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ptimal Pricing Policies for Temporary

-orage at Ports

'NARDO DE CASTILHO AND CARrRLOS F. DacaNzO

1g schemes for temporary storage facilities (sheds) at ports
xamined in this paper. It is recognized that shippers respond
cing changes by choosing storage times that maximize their
.. Two types of strategies are considered. Nondiscriminatory
-gies set the shed storage charges as a function of shipment
a2 and time in storage alone (the same for all shippers}; they
it require much knowledge about the shippers’ behavior and
¢ found easily. Discriminatory strategies have the potentiai
nproved efficiency but require more information. In some
1ces. identified in this report, nondiscriminatory strategies
e just as efficient as their discriminatory counterparts. if the
nd is steady and there is no alternative storage site, we find

hed prices should increase linearly with time, at a rate that -

revent overflows without causing undue hardship to users.
demand is heavy, then the shed should be close to capacity
of the time. There is no need for discrimination. Stochastic
1ztions in demand complicate matters slightly because they
make it worthwhile to increase shed prices at an increasing
with time and to discriminate across shippers. If overflow
¢ seat 1o a remotely located warehouse, there is more flex-
i and the pricing strategies are almost as simple. Two prob-
e examined in this paper: finding the optimal shed prices
given warehouse pricz and finding both sets of prices jointly.
mputer spreadsheet can be used to find the best pricing
aes.

speration of temporary storage facilities can be improved
the adoption of rational pricing schemes. This inroduc-
section examines current pricing practices for port sheds
‘he body of the paper presents more refined policies that
into account the user’s response to pricing changes.
ansit sheds are buildings located within ports—usually
iside cargo berths—used for receiving. storing. and han-
. various types of in-transit cargo. They provide safe and
enient storage while freight waits for such administrative
alities as customs clearance and the processing of ship-
documents. Transit sheds also act as buffer zones be-
n fast ship-shore flow and the slower shore-inland goods
:ment. i

ithin the sheds, import cargo is broken down into small
gnments for easy access when the overland shippers come
idually to claim it. Conversely, export loads for a specific
are consolidated in the shed as they arrive, ensuring that
can be retrieved in the order prescribed by the ship-
age plan.

arehouses perform a somewhat different function. Re-
ly located warehouses are subject to much less severe
sity constraints than the sheds but require additional cargo

ste of Transportation Studies, University of California. Berke-
alif. 94707.

handling; this makes them attractive for longer term storage
only.

Shed management directly affects overall port perfor-
mance. When sheds are congested, they cannot perform their
function as buffers for the flow of goods, and this hampers
the efficient loading of vessels and increases their turnaround
times. Shortages in storage space may also increase costs as
a result of additional cargo handling, insurance premiums paid
for deteriorated or damaged goods, and shippers’ failure to
meet delivery dates. Finally, shed congestion may force ship-
pers to use warehouses to store relatively fast-moving cargo,
increasing traffic between port, warchouses, and land trans-
portation terminals.

Clearly, adequate pricing policies must avoid congestion by
controlling the average cargo stay in the sheds. The impor-
tance of this principle is recognized in practice. According to
a 1987 United Nations Conference on Trade and Develop-
ment (UNCTAD) report,

In an Asian port, the demurrage rates for transit sheds were
quadrupled 1o make it unprofitable for consignees to use the
transit sheds for warehousing. The result was that congestion
was considerably reduced. (/)

Modern container terminals, prevalent in industrialized coun-
tries, also need temporary storage areas within the terminal
to serve as buffer zones between containerships and trucks or
trains. The need to avoid abusive use of these areas is also
clear and can be illustrated in practice. For example, at the
TransBay Terminal in Oakland, California, a fee is imposed
on containers that arrive more than ten days before their
scheduled departure date (2).

Of course, if shippers are encouraged to reduce their transit
time so much that the storage facility is underutilized, the
result—wasted capacity and shipper inconvenience—is also
undesirable. How efficient pricing schemes can be developed
for a variety of situations is demonstrated in this report.

In an UNCTAD study, which analyzed more than 50 ports
(3). it was determined that most current pricing policies for
transit sheds exhibit the following features:

1. A fixed time period of free storage, which starts when
the goods are deposited in the shed.

2. Storage fees that are proportional to either the storage
area occupied, the cargo weight, or the cargo volume, de-
pending on the commodity. (The discussion here will be phrased
in terms of volume, but no generality is lost if most of the
commodities are priced on the same basis.) The storage fee
per unit volume will be called price from now on.

3. Price per unit volume increases with the excess transit
time after the free period. Tariffs—defined here as the stoz-
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age charge per unit volume and unit time—are either constant
(in about 20 percent of the cases) or increase with time. Stor-
age times are normally measured in days.

Imakita (4) describes a simple mode! in which storage time
varies across shippers but is insensitive to price and in which
a remote warehouse accommodates the shippers that find the
shed too expensive.

Because storage times change across shippers, a shed tariff
increase does not affect all the shippers equally. If some de-
cide to switch from the shed to the warehouse, the volume
stored in the shed will change. The relationship between pric-
ing policy and various measures of performance (shed accu-
mulation, shed revenue, warehouse flow, etc.) is now intro-
duced as a prelude to the elastic demand models object of
this paper. The following variables are used:

g = port’s carge flow (in volume units per
unit time);
g, = flow through the shed;

q., = flow through the warchouse (g = ¢, +
q.);

C = static shed capacity; thatis, the maximum
cargo volume that can be stored in the
shed at any given time (warehouses are
assumed to have infinite capacity);

FAr) = proportion of the port’s cargo flow that
is stored for no more than ¢ time units,
assumed to be independent of pricing and
storage locale this function can be viewed
as a cumulative probability distribution
function for the time in storage 7 of a
randomly chosen flow unit; the corre-
sponding probability density function is
denoted f{0)];

p.(t) and p,(¢) = warehouse and shed prices (in dollars per
unit volume) as functions of time in stor-
age; and

#° = indifference time in storage: p,(t") =
p,(t°).

If shed prices are less than warehouse prices for short stays
but escalate faster with time (logically, the shed's marginal
tariff should be higher} then the indifference time, if it exists,
will be unigue. Cost-conscious shippers will choose the shed
if T < 1% and the warehouse if T > ° (see Figure 1).

The flow through the shed is then

g, = q F{t%) n

and the revenue is p,(t°) g Fi{r°). If for a given ¢° the shed
capacity is never exceeded, the average volume in storage can
be viewed as the average queue length in a multiserver queueing
system with an infinite number of parailel channels. The av-
erage volume V,, in storage is therefore

- @
Ve = g E(T | T<t) = g L floy r de )

If stochastic fluctuations in V can be ignored, the shed will
not overflow if V,,, = C. Therefore, we can view V,,, as the
shed capacity C,,, required to avoid overflow. With stochastic
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FIGURE 1 Typical shed and warehouse
price functions.

fluctuations. considered later, C,, must be appreciably larger
than V., if overflow is to be unlikely.

Interest here is in the case where C is not sufficient to
accommodate all the traffic: g E{T) > C. Operations will then
be most efficient if the shed operates near capacity. Definitely,
this is to the advantage of the shippers because as much flow
as possible then avoids the warehouse. Maximizing utilization
does not necessarily correspond to maximizing shed revenue,
but this is likely to be a secondary objective for the terminal
operator; minimizing the operating cost added by traffic to
the warehouse is likely to be of greater importance, especially
if there is competition from other ports. .

Because V,,, increases with ¢°, full shed utilization without
overflow is achieved if the shed price function’s indifference
point 1? satisfies Equation 2: ¢* can be found numerically for
any given fr(1).

Any shed price function p (7} that intersects p, () at such a
1° {and such that p,(1} < p,(¢) for ¢ < 1% and p,(1r) > p. (1) for
t > 7} will result in full shed utilization and no overflow.
Thus, there is an infinite number of shed price functions that
satisfy the optimality condition. Although cargo flow patterns
and storage utilization are fixed if ¢° is given, the form of p(f)
in the interval [0,:°] does influence the cash flow among the
warehouse, the shed, and the shipper. Figure 2 depicts two
price functions with identical shed utilization: p!(s} favors the
shippers, with low fees, and p2(f} maximizes shed revenue.

An in-between linear price function would seem adequate
in this case. Although constant tariffs have their advocates
{5}, nonlinear price functions (with increasing tariffs for longer
stays) can be effective in some of the scenarios about to be
exarmined.

The model just described assumes that flow and length of
stay are independent of storage prices. Although it is reason-
able 1o assume that the volume shipped is independent of
storage prices—after all, these represent a relatively small
fraction of the total transportation costs incurred by the



Pai
rice psl(l)

]
]
o
H
¢
5
v
¢
H
v

ofrreercancanad

-

Price

FIGURE 2 ‘‘Equivalent’ shed price
functions.

shipper—the same cannot be said for the time in storage.
More likely, as storage prices increase, shippers will try to
reduce the time in storage and F{r) will shift towards shorter
stays. -

If shed tariffs were increased to eliminate overflows as rec-
ommended, both the indifference time and the average shed
storage time would decline. As a result, even with constant
throughput, the average shed accumulation would be less than
predicted and some shed space would be wasted. Clearly, if
storage times depend on price, the method suggested under-
estimates the effect of price changes. Thus in this paper, total
cargo throughput is considered given, but its accumulation is
assumed to depend on storage prices.

Attempts are made to overcome the limitations of this model
in the remainder of this paper. The nrext section introduces a
model of shipper behavior that attempts to explain how ship-
pers choose their storage time. The following section exam-
ines situations without a warehouse, under both deterministic
and stochastic demand, and the final section adds the ware-
house. The amount of information needed to implement each
policy is discussed, as well as the policies themselves. Both
discriminating strategies (which offer different tariffs to dif-
ferent customers) and nondiscriminating strategies are con-
sidered. The calculations can be easily automated in spread-
sheet form and numerical examples are presented.

SHIPPER BEHAVIOR

Shipper costs can be classified as moving expenses (including
transportation and handling) and holding costs (capital tied
up in inventory and storage rent costs) (6). Moving costs tend
to decrease with time in storage, f, as cargo can then be
consolidated into more efficient shipments. Holding costs, on
the contrary, increase with time in storage, ¢. It has already

been shown that the rent costs—represented by the price
functions p,(t) and p,(t)—usually increase with ¢.

Here interest is in examining the behavior of a cost-
minimizing shipper when the storage rent price functions are
changed. The sum of all the logistics costs, not including the
port storage charges, is called external costs. They typically
decrease with r when ¢ is small, eventually reaching a minimum
and then increasing. (For ¢ close to zero, shippers would have
to retrieve items from the shed on short notice, which would
be expensive. As t increases the external costs decrease, be-
cause items can then be carried in larger batches, which re-
duces moving costs—inventory costs are a negligible part of
the external costs for smalil ¢. If ¢ continues to increase, the
moving cost economies of scale eventually disappear, but in-
ventory costs continue to increase; as a result, the external
cost must eventually increase.}

The external savings function, s(t), represents the shipper’s
external cost savings (per unit volume) if the freight is stored
near the port for an average of ¢ days rather than being col-
lected on the first day. By definition, the savings should vanish
for small ¢; in most cases s(r) should be concave with a single
maximum. In our examples, s{r} wilt be approximated by a
quadratic function. [In reality, s{¢) should be determined from
observed data. The quadratic form is used for the exampies
because it is likely to be a good approximation and because
it yields simple and intuitive mathematical results.}

Presented with a storage price function p(z). the shipper is
assumed to choose the length of stay ¢° that maximizes its
actual (net) savings: s(r} — p(¢). This is represented by the
vertical separation between the two curves in Figure 3a. For
the optimal 1, the marginal savings obtained by using the
storage must equal its marginal cost. This can be written as

s'() = p'(r). &)

In practice, it is easier to estimate s°(f) than s(¢}. Because s'(f)
suffices to determine " {see Figure 3b), the marginal savings
and storage price curves s'(f) and p'(f) are often worked with.

Additional measures of performance obtained from the
marginal curves include the shed/warehouse revenue per unit
flow:

p) = p©) + [ P de @

The shipper’s total savings per unit flow, equal to the area
between s'(r) and p’(¢) in the interval [0,£°} (see Figure 3b):

s() = p(c) = s(0) - p(0) + L @ - p'()) dr ®

The sum of the storage revenue and the shipper’s net sav-
ings, corrected by the cost of operating the storage facility
per unit of flow, A(t), is a measure of total benefit per unit
flow (or “system benefit™) generated by the operation of the
facility, w. Because h{¢) should be nearly independent of ¢ if
the storage facility is below capacity, it is assumed that it is
constant, that is, h{(f) = h. Thus, the system benefit is

w=s()-h=+ L'-s'(() dt, (6)
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FIGURE 3 (a) Savings and price functions
for one shipper. (b) Marginal savings and
price functions for one shipper.

which, except for the constant k. is the shipper savings; that
is, the area below 5'(1) in the interval {0,1'] as depicted in
Figure 3b. Because system benefit is independent of p(¢) for
a given £', any two price functions yielding the same ¢ also
yield the same system benefit.

Although the storage/retrieval cost is assumed to be fixed
for a given storage facility, this cost can be quite different for
different facilities. If a warehouse is remotely located. then
its fixed storage/retrieval cost, A,,. will be much greater than
the equivalent cost for a shed, /. This will become important
when systems with two storage facilities are considered, as
total system benefit will be used for comparing strategies.

In later sections, differences across shippers will be cap-
tured by differences in their external savings functions. These
differences will be the result of the shippers’ inland {ocations,
the value of their freight, and so on. Pricing strategies that
differentiate across commodities can also be easily con-
structed. They are discussed in the conclusion. Figure 4 shows
the external savings functions for two shippers and a price
function; it also depicts the marginal savings functions, the
taniff (marginal storage price) function. the desired storage
times, and the system benefit per unit flow for the two ship-
pers.
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FIGURE 4 (a) Savings and price functions
for two shippers. (b) Marginal savings and
price functions for two shippers.

One can see at a glance that if the tariffs, p’(¢), were to be
increased,.t“ and ¥ would decrease, and so would the total
system benefit. Thus, one would like to lower p’{f} as much
as possible subject to the storage capacity limitations. This
point will be addressed in the next section.

The relationship between system benefit and tariffs can also
be captured analytically. If the marginal price p’(t) and mar-
ginal external savings s'(¢) functions are linear

n

p{)y=a+Br and )
s'() =a~ bt (8)

Then, assuming that a > a, ¢" and w are given by

£ =(a—a)b+B) ©
_ b —a’) + 2aBla — o) 10
w = 206 + B) h (10)

As expected, " and w decrease if the tariff coefficients {c
and B) increase.
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NO WAREHOUSES
Deterministic Demand

In this section, a situation where many shippers must utilize
a single storage facility is investigated. Each shipper sends or
receives through the port ¢, volume units of freight per unit
time, at a steady rate (2q, = ¢). The external savings function
for shipper i is denoted 5,(r).

A pricing policy that maximizes system benefit while en-
suring that the shed capacity is not exceeded is sought. A
discriminatory pricing policy would allow different price func-
tions for different customers; in the most general case, each
customer could be offered a different price function p,(r). A
nondiscriminatory pricing policy would assume that all ship-
pers are treated equally, with the same shed price function
p.(¥) for all. Nondiscriminatory policies are more common,
but they may also be less efficient since they embody addi-
tional restrictions.

The remainder of this subsection shows that for the current
situation—with no warehouse and steady demand—discrim-
inatory and nondiscriminatory strategies are equivalent; in
fact, a constant tariff is optimal: p(r} = p..

Because total system benefit per day, W, only depends on
the price policy through the equilibrium times £ for each
shipper

W= ; g, [s(t) = A} (11)

and because the total freight accumulation in the shed at any
time is also a function of these variables

Vni!g = z{ ql fi” (12)

only the optimal ¢ need to be found. Any price functions
yielding these ¢ will be optimal. The optimal times maximize
W, subject to V,,, = C and ¢ = 0 (for all i).

If the maximization of system benefit without the capacity
constraint yields a V,,, strictly smaller than C, then the re-
sulting times are optimal. These are the times that maximize
the individual 5, curves, which are obtained for a pricing policy
with zero tariff. Thus, if shed space is plentiful, then allowing
free storage maximizes system benefit. System benefit is also
maximized if the port charges a fixed price per unit volume
independent of length of stay, provided the charge is so low
that no shippers are discouraged from using the shed.

If, as is more likely, shed space is at a premium, the capacity
constraint will hold as an equality. Consideration reveals that
any positive £, must satisfy for optimality

5(£) = a (13)
where o is the Lagrange multiplier for the capacity constraint.

To achieve this result the discriminatory pricing functions
~ must satisfy

) = s.(5) = @ (14)

Note that « can be viewed as the optimal tariff at each ¢,

Because it is the same for all i, discrimination is clearly
unnecessary. A nondiscriminatory pricing function with con-
stant tariff should satisfy the above condition. Simply let p (t)
= o, for all i, and increase or decrease « until the average
volume in the shed closely matches its capacity.

This simple policy maximizes system benefit without any
knowledge of individual shipper behavior.

Example

Let us consider a simple case where the si(f) are quadratic
functions s,(¢) = a, — b, ¢.
For a given «, the condition {5;(f)) = a; if £ > 0} yields

£ = max {O, E‘-i—a} (15)

This expression recognizes that the shipper can only benefit
from storage if @ < a,. If @ > 4, then the tariffs increase too
rapidly for the shed to be of use to shipper i. (In Figure 3a,
the pricing curve would be steeper than the external savings
curve near the origin, and thus £ = 0.}

As «a is increased, thus, shippers with the smallest ¢, are
excluded from the shed—or are forced to use it for a minimal
amount of time. If « is optimal, the remaining shippers must
use up the shed’s capacity; that is

Ve =2 @0= 2 g alb, — a2, g/b, (16)

where the summations are only taken for i such that 2, > a.
A simple expression for « is obtained if all the g; are large,
so that no shippers are excluded. The summations in Equation
16 then are independent of «, and

cajb, - C
o = 29 aq,/b (17

A simple computer spreadsheet was developed using these
expressions. The spreadsheet can be used to test different
price functions when the shipper data are given; the shed price
functions and the external savings functions are assumed to
be quadratic. In addition to system benefit, other performance
measures, such as shed revenue and percent of occupied ca-
pacity, are calculated.

In this example, the optimal shed price function for a sit-
uation where five shippers must utilize the shed is calculated.
The data set is as foliows:

Shipper 1 2 3 4 5

a, 10 11 12 13 14
b, 0.5 0.5 0.5 0.5 0.5
q, 500 500 500 300 500

The static shed capacity, C, is 2,000 units.

Expression 7 predicts o’ = 8. The spreadsheet confirms
that nonlinear price functions are infericr and that the best
pricing policy is indeed to charge a flat rate of $8.00 per unit
of cargo per day. The resulting system benefit table, showing
benefit values in thousands of doliars per day for different o
and B, is partially reproduced in the following (negative sys-
tem benefit values indicate shed overflow):
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B

a 0.0 0.1 0.2

7.00 -235.00 117.20 186.99
7.25 -141.97 203.19 179.38
7.50 —38.89 194.70 171.62
7.75 76.03 186.00 163.70
8.00 205.00 177.08 155.61
8.25 194.84 167.95 147.37
8.50 184.38 158.59 138.97
8.75 173.59 149.02 130.40
9.00 162.50 139.24 121.68

Stochastic Demand

More realistically, it is now assumed that the volumes shipped
change from day to day, without any seasonal trend. Then,
the volume from shipper i arriving on any given day can be
viewed as the outcome of a random variable @, with time-
independent mean and variance:

E[Q] =¢q  and (18)
var{Ql] = 1 g, (19)

where [, is a coefficient with volume units.

The volume in the shed, V,, can also be viewed as a random
variable changing from day to day. Because the system is
ergodic. Little’s formula holds and E(V)) = ¢, 4, where ¢ is
the average time in storage for items .

The variance of V, depends on the behavior of shippers,
but the expression

var{Vi] = q. ¢, [, (20)

will be used for illustrative purposes. This expression holds
if shipper i sends (receives) constant size shipments so infre-
quently that two of its shipments are almost never in storage
simultaneously. (In that case, the constant /, can be shown to
represent the size of a shipment.) The expression alsoc holds
for frequent and variable size shipments, provided that all the
shipments remain in storage for a fixed time ¢,.

If shippers act independently, then the total volume in stor-
age V = I V, must satisfy

E[V] = X q,t, and 1)
varlV] = X gt 1, 22)

Without a warehouse, overflow must be avoided. Thus, the
capacity constraint is modified as follows:

iz
2 qi f! + K <2 ql tl I:) = C, (23)

where K is a number of standard deviations {comparable with
3) that will ensure that random fluctuations in the shed’s
accumulation are unlikely to reach its capacity.

If the coefficients of variation [, are different from zero,
the Lagrangian optimality condition no longer implies that alt
s5.(£7) should be equal, as was the case in the deterministic
problem. It is now

() = a [1 + K12 <2 q,1, 1,)_ } (24)

71

This indicates that discriminating pricing functions, which al-
low shippers with small /, to stay longer, may be desirable.
The same system benefit level can be achieved with a non-
discriminatory price function satisfying p,{r;) = s,(¢}); this
function will exist if all the ¢ are different.

Because the best nondiscriminatory function is likely to be
awkwardly shaped, in practice one may want to select the
best candidate from a family of acceptable price functions,
even if the resulting system benefit is lower. This problem
can be solved easily. One would express ¢ as a function of
the parameters in the price function, which would then be-
come the decision variabies of the optimization problem: max-
imizing W, subject to the stochastic capacity constraint. Be-
cause a reasonable family of functions would only include 2
few parameters {e.g., 3 at most), the optimization problem
can be solved easily within the scope of a computer spread-
sheet.

Example

An example with only two shippers is used because the op-
timal solution can then be easily obtained analytically, for
comparison with the numerical spreadsheet solution.

The data are as follows:

Shipper 1 2

a, 1¢ 12
b, 0.5 0.5
Q. 500 600
i 400 1000

The safety coefficient, K, is 2, and the shed capacity is still
2,000 units.

The analytical solution, obtained using Equation 23, is a
= 4.075 and B = 0.204.

If this price functions were adopted, cargo from Shippers
1 and 2 would spend 8.414 and 11.254 days in storage, re-
spectively, and the average shed accumulation would be 10,955
units {2 g, £,), with 9,045 units of storage to spare as a buffer.
The total system benefit would be $115,928 per day.

The spreadsheet finds « = 5.25 and 8§ = 0.1 as the optimal
coefficients, yielding a system benefit of £114,447 per day:

g

o 0.00 0.10 0.20 0.30

4.25 —858.28 -872.93 114.41 163.71
4.50 -861.13 -875.92 111.47 100.89
4.75 —864.13 —-879.02 108.44 98.00
3.00 —867.30 —882.24 105.34 95.05
5.25 —-870.63 114.44 102.15 92.04
5.50 —-874.13 111.00 98.87 88.97
575 —877.78 107.44 95.52 85.83
6.00 —-831.60 103.78 92.08 82.63
6.23 114.42 100.00 88.56 75.36

Although the coefficients a and § are different from the an-
alytical ones, for ¢ in the range of optimality (8 to 12), the
two p.(r) and the corresponding times in storage are very
close. For the new set of parameters, the times would be 7.92
and 11.25 days (as opposed to 8.414 and 11.254). The total
system benefit in both cases is also similar: $114,437/day ver-
sus $115,928/day.

Although the solution obtained using the spreadsheet is
marginally worse than the one obtained analytically, the



spreadsheet method can be applied to cases in which there
are many shippers. The spreadsheet also supplies at-a-glance
information on other measures of performance and can ac-
commodate simple constraints easily.

SHEDS AND WAREHOUSES

In this section, a case in which cargo can be stored either at
the shed or at one or more remotely located warehouses is
analyzed. Although shed capacity is limited, it is assumed that
enough warehousing space is made available to accommodate
demand; that is, there is no capacity restriction at the ware-
house. Because shed overflows can now be routed to the
warehouse without serious disruptions to port cperation, sto-
chastic phenomena need not be considered as explicitly as in
the previous section. Focus herz is on a deterministic model
and stochastic effects are discussed qualitatively.

For the maximization of system benefit. it is assumed that
the cost of sending one unit of flow through the warehouse
is given by an increasing function of the time in storage ¢, :/1,(1.).
Paid by the port, the warehouse or the public (but not by the
shipper who is charged a fee p.(z,) for the service), this cost
accounts for handling inside the warehouse. transportation
between the port and warehouse. the provision of secure stor-
age space, as well as noise and congestion in the surrounding
area. In most cases. 4,(0) is considerably greater than the
handling cost through the shed A,.

Two related guestions are examined: For a given warehouse
price function p, () outside the port’s controi, how should the
shed price function be chosen? If p (1) is under the port's
contrcl, how should the two price functions be chosen jointly?
The answer to the first question will help with the second.

Fixed WWarehouse Price Function

Given shed and warehouse price functions, it is assumed that
shippers choose the most cost-effective duration and form of
storage. As before, pricing strategies will be compared on the
basis of their contribution to system benefit (i.e., joint benefit
to port and shippers). It is assumed that the given warehouse
price function is nondiscriminatory. Therefore, the following
quantities associated with shipper i are fixed as follows:

f,, = shipper’s chosen storage time at the warehouse, as
explained previously;

S.. = shipper’s external savings per unit volume if the
warehouse is used; that is. 5,(r.;);

h,, = cost generated by the shipment of said volume unit:
hw(twi);

w,, = system benefit generated by the same volume unit:
Sui = Ay,

In addition to these constants, the total system benefit gen-
erated per day is only a function of the fraction of flow sent
by each shipper through the shed x;. and the associated time
in storage f,,. The total system benefit is

W= g{x[s(t) — ]+ (1 —x)w,} (25)

If the system benefit obtained when all the flow is routed

through the warehouse (a constant, X g,w,,) is subtracted from
this expression, an equivalent objective function W’ is ob-
tained:

W= 2 g fs(n) - b= wl) (26)
This expression can be interpreted as the shed's contribution

to system benefit. We seek the 0 < x, = 1 and ¢, = 0 that
maximize W’ while satisfying the shed capacity constraint

2 g x1,=C. (27)

As occurred in the previous section, if two shippers use the
shed—{x,. t,x,.1,) > O—then their marginal external savings
must be equal: s5;(r,) = 5(r,). The argument is simple. If
s, > s, then increasing the time in the shed by a small amount
e/(qx;) for shipper i, and decreasing it by £/(g,x,) for shipper
j. satisfies all the constraints and increases system benefit by
e{s, —s5)>0

As a tesult. if the x, are given. the positive ¢, in the optimal
solution must satisfy 5{,) = « for some a. It is not difficult
1o see along the same arguments that if one shipper j does
not use the shed, the s; = a. Clearly, a represents a tariff; if
o was known the £, could be identified as per the construction
of Figure 3a. with a price function p(r}) = « ¢. The problem
thus reduces to finding « and {x,}.

Because the 1, are fixed conditional on a. for a given a the
optimal {x} are the solution to a knapsack maximization prob-
lem with W” as the objective function and X g, = C as the
constraint. The optimal solution. thus. satisfies

x, = 0.if [w,—w}r, <.

0=sx =1,if [w,—w,)e, = +, and

x, = Liffwy—wyle, > = (28)
for a constant T that ensures the capacity constraint is met as
an equality. The resulting system benefit W'(a) should then
be compared with the system benefit for other tariffs; the
largest can be chosen.

Note that the optimal tariff should be the same for all
shippers, as happened in the previous section. The optimal
splits {x,} can be obtained with discriminatory shed price func-
tions (with the right ordinates at the optimal ¢, to ensure that
the shipper’s choice is as desired); also as before, this would
require information on the individual s{r) functions.

Nondiscriminatory Policies

In the absence of this information—or if price functions must
be kept fair and simple—we may wish to choose a nondis-
criminatory price function with constant tariff, p,{f) = a t,
and let each shipper choose its split and storage times.

The construction of Figure 3a reveals that ¢, and s5,(¢,,) are
decreasing functions of a. Because the attractiveness of the
shed to shipper i (as measured by 5,(1,,) — « 1,)} decreases with
a, x, also decreases with a. Consequently. both W’ and the
left side of the shed’s capacity constraint decrease with a.

Obviously, thus if one wishes to accommaodate the resulting
shed volumes without overflow {e.g., to avoid disgruntied
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customers), the smallest tariff consistent with the shed’s ca-
pacity must be optimal. No information is needed to reach
this decision.

If the demand varies unpredictably from day to day and
overflows are to be avoided, the tariff should be a fittle targer.
The average accumulation in the shed will then be a little
smaller than its capacity, allowing the accumulation fluctua-
tions to be absorbed. The desired tariff would satisfy

W= g ix[s() - h —w,]} (29)

2axt, + K(gxel)i=C (30)

{Note thar the left side of this equality still decreases with a.)

If overflows ars acceptable, then it may be optimal to set
a tariff so low that systematic overflows ensue even in the
deterministic case. But detailed information on the s(r) is
needed to determine the precise tariff and the value of W'{a}.
If this information is available, one might want to choose the
price function from a larger family of curves (e.g.. quadratic).

For a given p,(r) shipper I's decisions (x, and £} are known.
These can be used 10 determine the proportion of shed traffic
that is not diverted to the warchouse, v

C
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In the deterministic case, if all the shippers have the same
probability of being routed to the warehouse (against their
wishes), then it is a simple matter to calculate W’ {a}

Wo=2g{ynls@) - h-wJt ~ (32)

For stochastic demands, the expression for W' is identical.
but the overflow will be somewhat greater than y. The ap-
propriate queueing expression (e.g., for a multichannel queue
without a buffer, as would apply to telephone systems) should
be used.

The best price function can be found by testing the members
of the price function family using a spreadsheet. In all cases
though, if some traffic is flowing to the warehouse the shed
must be fully used.

Example
In this example. fiv2 shippers may use a shed or a warehouse

for temporary storage. The table below summarizes the data
for the probiem:

Shipper 1 2 3 4 5

a, 1Y Il 2 t3 14
b, 05 05 05 05 0S5
g S0 500 S0 S0 500

The capacity of the shed is 20,000 units, and the warchouse
is assumed to have unlimited capacity. The handling cost as-
sociated with shed usage. A, is 5 S/unit, and use of the ware-
house costs f1,.(r) = 40 + ¢ $funit. The price of warehouse
storage to the shipper is p (1) = 50 + 2, $funit.

Initially, let us determine 2 nondiscriminatory policy with
a constant tariff such that all shed volume can be accom-

3

modated without overflow. As discussed earlier, in this case
the optimal policy is to charge the smallest tariff consistent
with the capacity of the shed.

In practice, the desired result could be achieved by starting
with a very high tariff and decreasing it until the shed reached
its capacity, or by starting with a low tariff and increasing it
until no more shed overflow were observed. For the data
presented in the preceding. the spreadsheet indicates that the
lowest no-overflow tariff would be 4.6 $/day/unit.

If this tariff were adopted. Shippers 1, 2, and 3 would use
the shed, storing their cargo for about 11, 13, and 15 days,
respectively. Shippers 4 and 5 would choose to use the ware-
house for 22 and 24 days. The sheet would be aimost fully
utilized, with no overflow, and the total system benefit gen-
erated would be approximately $259.000/day.

It will now be assumed that all the preceding information
is available to the shed authority. and pricing policies that
create systematic overflows are considered acceptable. The
objective is simply to maximize system benefit, which can be
accomplished by setting up a system benefit table analogous
to the ones in the previous examples as follows.

8

a 600 0.10 0.20

2.00 260.00 259.60 254.34
2.25 250.32 259.07 253.07
2.50 260.33 258.39 251.64
2.75 260.61 257.57 253.54
3.00 260.56 256.59 251.82
3.25 260.36 255.4 245.65
3.50 260.00 256.91 242.66

As this table shows, it is possible to increase system benefit
by reducing the shed tariff to 2.75 $/day/unit. This tariff would
cause approximately 57 percent of the traffic to be routed to
the warehouse because of shed overflow, but the total system
benefit would increase to approximately 261,000 $/day. In this
example, the availability of additional information would rep-
resent an additional system benefit of about 2,000 $/day.

Variable Warehouse Price Function

The x, and ¢, that maximize W’ remain the same whether p(t)
can be changed or not. We have already seen that for a given
warehousing price function, there is a discriminating set of
shed price functions that can achieve the optimum.The ques-
tion now is whether the optimum can be achieved without
discrimination.

We now show that the optimal system benefit is achieved
if p(f) = h,(¢). the cost of sending a unit of flow through
the warehouse when the storage time is ¢, and p(¢) = h, +
o f, in which the « is the Jowest shed tariff that avoids
overflow.

With these price functions, the shed times only depend on
o and are denoted by £, (c). The shed will be chosen, x, = 1,
if

s{tf@)) — [h + e, ()] > 54 = b or

w — w\hl

st
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If this inequality is reversed, the shipper prefers the ware-
house, x, = 0; if the relationship is a pure equality the shipper
is indifferent about the form of storage. If a is chosen equal
to v (as small as possible without creating overflow), then
these conditions are identical to the knapsack condition for
{x:}, specified in the previous subsection. Therefore, the so-
lution is optimal.

The conclusion is simple: system benefit is maximized if the
storage facilities are priced at cost and a constant tariff is
added to the fixed capacity shed to prevent overflows.

CONCLUSIONS

Temporary storage facilities and regular warehouses accom-
plish distinct functions and should therefore be analyzed and
managed differently. Establishing shed pricing policies using
procedures developed for regular storage facilities or by trial
and error will usually lead to sub-optimal utilization of the
facility.

Efficient use of temporary storage facilities at transporta-
tion terminals, not just ports, can be achieved through the
adoption of rational pricing policies. To determine such pol-
icies, management must define the operational objectives of
the facility. taking into account the consequences of overflow.

Opumal shed pricing policies are affected by the capacity
of the sheds. by the characteristics of its users. and by the
availability of warehouses. With this izformation, the shed
pricing strategy that maximizes a given objective (e.g., system
benefit. shed revenue, 2 combination of these, etc.) can be
found using a computer spreadsheet, as demonstrated in the
body of this report. If system benefit is the objective, the best
shed pricing policy often is very simple and can be identified
analytically.

Data requirements for the optimization are modest. Even
in situations in which the s5,(r) are needed, the quadratic ap-
proximations for the savings functions 5,(r) should be adequate
in most practical cases. That being the case, the coefficients
a, and b; should be easily estimable from shippers’ responses
to past rate changes and/or from shipper surveys. An empirical
determination of the best functional form for the s,(1) is be-
yond the scope of this paper, however, as it would require
before and after data.

The results of this paper can be used to develop pricing
schemes that discriminate across both shipper and commodity
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type. Shippers that transport more than one commodity can
be simply viewed as an aggregation of single-commodity ship-
pers. If one wishes to discriminate across commodities only,
all shippers transporting the same commodity wouid be viewed
as a single shipper.

The results of this paper apply to terminals other than bulk
and container ports, since nothing in the derivations was port
specific. The maodel applies, for example, to the pricing of
short-term and long-term airport parking services—if as a first
approximation we ignore that A, and A, may depend on the
traveler i. If both parking rates are determined by the airport
commission then to maximize system benefit these services
should be priced at cost, with a short-term parking surcharge
proportional to time. The surcharge, perhaps changing sea-
sonally, should be low enough to ensure that the short term
lot is not underutilized.
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