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OPEN ACCESS AND EXTINCTION®

By Peter Berck

Open—access renewable resources are exploited too much from a private
point of view and may be extinguished which may be a public bad. Govern-
ment regulation is justified both by its ability to increase the present
discounted value of profits and by its ability to preserve some level of
population in the face of market pressure. Of concern here is the matter
of extinction and the conditions under which open access will lead to
extipction.

Following Smith [5], define an open-access resource (fish) biceconomic
system by (1) a population growth law, (2) a law of short-run profit maxi~-
mization by firms, and (3) a law describing the entrance and exit of capital
in the long run. The form these laws take depends on the theory of profit
maximization, the technology for growing fish, a restricted profit function
for fishing, and an ad hoc assumption.

Define S as the amount of capital or the number of firms, X as the
level of the exploited population X--a level at which there is critical
depensation (population decline even without fishing)--and Q as the harvest

per firm. The population law states

(1) X = £(X - X) - SQ

where £(0) = 0; £(X) < 0 if X < X; £f' > 0 if X > X; and £" < O.

-
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If C{(Q, S, X) is the cost of catching Q with one unit of capital when there

are S firms fishing and X fish and the price is a constant P, then the law

of short-run profit maximization is

(2) P = Cl or Q@ is 0 or =
and
(3) § = §[PQ - €(Q, S, D1

which says profit is proportiomal to entry or exit. This, though economi-
cally plausible, is an ad hoc assumption.

The system (1), (2), and (3) differs from the system used by Smith;
Fullenbaum, Carlson, and Bell [2]; and Leung and Wang [4] only in equation (2).
None of these authors include the possibility of @ = 0. For Smith, this is
not a problem because he only considers fishing technologies in which P = Cl
is the appropriate rule. Fullenbaum, Carlson, and Bell and Leung and Wang,
however, consider a Leontief or fixed coefficients model, and there the
"corner" conditions enter into the analysis. Beddington, Watt, and Wright [1]
set § = 0 in equation (3) which accounts for their results. The cost function
used here is specialized to a form that is quite simple yet broad enough to
include economically sensible versions of all the aforementioned followers of
Smith as special cases.

First, let T be the externality effects of the crowding of vessels and

the scarcity of fish, and let

Now define the short-run costs given one unit of capital and the ex-

ternality effects as




AT + we if Q< E

(]
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o
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=® if Q > E

and K > 1.

Beddington, Watt, and Wright set L = 0, X = 0, FC = 0, and E = .
Fullenbaum, Carlson, and Bell and Leung and Wang prefer L = 0, X = 0, R = i,
and V/T = E. 1Instead of writing the cost funection, Fullenbaum, Carlson, and
Bell and Leung and Wang prefer the primal or production function.

Let Q be the catch when effort Y {(possibly labor or fuel) and one unit

of capital are used. If

Q= =~%—- min {V, WY}

and the price of Y is @

v then define A = ﬂYT/W, and one has a generaliza-

tion of the Fullenbaum, Carlson, and Bell and Leung and Wang technology
{(which is Leontief's fixed coefficients). Fullenbaum, Carlson, and Bell in-
sist W = = which is that only the capital matters; while Leung and Wang want
to pay labor a percentage (Q) of the profits. Their equations go so far as
to state that labor is paid a percentage of the profits even if the profits
are negative. This 1s not very appealing. The problem with the Fullenbaum,
Carlson, and Bell and Leung and Wang variants is that they do not accept

the possibility of short-run shutdown. An explicit account of factors other
than capital (fuel and equipment deterioration), which means W # =, makes

Q = 0 or short-run shutdown a possibility.

As with the other followers of Smith, a logistic function, possibly

displaced by X, is used to describe the dynamics of the annual population:




£(X) = g(X -~ B [1—#(3‘—-—1}@_:}

If K > 1, the assumptions on cost curves and profit maximization imply:
P =K QK'l TA
and

1/K-1
P L]
Q= (KTA) ’

if k = 1, they imply

\' Y
= —— > B
Q T if P > AT 0 T
and
Ty
Q=20 if P < AT = TE'T'

By direct substitution, the system with K = 1 becomes

)’(=f(x)-s% if P > AT
= f£(X) otherwise;
é=6[(—%~~A) v—mﬂ if P > AT
= ~8FC otherwise;

while the system with K > 1 beconmes

bd =
it

)l/K~l

. P 1/K-1 P K
S=5P(ﬁ{) - FC AT(EX) .




One additiomal assumption is necessary. Assume that more firms al-
ways increase the catch, i.e,, 3{(EQ)/3S > 0. This assumption implies
1~-K+ L <0. In the case of K = 1, the implication is that L = 0.

Analysis of extinction requires a phase diagram. First, by straight-

forward differentiation, one can verify that

ds

ax | $=0
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so S = 0 always slopes upward in the S -~ X plane and is a vertical line if

L=20. WithX = 0, the phase plane for L > 0 is




The modification for L = 0 is straightforward and uninteresting and which
diagram prevails depends--as in Beddington, Watt, and Wright--on the re~
lationship of R/K - 1 to 1. If R > K -~ 1, then for n small N = ay > 0,

DNR/K——l where

and the picture is II. If R < K - 1, then for n small N = -
D = a positive constant and the picture is I.
THEOREM 1: 1In picture II, extinction is a priori impossible.
THEOREM 2: In picture I, extinction is also impossible if & # 0
(Beddington, Watt, and Wright set § = 0).

DNR/K—I

To see the assertion, look at N = - and assume an initial condition

in the dangerous (second) quadrant.



Since S declines unless the characteristic passes into the safety of

quadrant III, an upper bound on the rate of decline of N is given implicitly

by

®

NR~K-1 N

0 N

and N will not get to zero in finite time.

There are two ways for extincticn to happen. Either a characteristic
hits the axis, ¥ = 0, or it enters the orjgin. First, it is shown that a
characteristic can never intersect the axis at a point other than the origin.

Let P be a point on the X = 0 axis at which extinction happens. Let
BE(P) be a closed ball of radius € about P, and let € be chosen small enocugh
0§ <0 everywhere in Be(P). Let M = max of S on BE(P). By construction,

M < 0. It has already been shown that a characteristic may not hit the axis
in finite time. Since é.i -M quite clearly, S will change by more than 2¢
in finite time, and the characteristic will leave Be(P) without hitting the
point P or approaching it in the limit.

A characteristic cannot enter the origin unless it comes down the X axis.
This is because one can demonstrate from the phase diagram that, for every € > 0,
there is a characteristic in BQ(O, 0) that does not enter the origin, so the
origin is a saddle point (Hurewicz [3]).

As nice as the no—extinction conclusion is, the wooly mammoth and other
exploited, extinct beasts make the conclusion unrealistic. A closer look at
the equations reveals the answer. Characteristics may pass very close to the
axis and still recover. In fact, the system generates a recovered population
after the population has been reduced to a fraction of an individual. With

the more realistic assumption of critical depensation of the growth curve,

X > 0, extinction becomes possible.




If X is positive, then X = 0 is described by

C(X) = x B g(X - X) I:l - -(-X-—Eﬁj

R/K - 1 and, for all values of R, K, L, the diagram is

where B

The possibility of extinction (or asymptotic extinction) is evident in this
phase diagram. Any characteristic that passes the line, X = X, leads to
extinction.
THEOREM 3: 1If the growth curve yields critical depensation in a
neighborhood of zero, then there are characteristics
that enter the origin and, in the long run, extinc-
tion is a possibility.
The case of K = 1 differs from K > 1 in one important aspect. If
K > 1, then, for any X, the lim ™ = -FC, and ®w > -FC. If K = 1, then

S Y
m=~FC 1if T > PW/TYY which, using L = 0, implies X* = (NY/PW) R. The phase

diagram becomes




S =0

X*

and extinction is possible only if X* < X. For K > 1, one can introduce
X* by (X - x%) R g% = T' and obtain a similar result.

What has been shown is that a linear transformation of the growth or
cost laws is sufficient to change the results of an extinction model. Al-
lowing critical depensation (X > 0) or making it infinitely costly to
catch fish at ¥X*, render the simple comparison of growth rates or the like

misleading. In fact, if one estimates a system including X and/or X*, then

the relation of R = K ~ 1 to 1 is only important with probability zero.

THEOREM 4: Unless there is g priori knowledge of X* and X, the
possibility of extinction depends upon R and K (within

the limits of the model) with probability zero.
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