since the throttle

fault detection space is spanned by Fuα = Fyma , an air mass sensor fault rate will stimulate

the throttle fault residual. However, a throttle actuator fault could never stimulate the

air mass sensor fault residual. In summary, as long as the air mass sensor fault spectral

components are low frequency, the throttle actuator and manifold air mass sensor faults

should be detectable and isolatable.

Next, consider the manifold temperature and air mass sensor faults where CFyTm =

CAFyma indicates that they cannot be isolated. Since AFyma represents the fault magnitude

direction, this direction can not be dropped from the detection space. One remedy is

to design a second fault detection filter that does not take the manifold air mass as a

measurement. Such a filter will be unaffected by air mass sensor faults but will respond to

manifold temperature sensor faults. A problem with this fix is that the throttle actuator and

temperature sensor faults are not output separable without an air mass sensor measurement.
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Responses of the two filter designs are summarized in Figure 3.1. Each row represents

a bias (hard) fault in either the throttle actuator, the air mass sensor or the temperature

sensor. The columns are the residual responses to the given fault conditions. The first

column is the response of the throttle actuator fault residual of the first filter. The

second column is the response of the air mass sensor and temperature sensor fault residuals

also from the first filter. The third column is the response of the throttle actuator and

temperature sensor fault residuals of the second filter.

Figure 3.1 shows that neither filter alone can detect and isolate the three faults: the

throttle actuator, the air mass sensor and the temperature sensor. Taken together, the two

filters produce a pattern unique to each fault so that the faults may be isolated. However,

the picture is not yet complete. A problem with the second fault detection filter is described

in the next section.

Tempera ture
Manifold

Air Mass
Manifold

Actua tor
Throttle

Detection Filte r #1 Detection
Filte r #2

Fault

Res idua l

Thro ttle Ma nifold Air Ma s s
a nd Te mpe ra tureAc tu a to r

Figure 3.1: Fault Signatures.

Zero steady-state fault residual

It is a reasonable expectation that a fault detection filter should produce a nonzero fault

residual for as long as a modeled fault is present. A necessary and sufficient condition is

given in the following theorem.
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Theorem 3.1. A necessary and sufficient condition for a fault detection filter residual to

hold a non-zero steady-state value in response to a bias fault is CA−1F 6= 0, that is,

C(sI −A− LC)−1F |s=0 = 0 ⇔ CA−1F = 0

Proof. Let F̄
4
= (A+ LC)−1F . (⇒)

F = (A+ LC)F̄ = AF̄ because CF̄ = C(A+ LC)−1F = 0.

⇒ F̄ = A−1F

⇒ CA−1F = CF̄ = 0

(⇐)

AF̄ + LCF̄ = F

⇒ F̄ = A−1F because CA−1F = 0 and (A+ LC) is unique.

⇒ C(A+ LC)−1F = CF̄ = CA−1F = 0

Since CA−1FyTm = 0, the second fault detection filter will not see the temperature sensor

faults in the steady state. When a temperature bias fault occurs, the residual responds

with only a transient. Figure 3.1 is corrected in Figure 3.2 to illustrate the transitory

response. Once again, the fault patterns for the three faults are not unique, at least not in

steady-state.

Since a second fault detection filter no longer fixes the output separability problem,

another fix is needed. An algebraic relation between the manifold pressure and manifold

air mass is useful

manifold pressure− 19.9635 ∗manifold air mass = 0 (3.7)

This convenient relation arises from the perfect gas law. The magic number 19.9635 includes

the gas constant, a nominal temperature and the manifold volume. Equation (3.7) is a



3.1 Analytic Redundancy 25

Tempera ture
Manifold

Air Mass
Manifold

Actua tor
Throttle

Detection Filte r #1 Detection
Filte r #2

Fault

Res idua l

Thro ttle Ma nifold Air Ma s s
a nd Te mpe ra tureAc tu a to r

Figure 3.2: Fault Signatures.

parity equation that is satisfied when the manifold pressure and manifold air mass sensors

are working and is not satisfied when either sensor has failed. The parity equation by itself

cannot isolate a fault.

By combining the parity equation (3.7) with the first fault detection filter of the last

section, a residual pattern unique to each fault is formed and the faults may be isolated. The

faults are the throttle actuator, the air mass sensor, the temperature sensor and the manifold

pressure sensor. The residual patterns are summarized in Figure 3.3 Each row represents

a bias (hard) fault in either the throttle actuator, the air mass sensor, the temperature

sensor or the manifold pressure sensor. The columns are the residual responses to the given

fault conditions. The first column is the response of the throttle actuator fault residual of

the first filter. The second column is the response of the air mass sensor and temperature

sensor fault residuals also from the first filter. The third column is the response of the parity

equation for the manifold air mass and pressure sensors. The parity equation is discussed

further in Section 3.2.

3.1.4 Fault Assignment to Multiple Fault Detection Filters

The ability to identify a fault, to distinguish one fault from another, requires for an

observable system that the detection spaces be independent. Therefore, the number of
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Figure 3.3: Fault Signatures.

faults that can be detected and identified by a fault detection filter is limited by the size of

the state space and the sizes of the detection spaces associated with each of the faults. If the

problem considered has more faults than can be accommodated by one fault detection filter,

then a bank of filters will have to be constructed. The health monitoring system described

in this section for a vehicle going straight, considers nine system faults: seven sensor faults

and two actuator faults. Since the reduced-order longitudinal model has eight states and

seven measurements, clearly more than one fault detection filter is needed. The dimension

of the throttle actuator, the manifold air mass sensor and the manifold temperature sensor

detection spaces is one. The dimension of the brake actuator and the rest of the sensor

faults is two. Therefore, for this problem at least three filters are needed.

One consideration in grouping the faults among the fault detection filters is to group

faults which are robust to system nonlinearities. Note that an actuator fault changes the

vehicle operating point possibly introducing nonlinear effects into all measurements. The

nonlinear effect is small if the residual response is small compared to that for some nominal

fault. Also, sensor faults that are open-loop are easily isolated since they do not stimulate

any dynamics. One approach to fault grouping is to always group actuator and sensor faults
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with different fault detection filters.

Usually an attempt is made to group as many faults as possible in each filter. When

full-order filters are used, this approach minimizes the number of filters needed. When

reduced-order filters are used, this approach minimizes the order of each complementary

space and, therefore, the order of each reduced-order filter. Note that each fault included in

a fault detection filter design imposes more constraints on the filter eigenvectors. Sometimes,

the objective of obtaining well-conditioned filter eigenvectors imposes a tradeoff between

robustness and the reduced-order filter size.

With all the considerations above in mind, now we should decide how many fault

detection filters are needed and which faults should go together. Robustness to nonlinearities

requires all the actuator faults to be in the same filter. The output separability consideration

of Section 3.1.3 requires the throttle actuator and manifold air mass sensor fault to be in

the same filter. Thus, one fault detection filter has the throttle actuator uα, brake actuator

uTb and manifold air mass sensor yma . Note that this filter is also sensitive to faults in the

manifold temperature sensor yTm since manifold temperature and manifold air mass sensor

faults are not output separable.

The six remaining sensor faults, yωe , yvx , yax , yaz , yω̄f and yω̄r are assigned to two more

fault detection filters. Each filter has three faults. There are ten different combinations

for these two filters and they are all non-mutually detectable which means the invariant

zeros arising from the fault combinations will be the eigenvalues of the filters, that is, some

poles of the filters cannot be assigned. In six of these cases, the invariant zeros, hence the

fixed poles, are in the right-half plane resulting in an unstable fault detection filter. The

remaining four configurations are stable. Each stable case has been designed and tested.

The most robust combination is to put yωe , yax and yω̄f into the second filter and put yvx ,

yaz and yω̄r into the third filter. Here, most robust is taken to mean the filter with left

eigenvectors that are least ill-conditioned. This hedges against eigenstructure sensitivity to

small variations in system parameters. The three fault detection filters are
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Fault detection filter 1.

uα : Throttle actuator.

uTb : Brake actuator.

yma : Manifold air mass sensor.

yTm : Manifold temperature sensor.

Fault detection filter 2.

yωe : Engine speed sensor.

yax : Longitudinal accelerometer.

yω̄f : Sum of front wheel speed sensors.

Fault detection filter 3.

yvx : Longitudinal velocity sensor.

yaz : Vertical accelerometer.

yω̄r : Sum of rear wheel speed sensors.

3.1.5 Fault Detection Filter Design For Sensors

In this and the following sections, Beard-Jones fault detection filters have been designed

using eigenstructure assignment while ensuring that the eigenvectors are not ill-conditioned.

The essential feature of a fault detection filter is the detection space structure embedded

in the filter dynamics. A left eigenvector assignment design algorithm explicitly places

eigenvectors to span these subspaces. An eigenvector assignment design algorithm also

has to balance the objective of having well-conditioned eigenvectors for robustness against

the objective of each fault being highly input observable for fault detection performance.

System disturbances, sensor noise and system parameter variations are not considered in

the fault detection filter designs described in this report. Note that they are considered

in performance evaluation. For such a benign environment, the filter designs are based on
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spectral considerations only; there is little else that can be used to distinguish a good design

from a bad design.

Since the calculations are somewhat long and they are the similar for each detection

filter, the calculation details are given for only the first and third fault detection filters. In

this section, the fault detection filter is designed for the third fault group which has the

longitudinal velocity sensor yvx , the vertical accelerometer yaz and the sum of rear wheel

speed sensors yω̄r . In next section, a filter is designed for the first fault group which has the

throttle actuator uα, the brake actuator uTb and the manifold air mass sensor yma . Note

once again that the manifold air mass sensor yma is not output separable with respect to

the manifold temperature sensor yTm .

The eight state reduced-order longitudinal model derived in Section 2.1 is used. The

dimension of each detection space was found in Section 3.1.4 as

νyvx = dim T ∗yvx = 2

νyaz = dim T ∗yaz = 2

νyω̄r = dim T ∗yω̄r = 2

The dimension of the fault detection filter complementary space T 0 is also needed. The

complementary space is any subspace independent of the detection spaces that completes

the state-space.

X = T ∗yvx ⊕ T
∗
yaz
⊕ T ∗yω̄r ⊕ T 0

Thus the dimension of T 0 is two

ν0 = n− νyvx − νyaz − νyω̄r
= 8− 2− 2− 2

= 2

Next define the complementary faults sets. There are three faults Fyvx , Fyaz and Fyω̄r
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so there are four complementary fault sets which are:

F̂yvx =
[
Fyaz , Fyω̄r

]
(3.8a)

F̂yaz =
[
Fyvx , Fyω̄r

]
(3.8b)

F̂yω̄r =
[
Fyvx , Fyaz

]
(3.8c)

F̂0 =
[
Fyvx , Fyaz , Fyω̄r

]
(3.8d)

Now choose the filter closed-loop eigenvalues. As discussed in Section 3.1.4, these three

faults are not mutually detectable. Therefore the invariant zero −14.52 has to be one of

the eigenvalues of the complementary subspace. Since the system model includes no sensor

noise, no disturbances and no parameter variations, there is little basis for preferring one

set of detection filter closed-loop eigenvalues over another. The poles are chosen here to

give a reasonable response time but are not unrealistically fast. The assigned eigenvalues

are

Λyvx = {−3,−4}

Λyaz = {−3,−4}

Λyω̄r = {−3,−4}

Λ0 = {−3,−14.52}

The next step is to find the closed-loop fault detection filter left eigenvectors. For each

eigenvalue λij ∈ Λi, the left eigenvectors vij generally are not unique and must be chosen

from a subspace as vij ∈ Vij where Vij and another space Wij are found by solving[
AT − λijI CT

F̂ Ti 0

] [
Vij
Wij

]
=
[

0
0

]
(3.9)

There are eight Vij associated with eight eigenvalues. To help desensitize the fault detection

filter to parameter variations, the left eigenvectors are chosen from vij ∈ Vij as the set with

the greatest degree of linear independence. The degree of linear independence is indicated

by the smallest singular value of the matrix formed by the left eigenvectors. Upper bounds
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on the singular values of the left eigenvectors are given by the singular values of

V = [V01 , V02 , Vyvx1
, Vyvx2

, Vyaz1 , Vyaz2 , Vyω̄r1 , Vyω̄r2 ]

These singular values are

σ(V ) = {2.83, 2.50, 1.69, 1.41, 1.32, 0.333, 0.080, 0.0088} (3.10)

If the left eigenvector singular value upper bounds were small, then all possible combinations

of detection filter left eigenvectors would be ill-conditioned and the filter eigenstructure

would be sensitive to small parameter variations. Since (3.10) indicates that the upper

bounds are not small, continue by looking for a set of fault detection filter left eigenvectors

that are reasonably well-conditioned. For this case, one possible set of left eigenvectors

from the set V nearly meets the upper bound and should be well-conditioned. The singular

values of this set of left eigenvectors are

σ(Ṽ ) = {1.95, 1.12, 1.00, 1.00, 0.92, 0.285, 0.063, 0.00691}

Since the difference between the largest and the smallest singular values is only three orders

of magnitude, the detection filter gain will be reasonably small and the filter eigenstructure

should not be sensitive to small parameter variations.

The fault detection filter gain L is found by solving

Ṽ TL = W̃ T (3.11)

where Ṽ is the matrix of left eigenvectors as found above, and W̃ is a matrix of vectors wij[
AT − λijI CT

F̂ Ti 0

] [
vij
wij

]
=
[

0
0

]
If the left eigenvector vij is a linear combination of the columns of Vij , wij is the same linear

combination of the columns of Wij where Vij and Wij are from (3.9).

To complete the detection filter design, output projection matrices Ĥyvx , Ĥyaz and Ĥyω̄r

are needed to project the residual along the respective output subspaces CT̂ ∗yvx , CT̂
∗
yaz

and
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CT̂ ∗yω̄r . What this means is that, for example, T̂ ∗yvx becomes the unobservable subspace

of the pair (ĤyvxC,A + LC). Remember that by the definition of the complementary

faults (3.8), faults Fyaz and Fyω̄r lie in T̂ ∗yvx and fault Fyvx does not. The effect is that the

projected residual is driven by fault Fyvx and only fault Fyvx .

A projection Ĥi is computed by first finding a basis for the range space of CT̂ ∗i where

again, T̂ ∗i is any basis for the detection space T̂ ∗i . This is done by finding the left singular

vectors of CT̂ ∗i . Denote this basis for now as hi. Then Ĥi is given by

Ĥi = I − hihTi

In summary, a fault detection filter for the system with sensor faults Eyvx , Eyaz and

Eyω̄r

ẋ = Ax+Bu+BTmωTm

y = Cx+Du+ Eyvxµyvx + Eyazµyaz + Eyω̄rµyω̄r

is equivalent to a fault detection filter for the system with faults Fyvx , Fyaz and Fyω̄r

ẋ = Ax+Bu+BTmωTm + Fyvxmyvx + Fyazmyaz + Fyω̄rmyω̄r

y = Cx+Du

and has the form

˙̂x = (A+ LC)x̂+ (B + LD)u+BTmyTm − Ly

zyvx = Ĥyvx (Cx̂+Du− y)

zyaz = Ĥyaz (Cx̂+Du− y)

zyω̄r = Ĥyω̄r (Cx̂+Du− y)

where L, Ĥyvx , Ĥyaz and Ĥyω̄r are shown in Appendix A.

A fault detection filter design for the second fault group is carried out in the similar way

and is not shown here. However, the filter gain L and projections Ĥyωe , Ĥyax and Ĥyω̄f
are

shown in Appendix A.
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3.1.6 Fault Detection Filter Design For Actuators

In next section, a fault detection filter is designed for the first fault group which has the

throttle actuator uα, the brake actuator uTb and the manifold air mass sensor yma . Note

once again that the manifold air mass sensor yma is not output separable with respect to

the manifold temperature sensor yTm .

The design procedure is similar to the previous section but does have a twist. As

discussed in Section 3.1.3, a reduced-order manifold air mass sensor fault is used to achieve

output separability with the throttle actuator fault. Also manifold air mass and manifold

temperature sensor faults cannot be isolated.

The dimension of each detection space was found in Section 3.1.4 as

νuα = dim T ∗uα = 1

νuTb = dim T ∗uTb = 2

νyma = dim T ∗yma = 1

and the dimension of the fault detection filter complementary space T 0 where

X = T ∗uα ⊕ T
∗
uTb
⊕ T ∗yma ⊕ T 0

is four

ν0 = n− νuα − νuTb − νyma
= 8− 1− 2− 1

= 4

Next define the complementary faults sets. There are three faults Fuα , FuTb and Fyma

so there are four complementary fault sets which are:

F̂uα =
[
FuTb , Fyma

]
(3.12a)

F̂uTb =
[
Fuα , Fyma

]
(3.12b)

F̂yma =
[
Fuα , FuTb

]
(3.12c)

F̂0 =
[
Fuα , FuTb , Fyma

]
(3.12d)
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Now choose the fault detection filter closed-loop eigenvalues. Since these three faults are

mutually detectable, all eigenvalues are freely assignable.

Λuα = {−3}

ΛuTb = {−3, −4}

Λyma = {−3}

Λ0 = {−3, −4, −5, −6}

The next step is to find the closed-loop fault detection filter left eigenvectors. The left

eigenvectors vij for each eigenvalue λij ∈ Λi generally are not unique and must be chosen

from a subspace as vij ∈ Vij where Vij is found by solving[
AT − λijI CT

F̂ Ti 0

] [
Vij
Wij

]
=
[

0
0

]
(3.13)

There are eight Vij associated with eight eigenvalues. Upper bounds on the singular values

of the left eigenvectors are given by the singular values of

V = [V01 , V02 , V03 , V04 , Vuα , VuTb1 , VuTb2 , Vyma ]

These singular values are

σ(V ) = {2.83, 2.83, 2.82, 1.98, 1.41, 0.290, 0.174, 0.021} (3.14)

Since (3.14) indicates that the upper bounds are not small, continue by looking for a set

of fault detection filter left eigenvectors that are reasonably well-conditioned. One possible

choice has the following singular values

σ(Ṽ ) = {1.46, 1.41, 1.35, 1.00, 1.00, 0.235, 0.056, 0.0028}

Since these singular values are quite close to their respective upper bounds, the detection

filter gain should not be large and the filter eigenstructure should not be sensitive to small

parameter variations. As in Section 3.1.5, the fault detection filter gain L is found by solving

Ṽ TL = W̃ T (3.15)
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where the columns of Ṽ and W̃ are found from (3.13). Output projection matrices Ĥuα ,

ĤuTb
, Ĥyma and ĤyTm are found in the same way as for the sensor fault example of

Section 3.1.5. The filter gain L and projections Ĥuα , ĤuTb
, Ĥyma and ĤyTm are shown

in Appendix A

A note should be made regarding the throttle actuator fault residual. By the definition

of the complementary faults (3.12), FuTb and Fyma lie in T̂ ∗uα while Fuα does not. The effect

is that the projected residual is not driven by fault FuTb or Fyma . Now recall that Fyma is a

reduced-order approximation for Eyma so the throttle actuator residual is not only driven by

Fuα , but also the part of Eyma not modeled by Fyma . As shown in Figure 3.4, the throttle

actuator residual can only isolate faults well at low frequency while other residuals isolate

all faults.
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Figure 3.4: Singular value frequency response from all faults to throttle residual.

3.2 Algebraic Redundancy

Algebraic parity equations provide a second component to the fault detection and isolation

system. The following algebraically redundant pairs are available: the throttle sensor yα
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and throttle actuator, the brake sensor yTb and brake actuator uTb and the manifold pressure

sensor ypm and manifold air mass sensor yma. Three parity equations are defined:

1. 0 = Throttle sensor yα− Throttle actuator uα

2. 0 = Brake sensor yTb− Brake actuator uTb

3. 0 = Manifold pressure sensor ypm− Manifold air mass sensor yma ∗ 19.9635

None of the parity equations can by itself identify a fault. But by combining the parity

equations with the first fault group detection filter of Section 3.1.4, a unique residual pattern

is presented allowing each fault to be isolated. The patterns are summarized in Figure 3.5.

Each row of Figure 3.5 represents a bias (hard) fault in either the throttle actuator,

the throttle sensor, the brake actuator, the brake sensor, the manifold air mass sensor,

the manifold temperature sensor or the manifold pressure sensor. The columns are the

residual responses to the given fault conditions. The first column is the response of the

throttle actuator fault residual of the first filter. The second column is the response of the

brake actuator fault residual of the first filter. The third column is the response of the air

mass sensor and temperature sensor residuals of the first filter. The fourth, fifth and sixth

columns are responses of the first, second and third parity equations.

3.3 Structure

Combining the fault detection filters of Section 3.1 and parity equations in Section 3.2, a

set of six analytic redundancy relationships either dynamic or algebraic are presented. The

designs are given in Appendix A.

Fault detection filter 1.

uα : Throttle actuator.

uTb : Brake actuator.

yma : Manifold air mass sensor.

yTm : Manifold temperature sensor.
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Figure 3.5: Fault Signatures.

Fault detection filter 2.

yωe : Engine speed sensor.

yax : Longitudinal accelerometer.

yω̄f : Sum of front wheel speed sensors.

Fault detection filter 3.

yvx : Longitudinal velocity sensor.

yaz : Vertical accelerometer.

yω̄r : Sum of rear wheel speed sensors.
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Parity equation 1.

yα : Throttle sensor.

uα : Throttle actuator.

Parity equation 2.

yTb : Brake sensor.

uTb : Brake actuator.

Parity equation 3.

ypm : Manifold pressure sensor.

yma : Manifold air mass sensor.
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Conclusions

This brief report describes the design of a residual generation sytem that is a component

of a fault detection and identification module in a comprehensive health monitoring and

reconfiguration system under development at UC Berkeley. The design illustrates the care

that must be taken in forming fault detection filters and parity equations so that each fault

produces a unique static pattern. Issues relating to sensor models, output separability,

steady-state fault persistence and the spectral content of sensor faults are all considered.

Performance evaluation is not done here but a companion report, (Douglas et al. 1997),

describes testing done in a high-fidelity vehicle simulation where nonlinearities and road

variations are significant. The companion report also describes the design and testing

of a residual processor, a multiple hypothesis Shiryayev sequential probability ratio test,

that examines the filter and parity equation residuals and generates the probability of the

presence of a fault.
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Appendix A

Fault Detection Filter Design Data

The reduced-order longitudinal linearized system matrices used for fault detection filter

design are

A =



−22.56 −0.12 0 0 0 0 0 0
307.03 −35.41 396.80 −2698.58 −238.10 1901.28 −432.86 −0.08

0 0.07 −0.76 4.87 0.43 −3.29 0.87 −0.00
0 0 0.00 0 1.00 −25.00 0 0
0 −0.00 −0.01 −39.72 −3.50 78.91 24.20 0.00
0 0 0 0 0 0 1.00 0
0 −0.02 0.22 −7.19 −0.61 −25.26 −3.73 0.00
0 0 0 0 0 0 0 −1.25



B =



2.35 0 −0.12
0 0 1.66
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 1.25 0


41
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C =



1.00 0 0 0 0 0 0 0
0 1.00 0 0 0 0 0 0
0 0 1.00 0 0 0 0 0
0 0.07 −0.76 4.87 0.43 −3.29 0.87 −0.00
0 −0.00 −0.01 −39.72 −3.50 78.91 24.20 −0.00
0 0 7.10 −45.34 −4.00 146.48 2.83 −0.00
0 0.09 5.96 −40.56 −3.58 28.58 −6.51 −0.00



D =



0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0



The filter gain L and the output projection matrices Ĥuα , ĤuTb
, Ĥyma and ĤyTm for the

first fault detection filter are as follows.

L =



19.56 0.12 0.00 0.00 −0.00 −0.00 0.00
−307.03 523.06 −334.41 −6277.18 8.39 3.99 −832.46
−0.00 11.97 −11.36 −156.00 0.20 0.10 −18.91

0.00 0.00 −1.96 −0.10 −0.06 0.19 0.03
0.00 −0.07 −7.21 −0.00 −1.17 −0.08 0.83
−0.00 −0.00 0.01 −0.01 −0.02 −0.02 0.03

0.00 −3.51 1.38 46.16 −0.26 0.32 5.26
−0.00 −60.65 19.39 784.64 −2.29 0.07 96.37



Ĥuα =



0.93 0.07 −0.02 0.11 0.16 −0.10 −0.11
0.07 0.01 −0.00 0.01 0.00 0.03 −0.05
−0.02 −0.00 0.99 0.04 0.05 −0.03 −0.04

0.11 0.01 0.04 0.16 −0.28 −0.12 −0.18
0.16 0.00 0.05 −0.28 0.62 0.23 0.28
−0.10 0.03 −0.03 −0.12 0.23 0.73 −0.35
−0.11 −0.05 −0.04 −0.18 0.28 −0.35 0.55



ĤuTb
=



0 0.00 0 0.00 −0.00 0 0.00
0.00 0.01 0 −0.07 0.00 0 −0.09

0 0 1.00 0 0 0 0
0.00 −0.07 0 1.00 0.00 0 −0.01
−0.00 0.00 0 0.00 1.00 0 0.00

0 0 0 0 0 1.00 0
0.00 −0.09 0 −0.01 0.00 0 1.00


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Ĥyma = ĤyTm =



0 0 0 0 0 0 0
0 0.08 −0.02 0.13 0.16 −0.07 −0.16
0 −0.02 1.00 0.00 0.00 −0.00 −0.00
0 0.13 0.00 0.35 −0.02 −0.28 −0.36
0 0.16 0.00 −0.02 0.97 0.01 0.03
0 −0.07 −0.00 −0.28 0.01 0.86 −0.19
0 −0.16 −0.00 −0.36 0.03 −0.19 0.74



The filter gain L and the output projection matrices Ĥyωe , Ĥyax , Ĥyωf
for the second fault

detection filter are as follows.

L =



18.56 0.12 −0.00 0.00 0.00 −0.00 0.00
−307.03 38.32 −0.00 −0.00 −0.00 0.00 −66.53

0.01 −0.00 −3.00 −1.00 0.00 0.00 0.00
0.75 0.01 0.16 −0.04 0.04 0.21 −0.13
2.16 −0.00 4.11 −0.01 −0.61 −0.00 −0.08
−0.01 −0.00 −0.13 −0.02 −0.03 −0.02 0.05

0.54 0.03 0.02 0.36 −0.12 0.33 −0.38
0.01 −95.97 32.35 1230.72 −3.58 0.10 151.14



Ĥyωe =



1.00 −0.00 −0.00 0.00 0.00 −0.00 −0.00
−0.00 1.00 −0.00 0.00 0.00 0.00 −0.00
−0.00 −0.00 0.99 0.00 0.09 −0.00 −0.02

0.00 0.00 0.00 −0.00 0.00 −0.00 −0.00
0.00 0.00 0.09 0.00 0.01 −0.00 −0.00
−0.00 0.00 −0.00 −0.00 −0.00 0.00 0.00
−0.00 −0.00 −0.02 −0.00 −0.00 0.00 0.00



Ĥyax =



1.00 0.00 0.00 −0.04 0.06 −0.00 −0.06
0.00 0.00 −0.00 0.00 0.00 −0.00 −0.00
0.00 −0.00 1.00 0.00 −0.00 −0.00 0.00
−0.04 0.00 0.00 0.03 0.18 −0.00 −0.03

0.01 0.00 −0.00 0.18 0.94 −0.00 −0.17
−0.00 −0.00 −0.00 −0.00 −0.00 0.00 0.00
−0.01 −0.00 0.00 −0.03 −0.17 0.00 0.03



Ĥyωf
=



1.00− 0.000.000.00− 0.010.03− 0.04
−0.000− 0.00− 0.000.000.000.00

0.00− 0.000.990.000.05− 0.05− 0.02
0.00− 0.000.000.00− 0.00− 0.00− 0.00

−0.010.000.05− 0.000.580.470.15
0.030.00− 0.05− 0.000.470.390.12
−0.040.00− 0.02− 0.000.150.120.04


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The filter gain L and the output projection matrices Ĥyvx , Ĥyaz , Ĥyωr for the third fault

detection filter are as follows.

L =



1.96 0.12 −0.00 0.00 −0.00 −0.00 0.00
−307.03 38.32 −0.00 0.01 −0.00 0.00 −66.53
−0.00 0.00 −3.01 −1.01 0.00 −0.00 0.00

0.00 0.07 −1.11 −0.52 −0.06 0.34 −0.10
0.00 0.38 −0.02 −3.38 −1.14 0.56 0.01
−0.00 −0.00 −0.24 −0.06 −0.03 −0.04 0.05

0.00 0.03 0.26 0.39 −0.15 0.36 −0.35
0.00 −94.97 14.68 1234.19 −3.10 1.68 151.15



Ĥyvx =



1.00 −0.00 −0.00 0.00 −0.00 −0.00 0.00
−0.00 0.00 −0.00 −0.03 0.00 −0.01 0.00
−0.00 −0.00 1.00 0.00 −0.00 −0.00 0.00

0.00 −0.03 0.00 0.90 −0.00 0.30 −0.00
−0.00 0.00 −0.00 −0.00 −0.00 −0.00 −0.00
−0.00 −0.01 −0.00 0.30 −0.00 0.10 −0.00

0.00 0.00 0.00 −0.00 −0.00 −0.00 −0.00



Ĥyaz =



1.00 0.00 0.00 0.00 −0.00 0.00 0.00
0.00 0.03 −0.00 −0.08 0.02 0.16 −0.00
0.00 −0.00 −0.00 0.00 −0.00 −0.00 −0.00
0.00 −0.08 0.00 0.99 0.07 0.00 0.00
−0.00 0.02 −0.00 0.07 0.03 0.16 −0.00

0.00 0.15 −0.00 0.00 0.16 0.95 −0.00
0.00 −0.00 −0.00 0.00 −0.00 −0.00 −0.00



Ĥyωf
=



1.00 −0.00 0.00 −0.00 −0.00 0.0 0.00
−0.00 1.00 0.00 −0.00 0.00 0.00 0.00

0.00 0.00 −0.00 −0.00 −0.00 −0.00 −0.00
−0.00 −0.00 −0.00 0.99 −0.00 0.01 0.12
−0.00 0.00 −0.00 −0.00 0 −0.00 −0.00

0.00 0.00 −0.00 0.01 −0.00 0.00 0.00
0.00 0.00 −0.00 0.12 −0.00 0.00 0.01


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