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Abstract

We use experimental methods to investigate the extent to which breakdowns in
coordination can lead to bank runs. Subjects decide whether to leave money deposited
in a bank or withdraw it early; a run occurs when there are too many early withdrawals.
We explore the effects of randomly forcing some subjects to withdraw early and varying
the number of opportunities subjects have to withdraw. Bank runs occur frequently
with forced withdrawals, even if these withdrawals are unlikely to cause the bank to fail.
Exposure to bank runs has a much larger effect on future withdrawal behavior when
there are multiple withdrawal opportunities than with a single opportunity. We also
evaluate individual withdrawal decisions according to simple cutoff rules. We find that
the cutoff rule corresponding to the payoff-dominant equilibrium of the game, which
involves Bayesian updating of probabilities, explains subject behavior better than other
rules. Journal of Economic Literature Classification Numbers: Codes: C72, EO
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Bank runs were a common occurrence in the United States before the mid-1930s and
remain an important phenomenon around the world today.! A sizable theoretical literature
has attempted to shed light on the underlying cause of these runs. Two competing explana-
tions have emerged. In one, a run results from a coordination problem. The seminal paper
of Diamond and Dybvig (1983) showed how the game played by a bank’s depositors can
naturally have multiple equilibria; a bank run can then be interpreted as a switch from a
good equilibrium to a bad one.? The second explanation says that a bank run is caused
by negative information about the value of the portfolio of individual banks or of the entire
banking sector.® It is unclear which of these explanations is better supported by the data.
In U.S. banking history, there were seven instances of system-wide runs on banks between
1864 and 1933, and four of these led to widespread suspension of the convertibility of de-
posits into currency. In some cases the run coincided with a negative macroeconomic shock,
but in many cases there was no discernible change in the value of the assets held by banks
experiencing a run. In other words, the historical evidence does not clearly favor either of
the theoretical explanations.?

We use experimental methods to test the extent to which breakdowns in coordination
can lead to bank runs. The subjects in our experiment play the role of depositors in a
bank. Each must choose between withdrawing her money early and waiting to withdraw.
We begin with a pure coordination game in the spirit of Diamond and Dybvig (1983). If
everyone waits to withdraw, they will all receive their initial deposit plus a profit. However,
if too many subjects withdraw early, the bank will run out of funds and all remaining
depositors will receive nothing. The experiment is designed so that the bank can absorb a
certain number of early withdrawals before it becomes unable to meet its obligations to the
remaining depositors. We then explore variations of the model that involve randomly forcing
some subjects to withdraw early and changing the number of opportunities subjects have to
withdraw early.

Adding the possibility that some subjects will be forced to withdraw early complicates
the game in interesting ways. First, a subject must contemplate how the possibility that
others will be forced to withdraw early affects the expected return to keeping her money
deposited. Second, and perhaps more importantly, she must contemplate how other subjects
interpret the uncertainty regarding forced withdrawals. Even if a subject understands how
the random forced withdrawals affect the game, she may not be confident that others will
understand. Hence, a bank run may occur even if everyone understands that the forced
withdrawals are very unlikely to bankrupt the bank. This is, in fact, what we observe. In

ITwo recent examples are the partial run on the banking sector in Russia in July 2004 and the run which
lead to the temporary closure of the banking sector in Argentina in 2001.

2There is a sizable literature based on the Diamond-Dybvig model. See, for example, Cooper and Ross
(1998), Peck and Shell (2003), and Ennis and Keister (2003).

3See, for example, the theoretical work of Allen and Gale (1998) and Goldstein and Pauzner (2005), and
the empirical work of Saunders and Wilson (1996) and Gorton (1998).

*Ennis (2003) provides a discussion of the evidence both in favor of and against a multiple-equilibrium
explanation of bank runs. He also demonstrates that many of the arguments against such an explanation
only apply to the most simple models. Richer models with multiple equilibria seem to be wholly consistent
with the available evidence.



the experimental sessions without forced withdrawals, there were no bank runs; subjects
generally coordinated on the payoff-dominant equilibrium. However, bank runs occurred
frequently in the presence of forced withdrawals, even though the probability that forced
withdrawals would bankrupt the bank was very low. To highlight this effect, we ran some
trials where the maximum possible number of forced withdrawals was below the number
required to bankrupt the bank. Even in this setting, bank runs occurred in some instances.

Notice that forced withdrawals need not necessarily increase the likelihood of a bank
run. This is because (i) subjects might recognize that forced withdrawals are unlikely to
themselves cause the bank to fail and (ii) forced withdrawals can mask voluntary “panic”
withdrawals. In other words, subjects may interpret withdrawals observed early on as having
been forced and not conclude that a panic is underway. Nevertheless, our experimental data
suggests that random forced withdrawals, even when it is unlikely that they will compromise
the solvency of the bank, make bank runs more frequent.

We also observe interesting effects when the number of opportunities subjects have to
withdraw early is varied. The primary treatment gives subjects three withdrawal opportu-
nities in each trial. That is, each time the game is played, subjects have three chances to
withdraw their money before the final payoffs to remaining depositors are determined. After
each opportunity, subjects are informed about the number of withdrawals made by other
players in previous opportunities, the amount each withdrawing subject received, and the
projected payoff to remaining depositors if there are no further withdrawals. We then ran a
control treatment that was identical to the primary treatment except that subjects were only
given one opportunity to withdraw each trial. The cumulative probability distribution of the
total number of forced withdrawals was set to match that of the primary treatment. The null
hypothesis is that there is no difference between the withdrawal behavior of subjects in the
two treatments. We find that this hypothesis can be rejected. The frequency of withdrawals
in the initial trial was similar for the two treatments. However, exposure to bank runs had
a much larger effect on future withdrawal behavior with multiple withdrawal opportunities.
Overall withdrawal rates were therefore higher in the primary treatment, despite starting off
at similar levels.

Using data from the treatment with multiple withdrawal opportunities, we also evaluate
withdrawal decisions according to various simple cutoff rules. Interestingly, we find that the
cutoff rule corresponding to the payoff-dominant equilibrium of the game, which involves
Bayesian updating of the probability of a forced withdrawal, outperforms more naive decision
rules in explaining observed subject behavior. One possible explanation is that subjects
correctly incorporate information about their own experiences regarding forced withdrawals
into their perception of how likely it is that others were forced to withdraw. This has
practical implications for how one might expect people to update their perception of the
general well-being of the population in response to positive (or negative) personal shocks.

We ran four experimental sessions for this study, each involving 20 subjects who partic-
ipated in 16 paid trial rounds. The subjects were randomly and anonymously divided into
groups of five for each trial, and these groups were reshuffled after every trial. Our initial
hope was that subjects would treat each trial independently, since they were playing with
new groups. However, as mentioned above, there is evidence that subjects who were exposed



to bank runs early in the session tended to withdraw more often in later trials.” To sort out
such learning effects, we report results based on the first trial of each session type separately
from the analysis of the full treatment.

While there has been much experimental work on coordination games,® we know of only
one other study that has conducted an experimental investigation of bank runs. Schotter and
Yorulmazer (2003) study the factors that affect the severity of a bank run. In their setup,
the bank is assumed to be insolvent and hence a run is certain to occur. Their interest
is in how quickly resources are taken out of the banking system once a crisis is underway,
and in how various factors (deposit insurance, asymmetric information, etc.) affect this
speed. Our primary focus, in contrast, is on whether or not a run occurs at all. In our
setup, there is always an equilibrium where all subjects leave their money in the bank
unless they are forced to withdraw. Our interest is in how often play corresponds to this
equilibrium compared to the equilibrium where all subjects withdraw their money at the
first opportunity. Despite these differences in focus, our results have an important theme
in common with those of Schotter and Yorulmazer. Both papers demonstrate that subjects
play significantly differently when there are multiple opportunities to withdraw funds than
when withdrawing is a one-shot decision. These results indicate that the standard approach
of modelling bank runs as a simultaneous-move game (as in Diamond and Dybvig (1983)
and many others) may not be the most appropriate one.

Although we present our analysis in terms of the classic notion of a run on the banking
system, we believe our results also generate insight into other types of financial crises that
have occurred around the world in recent years. Investors in Mexican tesobonos in 1994, for
example, were very much like the depositors in a bank, each deciding whether to withdraw
her investment (by not rolling it over on the due date of the bond) based on her beliefs
about the quality of the investment and about what other investors would do. We believe,
therefore, that the insights gained from the experimental analysis of our simple model can
also be helpful for understanding events such as the Mexican crisis of 1994-5 and the crises
in East Asia and Russia in 1997-8.7

The rest of the paper is organized as follows. The next section describes the experimental
design, including the basic game played by subjects and the different treatments applied.
Section II explains the theoretical predictions and presents the results of the primary treat-
ment, where subjects have three withdrawal opportunities per trial. These results include
a classification of individual decisions according to various cutoff rules. Section III contains
the experimental results for the control treatment with one withdrawal opportunity, while
Section IV contains an econometric analysis of treatment effects. Section V describes how
often bank runs occurred in each of the treatments and shows how the escalation in the
frequency of bank runs differed across the treatments. Finally, Section VI contains some
concluding remarks.

®Of course, this might occur even if subjects ignored the possibility of repeatedly playing against the same
subjects as they use their experiences to update their perceptions of behavior in the general population.

6See, for example, Cooper et al. (1990), Van Huyck et al. (1990), and the survey by Ochs (1995).

"See Boyd et al. (2001) for a detailed analysis of the available data on modern banking and financial
crises.



I. Experimental Design

We devised a computer-controlled experiment in which subjects play multiple trials of
a coordination game with varying strategy sets and payoffs. In each trial, subjects are
randomly divided into groups of five. Each subject begins a trial with one dollar deposited
in her group’s bank. The bank has promised to pay her $1.50 if she keeps her deposit in
the bank until the end of the trial. However, she can instead request to withdraw her dollar
before the end of the trial. Such early withdrawals affect the bank’s ability to make the
promised payments to the remaining depositors.

The primary treatment had three withdrawal opportunities per trial. At the end of each
opportunity, feedback was given to all subjects regarding the number of withdrawals, the
payoff given to withdrawers, and projected payoffs to remaining depositors if there were no
further withdrawals. The control treatment had a single withdrawal opportunity per trial.
Instructions for both treatments are provided in Appendix A.

A. Payoffs

Subjects deal exclusively with payoff tables that describe their payoffs to withdrawing
or not withdrawing as a function of the total number of withdrawals (see the instructions
provided in Appendix A). The theoretical model that underlies these payoff tables is as
follows. The experimental bank in each group begins with assets whose face value totals five
dollars (one dollar per depositor). These assets are invested in an illiquid technology that
will yield a high return if held to maturity but yields a low return (less than face value) if
liquidated to meet early withdrawals. The liquidation value of the assets determines how
many depositors can withdraw early before the bank runs out of funds. Once the bank is
out of funds, any remaining depositors receive nothing. In each of the treatments, subjects
played the game under two different payoff scenarios.

SCENARIO A

Payoff to withdrawers: In this scenario, the bank receives $0.60 for each dollar of assets
liquidated. This implies that the bank can meet up to three early withdrawal requests with
full payment of one dollar. Note, however, that three early withdrawals would completely
deplete the bank’s assets. If the cumulative number of withdrawal requests exceeds three
in any withdrawal opportunity, the bank will liquidate all remaining assets and pay each
requester in that opportunity an equal share of the proceeds.

Withdrawal requests in each opportunity are treated equally and paid according to the
rules stated above. Remaining funds are used to meet withdrawal requests in subsequent
opportunities and to pay remaining depositors at the end of the trial. Payoffs thus followed
a quasi-sequential service rule: within each opportunity requesters are treated identically,
but across opportunities depositors who request to withdraw first are served first.

Payoff to remaining depositors: The return on investment was chosen so that the
bank can fulfill its promise to pay remaining depositors $1.50 as long as there are two or
fewer early withdrawals. If there are three or more early withdrawals, the bank’s funds are
completely depleted and remaining depositors receive nothing. In other words, the return on



the bank’s assets was chosen so that depositors who did not withdraw early received either
the full promised payment or zero.®

SCENARIO B

Payoff to withdrawers: Under the second scenario, the bank receives $0.80 for each
dollar of assets liquidated early. This rate implies that the bank can meet up to four early
withdrawal requests with full payment. If all five depositors make withdrawal requests in
the first opportunity, the bank liquidates all of its assets and pays $0.80 to each depositor.

Payoff to remaining depositors: Once again, the bank can afford to pay remaining
depositors $1.50 as long as its assets are not completely depleted by early withdrawals. If
there are three of fewer early withdrawals, the remaining depositors will receive $1.50. If
there are four early withdrawals, the single remaining depositor will receive nothing. Note
that the higher liquidation value of assets in the scenario B payoffs makes the bank more
“robust” to early withdrawals. In this case, an individual depositor will lose money by
waiting only if all of the other depositors withdraw early.

B. Forced Withdrawals

Some of the trials in each treatment included the possibility of random forced withdrawals.
In such trials, a random number of subjects is selected at the beginning of each withdrawal
opportunity, and these subjects have a withdrawal request automatically submitted on their
behalf. The computer first randomly selects the number of forced withdrawals, and then
randomly assigns them to subjects.” At the end of each opportunity, subjects are told the
number of withdrawals in their group, but not whether withdrawals by others were forced
or voluntary.

In the primary treatment, where there are three withdrawal opportunities, there is a 1/2
probability that one subject will be forced to withdraw and a 1/2 probability that no one will
be forced to withdraw in each opportunity. In the control treatment (with a single withdrawal
opportunity) there is a 1/8 probability of zero forced withdrawals, a 3/8 probability of one
forced withdrawal, a 3/8 probability of two forced withdrawals, and a 1/8 probability of three
forced withdrawals. These probabilities were chosen so that the cumulative distribution of
forced withdrawals over the course of a trial is the same in both treatments. Of course, in the
primary treatment the forced withdrawals occur over time while in the control they occur
all at once.

8For programming purposes these payoffs (and those described in Scenario B below) were achieved by
using net rate of return on the bank’s investment of 200%. This high return is required to give saliency to
the payoffs. Specifically, we needed to give the bank the ability to absorb some early withdrawals and still
deliver a meaningful payoff ($1.50) to remaining depositors. Subjects do not confront this return directly.
Rather they deal only with the resulting payoff tables. Unlike in the Diamond/Dybvig setting, our bank is
not a mutual. Any excess bank profits beyond that required to pay subjects $1.50 each is not distributed.

9These random forced withdrawals correspond to the liquidity-preference shocks commonly used in the
theoretical literature on bank runs. In particular, our sessions with forced withdrawals correspond to the case
of aggregate uncertainty about liquidity demand, as studied in Section IV of Diamond and Dybvig (1983)
and in Wallace (1990), Peck and Shell (2003), and others.



These probability distributions were also chosen so that the game played by subjects
always has a payoff-dominant equilibrium in which no one voluntarily withdraws. In other
words, even in the presence of forced withdrawals, the expected payoff to not withdrawing
is greater than $1 if all other players do not withdraw voluntarily. Under the scenario A
payoffs, the expected payoff to each subject in the primary treatment in this payoff dominant
equilibrium is $1.28. Under the scenario B payoffs, the expected payoff to each subject in
the payoff dominant equilibrium is $1.35.!° Notice that while these two numbers are similar,
there is a qualitative difference between the two scenarios. In scenario A, there is a 1/8
probability that the bank will fail and remaining depositors will get zero even if there are
no voluntary withdrawals. In scenario B, on the other hand, the remaining depositors are
guaranteed to be paid $1.50 each if no one voluntarily withdraws.

C. Trial Specification and Ordering

Both treatments had the same number and ordering of trials. We began with the scenario
A payoffs and no forced withdrawals. There were two unpaid practice trials (numbered 0
and 1) followed by two paid trials. We then conducted 8 trials (numbered 4 - 11) with
random forced withdrawals. After these trials were completed, we paused the experiment
and verbally introduced the scenario B payoffs. We then had 1 unpaid practice trial followed
by two paid trials (numbers 13-14) using the scenario B payoffs and no forced withdrawals.
The purpose of these trials was to familiarize subjects with the new payoffs and to, in some
sense, provide a “fresh” start after the scenario A trials. Finally, we conducted 4 trials
(numbers 15-18) using scenario B payoffs and random forced withdrawals. This ordering of
trials is also listed in the instructions in Appendix A.

Each session therefore had 16 paid trials. Since there were 20 subjects in each session,
the control treatment (with a single withdrawal opportunity) gave us 20 individual decisions
per trial. The primary treatment (with three withdrawal opportunities) generated up to 60
individual decisions per trial. In terms of group outcomes, of course, we generated four data
points per trial in each session, regardless of the treatment type.

We chose to run relatively few trials without forced withdrawals for the following rea-
sons. The purpose of these trials was primarily to set the stage for the trials with forced
withdrawals. We hoped to achieve two things: (1) familiarize subjects with the simpler
game before complicating it with forced withdrawals, and (2) establish that subjects would
play the payoff-dominant equilibrium of this game in the absence of forced withdrawals. We
believed that two practice trials followed by two paid trials would be enough to achieve these
goals and, as we describe below, this appears to indeed be the case.

D. Method

Subjects: Eighty undergraduate students from the University of California, Los Angeles
participated in the experiment. The players participated in four separate sessions, each
consisting of 20 subjects. Payoffs were stated in terms of a U.S. dollars. In addition to
their earnings in the experiment, players received a $5.00 show-up fee. Total earnings were
$478.75 and $445.00 for sessions 1 and 2 of the primary treatment, respectively, and $517.00

0T hese expectated values take into account the fact that the individual may herself be forced to withdraw.



and $495.00 for sessions 1 and 2 of the control treatment. The gap between the highest and
lowest payoff was between $3.25 and $5.00 in each session.

Procedure: All sessions were conducted in the California Social Science Experimental
Laboratory (CASSEL) at UCLA. Players were individually seated in the CASSEL, which
consists of 60 networked computer workstations in separate cubicles. Each cubicle contains a
computer monitor, keyboard, mouse, and a set of written instructions. The supervisor read
the instructions and answered questions to ensure that everyone understood the operation
of the computers, game design, and payoff function. Very few questions were asked.

At the beginning of each trial, subjects were randomly and anonymously divided into
four groups of five players each. The players were each shown the payoff chart described
in the instructions and saw a clock that counted down from thirty seconds. During that
time they had the option of clicking on the “Withdraw Now” button in order to place a
withdrawal request. If they did not click the “Withdraw Now” button within thirty seconds,
their money remained deposited until the next opportunity. After each opportunity, subjects
were shown a screen that told them the total number of withdrawals in their group. They
were also told how much each withdrawing subject received and the projected payment to
remaining depositors. Once all five players clicked “Continue,” the experiment advanced to
the next opportunity. At the end of the final opportunity, subjects received information on
the outcome of that trial and a report of their cumulative individual earnings for the entire
session. Once everyone in the session clicked “Continue,” the experiment advanced to the
next trial with newly formed groups.

Once a player withdrew, she had no more decisions to make in that trial. Such players
were still updated on the outcome of their own group at the end of each opportunity. If
members of a group made sufficient withdrawals to bankrupt the bank, they were informed
that the bank was out of money and told to wait until the beginning of the next trial.

At the end of each trial, subjects were only informed of the outcome for the group in
which they participated. Information about other groups in the session was not provided.
However, it is possible that subjects in a group that went bankrupt might infer whether or
not other groups had bankrupted their banks from how long they had to wait between trials.
Of course, everyone had to wait the full time if only one group did not bankrupt its bank
and hence the information that could be inferred from wait time was not perfect. Any form
of communication during the experiment was strictly forbidden.

II. Primary Treatment

In the primary treatment, each of the three withdrawal opportunities represents a dif-
ferent subgame whose payoffs are determined by the number of withdrawals made in the
preceding opportunities. The strategies of players in each opportunity can depend on the
history of withdrawals to that point. Hence, to model the game we must specify a player’s
strategy as a 3-tuple (sr, sr7(+), srrr(+)), where each component describes the player’s strategy
at a particular opportunity. Let W denote the action “withdraw” and N “not withdraw.”
Let n; € {0,1,2,3} denote the (cumulative) number of withdrawal requests in opportunity

8



j, where j = I or II. Recall that in scenario A the game ends if there are three withdrawal
requests, so that in this case using the smaller set n; € {0, 1,2} will suffice. A strategy for
a player then consists of s; € {W, N}, s;;(ny) € {W, N}, and s;r;(n;r) € {W, N} for each
possible value of n;.

A. No Forced Withdrawals

Under scenario A payoffs and when there is no possibility that some subjects will be
forced to withdraw, there is a payoff-dominant subgame perfect equilibrium in which each
player selects s; = N, s;r(n;) = N if ny < 2) and syy(ng;) = N if nyp < 2. To see this,
consider the decision faced by a player in withdrawal opportunity III. This opportunity is
only reached if the number of previous withdrawals is less than 3. In any such subgame (i.e.,
for any n;; < 2), if a player believes that all other players will follow the strategy above
and not withdraw, her payoff will be $1.00 if she withdraws and $1.50 if she waits. Hence
her optimal strategy will be to also follow the strategy above and not withdraw. Working
backward, the same reasoning applies to each of the first two withdrawal opportunities.
Hence the above strategy profile does indeed represent a subgame perfect equilibrium. In
scenario B, the bank is able to absorb one more early withdrawal before running out of
funds. Now, the payoff-dominant subgame-perfect equilibrium of the game without forced
withdrawals has each player playing s; = N, s;;(n;) = N if n; < 3, and s;;;(ns;) = N if
nir < 3.

Under both payoff scenarios there is also a “banking panic” equilibrium in which all
players withdraw in opportunity I. This follows from the fact that withdrawal requests from
all but one player will cause the bank to run out of funds in opportunity I and hence the
game ends. Notice that this panic equilibrium will exist regardless of the presence or absence
of forced withdrawals, or the number of withdrawal opportunities. Also notice that there
are no equilibria where all players choose ‘“not withdraw” in the first opportunity and then
“withdraw” in a later opportunity. If a player believes that everyone is going to withdraw
in, say, opportunity IT (and receive a payoff of $0.60), she has an incentive to deviate by
withdrawing in opportunity I and receiving a payoff of $1. Similar logic rules out other
strategy profiles of this sort as equilibria.

The following table summarizes the results of the trials without forced withdrawals under
the two different payoff scenarios. As expected, withdrawal rates were low under both payoff
scenarios in the absence of forced withdrawals. Moreover, the frequencies show that subjects
were more likely to play strategies consistent with the payoff dominant equilibrium of the
game in scenario B. This makes sense because under the scenario B payoffs the bank is more
robust to early withdrawals; four withdrawals are needed to bankrupt the bank instead of
only three.

Payoff Dominant Equilibrium Panic Equilibrium

Outcomes Strategies Outcomes Strategies
Scenario A 8 of 16 (50%) 72 of 80 (90.0%) 0 of 16 (0%) 4 of 80 (5%)
Scenario B 12 of 16 (75%) 76 of 80 (95.0%) 0 of 16 (0%) 1 of 80 (1.25%)

Table I: Equilibrium outcomes and individual strategies consistent with equilibrium
outcomes under payoff scenarios A and B; no forced withdrawals.

9



B. Forced Withdrawals

When forced withdrawals are added to the primary treatment, there is a 50% chance
in each withdrawal opportunity that one player will be selected at random and forced to
withdraw. Under scenario A payoffs, there exists a payoff-dominant equilibrium which is
qualitatively similar to the one described above. The precise strategy for each player is this
equilibrium is now s; = N, s;;(n;) = N if n; < 1, and s;;;(ny;) = N if nyp < 2. To see
why this is an equilibrium, consider the decision facing a player in withdrawal opportunity
ITI. Recall that this opportunity is only reached if the number of previous withdrawal is
less than 3. A player who has not been forced to withdraw must calculate the probability
that one of the other players has been forced to withdraw as follows. Suppose there are k
remaining depositors after opportunity II. Then the probability that player ¢ should assign to
a forced withdrawal having occurred in opportunity III, conditional on her not being forced
to withdraw, is

k—1
2k —1°

Prob|forced withdrawal = yes | player i forced = no| = (1)
These probabilities are calculated for different numbers of remaining depositors in table II.
The important fact is that the probability a player should assign to a forced withdrawal
having occurred, conditional on her not having been forced to withdraw, is always strictly
lower than the unconditional probability of one-half.

k Unconditional Conditional
5 1/2 4/9
4 1/2 3/7
3 1/2 2/5
2 1/2 1/3

Table II: Conditional and unconditional probabilities of a forced withdrawal

Given the appropriate conditional probability, the expected payoff from waiting, under the
belief that no one will voluntarily withdraw, is greater than the expected payoff to withdraw-
ing in each of the possibilities. This is confirmed in Appendix B, which shows payoffs and
optimal actions under each withdrawal scenario.!! Hence in the opportunity-III subgame,
there is always an equilibrium where players do not voluntarily withdraw.

In opportunity II, when n; = 2 holds, the likelihood of a forced withdrawal by one of
the other players (again calculated using (1)) combined with the prospect of a future forced
withdrawal in the final opportunity makes withdrawing the optimal action. If, on the other
hand, n; = 1 (or 0), then despite considerations of forced withdrawals, it is optimal to
not withdraw if one believes there will be no voluntary withdrawals. Finally, if a player
believes all other players will follow the strategy given above, her optimal action in the first

1 The subjects were not shown anything like the table in Appendix B. During each withdrawal opportunity
of the experiment the subjects saw the relevant, updated payoff tables (please see again, the instructions in
Appendix A).
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withdrawal opportunity is to not withdraw. Therefore, the strategy profile listed above is a
subgame perfect equilibrium of the game with forced withdrawals.

This equilibrium is consistent with the belief by each player that all other players will
not voluntarily withdraw unless it is a dominant strategy to do so. It is a dominant strategy
for every player to withdraw in opportunity II if n; = 2, because the possibility of forced
withdrawals in opportunities IT and III reduces the expected payoff to not withdrawing below
the payoff of withdrawing regardless of what the other players do. It is never a dominant
strategy to withdraw in opportunity IIT (remember this opportunity is not reached if n;; > 2)
because even at ny = 2 it is optimal to not withdraw assuming others will not (voluntarily)
withdraw.

Switching to scenario B payoffs makes the bank resistant to one more withdrawal and
raises the cutoffs in the payoff-dominant equilibrium strategy by one. The payoff-dominant
equilibrium has each player playing s; = N, s;;(n;) = N if n; < 2, and s;;;(n;;) = N if
nrr < 3.12 As in the case on no forced withdrawals there is, under both payoff scenarios A
and B, a panic equilibrium in which everyone withdraws at the first opportunity.!?

Because of forced withdrawals and learning, aggregate statistics of the observed occur-
rences of equilibrium in group outcomes over the course of the eight trials are not very
meaningful. Hence we conduct our analysis of these trials by examining individual behavior,
trial by trial. When designing the experiment, we conjectured that subjects in the primary
treatment would follow simple cutoff rules for determining their withdrawal decisions. The
simplest such rule would be to withdraw if and only if a certain number of withdrawals have
occurred in the previous opportunities. A slightly more elaborate (or “variable”) cutoff rule
would factor in the timing of the withdrawal decision. Since the possible number of future
forced withdrawals is greater in the earlier opportunities, one might expect cutoff rules of
the form: do not withdraw in opportunity I, withdraw in opportunity II if and only if ¥V
or more withdrawals occur in opportunity I, and withdraw in opportunity IIT if and only if
Y + 1 or more withdrawals occur in opportunities I and II. Under both payoff scenarios, the
strategy corresponding to the payoff-dominant equilibrium is of this type. We now examine
the extent to which observed subject behavior is consistent with different variable cutoff
rules as well as with the panic strategy of withdrawing in opportunity I.

C. Analysis of Cutoff Rules for Scenario A With Forced Withdrawals

In the payoff-dominant equilibrium described in the previous section (under scenario A
payoffs), all players follow a cutoff rule with Y = 2. For each subject, we ask whether her
observed behavior is consistent with this rule, as well as whether it is consistent with the
rule Y = 1 and with the panic rule of withdrawing in the first opportunity. Note that an
individual’s observed choices can be consistent with more than one rule, depending on the
actual decisions she faced.

12The expected payoffs to each withdrawal decision used to show that this stragegy profile is indeed a
subgame perfect equilibrium are presented in Appendix C.

B There are also equilibria in which players coordinate their actions based on the realization of the number
of forced withdrawals in potentially complicated ways. We do not believe these equilibria to be relevant for
explaining subject behavior in the experiments and therefore do not analyze them here.
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Interestingly, if a subject were to fail to update her belief regarding the probability of
a forced withdrawal when she was not forced to withdraw (i.e., she continued to assign
probability 0.5 to this event, instead of using (1)) then she would perceive the panic rule to
be a (weakly) dominant strategy and hence we might expect this subject to withdraw in the
first opportunity. Why does failure to do Bayesian updating of this probability have such a
big effect on the perceived optimal strategy of the subjects? The reason is that it changes
the decision the subject makes in opportunity III if she observes two past withdrawals and
believes there will be no voluntary withdrawals. In this situation, the subject realizes that
one more forced withdrawal will bankrupt the bank. Hence, if she does not withdraw she
will receive zero if there is a forced withdrawal and $1.50 if there is no forced withdrawal.
She also realizes that if she withdraws, she will receive $1.00 if there is no forced withdrawal
and $0.50 if there is a forced withdrawal. Given a chance to make a decision, a Bayesian
player observes that she, herself, has not been forced to withdraw and, using equation (1),
calculates the probability that one of the other players has been forced to withdraw to be
0.4. Under the belief that others will not withdraw, the expected payoff to not withdrawing
is therefore 0.6 * ($1.50) + 0.4 % (30) = $0.90, which is greater than the expected payoff to
withdrawing of 0.6 * ($1.00) + 0.4 % ($0.50) = $0.80. Hence she chooses to not withdraw.

A non-Bayesian player, however, regards the probability of a forced withdrawal having
occurred to be 0.5 and hence calculates the expected payoff to not withdrawing as being
lower than a Bayesian would. In fact, her (perceived) expected payoff to not withdrawing
is the same as her (perceived) expected payoff to withdrawing; both are $0.75. It is thus
a (weakly) dominant strategy for her to withdraw. Moreover, we might expect her to do
so because the payoff from withdrawing has a lower variance. This decision feeds back to
opportunity II and changes her decision under n; = 1 to withdraw, which in turn implies
that in opportunity I she prefers to withdraw. Hence, in the absence of Bayesian updating,
a player might be expected to follow the panic rule.

This logic indicates that subjects will be much more inclined to withdraw if they do not
recognize that their own forced-withdrawal outcome provides information on the outcome
of others. In fact, as we demonstrate below, subjects did not tend to withdraw in the
situations described above. Behavior, especially in the later withdrawal opportunities, was
more consistent with the Bayesian story. Notice that a player did not need to correctly
calculate the posterior probability in order to realize that withdrawing immediately is not
a dominant strategy. The payoffs were designed so that she only needed to realize that the
posterior probability was strictly less than the prior probability of one-half.

We begin by analyzing the data from trial 4, which was the first trial with forced with-
drawals. Table III shows frequencies of observed play for three different cutoff rules: the one
associated with the payoff-dominant equilibrium (Y = 2), an intermediate rule (Y = 1), and
the one associated with the panic equilibrium. The number of observed strategies in each
session is less than 20 (the number of subjects) because of forced withdrawals in the first
opportunity. A subject’s actions are classified as being consistent with a particular rule if
the subject obeys that rule in each decision she faces. Subjects who are forced to withdraw
after the first opportunity are classified according to their observed actions prior to that
point. The table shows that the cutoff rule from the payoff-dominant equilibrium (Y = 2) is
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superior to the others in terms of frequencies.

Y=2 Y=1 Panic  Obs.
Session 1 14 (77 8%) 9 (50.0%) 0 (0.0%) 18
Session 2 14 (77.8%) 9 (50.0%) 1 (5.6%) 18
Combined 28 (77.8%) 18 (50.0%) 1 (2.8%) 36

Table III: Cutoff rule frequencies, scenario A, trial 4

This result is also evident in the data from the later rounds. Figure 1 shows the cutoft-
rule frequencies for the combined sessions for trials 4-11.'* The figure reveals two things.
First, it shows that the superiority of the ¥ = 2 cutoff rule is not limited to the first trial.
Second, it shows that “learning” matters in the experiment, in the sense that the fraction of
“panicky” subjects (i.e., subjects who withdrew immediately) increased substantially over
time. In fact, this increase almost fully explains the deterioration of the other two rules; most
of the drop in subjects following ¥ = 1 and Y = 2 can be attributed to subjects changing
their withdrawal decision in opportunity I.

0.9
0.8
0.6 - /\\
\\ v
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\ \ —=— Y=1
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0.2
0.1 A ///
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Figure 1: Cutoff rule frequencies, scenario A, trials 4-11.

In order to understand why the Y = 2 rule is superior to the Y = 1 rule for explaining
subject behavior, we must examine the differences in observed behavior at the two instances

14The graph shows pooled data from the two sessions for each trial. The decision to pool the data is justified
on the grounds that there is no statistically significant difference (at the 95% level) in the linear relationship
between each data set. We wish to point out, however, that visually it appears that the proportion of panicky
subjects rose more quickly in session 2 than in session 1.
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where these rules differ: in opportunity IT with n; = 1 (83 occurrences) and opportunity 11T
with ny; = 2 (48 occurrences). The Y = 1 rule predicts that subjects will withdraw in both
these cases, while the Y = 2 rule predicts that they will not. In fact, subjects withdrew
in these cases only 12% and 27.1% of the time, respectively. Hence, subjects who make it
through the first withdrawal opportunity tended not to withdraw in cases predicted by the
Y =1 rule.

D. Analysis of Cutoff Rules for Scenario B With Forced Withdrawals

Under the scenario B payoffs with forced withdrawals, the strategy played in the payoft-
dominant equilibrium is a variable cutoff rule with Y = 3. Table IV lists the frequencies
associated with this rule, as well as those for Y = 2 and the panic rule, in the first scenario
B trial with forced withdrawals (trial 15). The table shows that under the scenario B payoffs,
there is no difference in performance between the Y = 3 and Y = 2 rules; each explains close
to 90% of observed behavior. The main reason for the success of these rules is that immediate
withdrawals fell to 5.3%, compared to 18.8% in scenario A.

Y=3 Y=2 Panic Obs.
Session 1 18 (94.7%) 18 (94.7%) 0 (0.0%) 19
Session 2 16 (84.2%) 16 (84.2%) 2 (10.5%) 19
Combined 34 (89.5%) 34 (89.5%) 2 (5.3%) 38

Table IV: Cutoff rule frequencies, scenario B, trial 15

Under these payoffs there is also very little variation in behavior over time, as shown in
figure 2. There is some indication that the proportion of panicky subjects may be on the
rise (and that subjects are beginning to abandon the variable cutoff rules), but overall the
proportions stay relatively constant.
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Figure 2: Cutoff-rule frequencies, scenario B, trials 15-18.
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E. Summary of Analysis on Individual Decision Making under Forced Withdrawals

In both payoff scenarios, the cutoff rules that prescribe not withdrawing in the first op-
portunity explain withdrawal behavior better than the rule associated with the panic equi-
librium. Moreover, in scenario A, where the bank is more susceptible to runs and withdrawal
rates are higher overall, the cutoff rule consistent with the payoff-dominant equilibrium out-
performs the others. The data suggest an increased tendency to withdraw over time. This
is apparent in the data for scenario A payoffs and there is some suggestion that this would
be the case even under scenario B payoffs, although we did not run enough trials under
these payoffs to determine anything conclusive. These results may indicate a drift away
from the payoff-dominant equilibrium over time and toward play consistent with the panic
equilibrium.

ITI. Control Treatment

We ran two sessions that were identical to the primary treatment in every respect except
that the subjects were only given a single withdrawal opportunity. In order to preserve
comparability across treatments, the distribution of the total number of forced withdrawals
was set to match that of the primary treatment. In particular, in the single withdrawal
opportunity of the control treatment there was a 1/8 probability of zero forced withdrawals,
a 3/8 probability of one forced withdrawal, a 3/8 probability of two forced withdrawals, and
a 1/8 probability of three forced withdrawals.

There are exactly two pure strategy Nash equilibria of this game under each of the payoff
scenarios, both with and without forced withdrawals. The payoff-dominant equilibrium has
all players not withdrawing unless forced to do so. Under the scenario A payoffs, a player
receives $1.50 if she is not forced to withdraw and the number of forced withdrawals is
two or fewer. A player who is forced to withdraw receives $1. If there are three forced
withdrawals, the two remaining players receive zero. Under the scenario B payoffs, a player
always receives $1.50 if she is not forced to withdraw and $1 if she is forced to withdraw.
The panic equilibrium has all players withdrawing. Under the scenario A payoffs they each
receive $0.60, while under the scenario B payoffs they each receive $0.80.

A. No Forced Withdrawals

In the trials with no forced withdrawals, we observed the payoff-dominant equilibrium 16
out of 16 times using scenario A payoffs and 15 out of 16 times (there was one withdrawal
in the opening round of session 2) using scenario B payoffs. Hence, players in these games
played strategies consistent with the payoff-dominant equilibrium almost all of the time,
in each of the payoff scenarios. Recall that in the primary treatment with 3 withdrawal
opportunities, the payoff~-dominant equilibrium occurred only 50% of the time in scenario A
and 75% of the time in scenario B in these same trials. Hence having multiple withdrawal
opportunities appears to have a positive effect on withdrawal rates in the absence of forced
withdrawals.
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B. Forced Withdrawals

As in the primary treatment, the occurrence of forced withdrawals and learning dictates
that we conduct our analysis of these trials by examining individual behavior on a trial
by trial basis. Subjects in the control treatment make a single decision (withdraw or not
withdraw), and hence their action in each trial is necessarily consistent with one of the two
equilibrium strategies. It is therefore straightforward to check how frequently individual play
coincided with each of these strategies in each trial. We begin by looking at behavior in trial
4, the first paid trial with forced withdrawals.

Table V shows frequencies of voluntary withdrawals under each payoff scenario. The
percentages identify the fraction of observed play that was consistent with the panic equi-
librium. The remaining percentages in each case identify the fraction of observed play that
was consistent with the payoff dominant equilibrium. The number of observed strategies in
each session is less than 20 (the number of subjects) because of forced withdrawals. As the
table shows, all cases have low withdrawal rates in the first trial with forced withdrawals.
Because of the smaller strategy set in the control treatment, these numbers are not directly
comparable with those for the primary treatment in table IIL.!> Nevertheless, a casual in-
spection of the two tables suggests that the number of withdrawal opportunities has very
little impact on the subjects’ inclination to play according to the panic equilibrium in the
initial trial with forced withdrawals.

Voluntary Withdrawals

Scenario A Scenario B
Session 1 2 of 14 (14.3%) 0 of 13 (0%)
Session 2 0 of 15 (0%) 2 of 15 (13.3%)
Combined 2 of 29 (6.9%) 2 of 28 (7.1%)

Table V: Trial 4 of the control treatment with forced withdrawals.

The fact that withdrawal rates rose in scenario B of session 2 is somewhat puzzling,
but can perhaps be explained by higher withdrawal rates that were observed under scenario
A payoffs in session 2, as shown in figure 3. In fact the tendency to panic continued to
be higher in the later trails of scenario B payoffs in session 2, as shown in figure 4. The
continued higher withdrawal rates in session 2 may have been further influenced by the fact
that trials 15 and 16 of session 2 both had groups that realized 3 forced withdrawals, which
never happened in session 1. Also, there was a bank failure in one group in trial 16 of session
2, while none occurred in the session 1 trials.

15Comparing the tables shows that the frequency of play is higher for both equilibria in the control treat-
ment (6.9% and 93.1% versus 2.8% and 77.8% for scenario A). This is because observed play necessarily
coincided with an equilibrium strategy in the control treatment, which was not true in the primary treat-
ment.
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Figure 3: Voluntary withdrawal rates for trials 4-11 of the control treatment.
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Figure 4: Voluntary withdrawal rates for trials 15-18 of the control treatment.

In spite of the disparities between sessions 1 and 2 it is still apparent that subjects played
strategies consistent with the payoff-dominant equilibrium more frequently than the panic
equilibrium and overall withdrawal rates were lower under the scenario B payoffs than under
scenario A. However, the issue of whether there is an increased tendency to play the panic
equilibrium over time is less clear. We address this issue formally in the next section, where
we compare the learning behavior of subjects across the two treatments.
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IV. Treatment Comparison

We focus on trials 4 - 11, which had forced withdrawals and scenario A payoffs. In the
first of these trials, there was no significant numerical difference between the withdrawal
rate in the control treatment and the rate in the first withdrawal opportunity of the primary
treatment. From tables IIT and V, the frequencies of voluntary withdrawals were 2 out of 29
and 1 out of 36, respectively. There was, however, a meaningful difference in the withdrawal
rates over the subsequent trials. In particular, the voluntary withdrawal rate (the number of
voluntary withdrawals divided by the number of subjects who were not forced to withdraw)
rose significantly more quickly over time in the primary treatment.'® However, we are very
reluctant to draw any strong conclusions from this statement. The tendency for some subjects
to become more panicky over the course of the experiment might be influenced by their
own personal history: how often they see others withdrawing and how many bank runs they
observe. All of this contributes to their posterior view of how many players in the population
are likely to play the panic strategy. The distribution of personal histories is unique to each
experimental session. Even though the parameters are the same across sessions, variability
in the outcomes of random forced withdrawals and random matching will produce different
individual histories even for identical voluntary withdrawal rates. Hence, it is necessary to
control for differences in personal histories in determining which treatment type has a larger
learning effect on voluntary withdrawal rates.

Ideally, we would compare groups of individuals with identical histories across treatments,
but this requires more data than we are able to obtain. Our approach is instead to construct
a summary statistic that reflects an individual’s history with respect to exposure to bank
runs. The variable, called “history” is defined as the fraction of previous periods, before the
current one, in which the subject witnessed a bank run. We want to allow for the possibility
that subjects’ interpretation of the history variable differs over time; in later trials, values
of the history variable contain more information about the withdrawal tendencies of the
population. Hence, in the regression analysis that follows we interact the history variable
with the round variable.!”

The table below shows the marginal effects from a Probit regression designed to test the
null hypothesis that, controlling for differences in personal histories, there is no difference
in withdrawal behavior across the two treatments. The dependent variable, “Withdraw,” is
equal to 1 if the subject voluntarily withdrew at the first opportunity. “Round” is a discrete
variable that counts up from 1 to 7.'% “Treat Dum” is the treatment dummy, which equals
0 for the (control) treatment with a single withdrawal opportunity and 1 for the (primary)
treatment with three withdrawal opportunities.

16The 95% confidence interval around the slope estimates of the trendline are (0.0016,0.0274) and
(0.0299,0.0678) for treatments 1 and 2, respectively.

17There are, of course, other ways that one could construct the history variable. We would like to emphasize
that we did not experiment with alternative specifications of this variable, and hence the reported significance
levels are valid.

8Rounds 1 through 7 correspond to trials 5 through 11. The history variable is undefined in trial 4.
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Withdraw dF/dx  Std. Err. z P >|z] | x-bar
Round -.0278256  .0177075 -1.59 0.111 4.0287
History —.3234865 .2052944  -1.60 0.110 | .373478
Treat Dum* -.6982604 .1801047 -3.03 0.002 | .565121
Treat Dum * Round 0951046  .0327419 2.41 0.016 | 2.29801
Treat Dum * History 1.021354  .2449298  3.43 0.001 253711
History * Round 1245327  .0515573 2.51 0.012 | 1.68433
Treat Dum * History * Round | -.168838 .0599233 -2.53 0.011 1.1479
obs. P 183223 Number of obs: | 453
pred. P 10986 (at x-bar) Pseudo R?: | .1915

*dF /dx is for discrete change of dummy variable from 0 to 1
z and P >|z| are the test of the underlying coefficient being 0.

Table VI: Results of Probit analysis.

A joint test of “Round” and “History * Round” has a p value of 0.0406, suggesting that
history and round effects are significant in the control treatment. Moreover, we reject the
null hypothesis that treatment type does not matter (a joint test of the variables “Treat
Dum,” “Treat Dum * Round,” “Treat Dum * History,” and “Treat Dum * History * Round”
has a p value of 0.0094). Hence, we conclude that the round and history variables impact
withdrawal probabilities differently in the primary treatment than in the control. Due to the
numerous interactions of the variables, it is not immediately transparent from table VI how
each of the variables impacts the withdrawal probability. We expected that higher values
for the history variable would translate into higher withdrawal probabilities. This is always
true in the primary treatment and is true in all but the first two rounds of the control,
where there is a slightly negative marginal effect. For rounds 3 and up, there is a positive
relationship between history and withdrawals in the control. There is also a much more
pronounced effect in the primary treatment than in the control. For instance, evaluated at
the mean of the independent variables, the estimated marginal effect of an increase in the
history variable is .52 in the primary treatment and .18 in the control. The joint test of
the coefficients on Treat Dum * History and Treat Dum * History * Round has a p value of
0.0014, so this difference is significant at the 1% level.

As mentioned earlier, we also allowed for the possibility that subjects would react dif-
ferently to the same level of the history variable over time. In fact, the analysis shows
that people react more strongly to this variable over time, and that this effect is far more
pronounced in the primary treatment than in the control. Starting from the mean of the
independent variables, the estimated marginal effect of a unit increase in the round variable
is 0.051 in the primary treatment and 0.019 in the control. The joint test of the coefficients
on Treat Dum * Round and Treat Dum * History * Round has a p value of 0.0262, so this
difference is significant at the 5% level.

Figures ba-g and 6a-c illustrate these predictions for each possible history holding the
round fixed, and for each round holding the history fixed (at 0, 0.5 and 1), respectively. In
each case, separate predictions are charted for each treatment.
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Figure 5: Estimated withdrawal probabilities for each round.
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Figure 6: Withdrawal probabilities for selected histories.

The effects described above are apparent from the figures.!? In particular, figures 5c-g
show that holding round constant at 3 or higher, voluntary withdrawal probabilities are
positively related to the history variable and that the effect is much more prominent in the
primary treatment than in the control. Figure 6a shows that holding history constant at 0,
voluntary withdrawal probabilities are fairly constant over time, while figure 6¢ shows that
holding history constant at 1, voluntary withdrawal probabilities increase over time. An
intermediate case is shown in figure 6b. Note that in figure 6b all odd-numbered rounds are

necessarily out-of-sample predictions, as 0.5 is not a possible history.

The combined implication of these figures is that we expect to see similar frequencies of

19Some caution is required in interpreting the figures, as some of the data points plotted in the figures are

based on situations with low sample sizes.
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bank runs early on in both treatment environments, but the frequency of observed bank
runs should grow at a faster rate over time in the treatment with multiple withdrawal
opportunities. This is very close to what we see in the data, as the next section illustrates.

V. Bank Run Analysis

A bank run is defined to have occurred if the bank liquidates all of its assets before
the end of a trial. In scenario A this occurs if there are 3 or more withdrawals, while in
scenario B this occurs if there are 4 or more withdrawals. No runs occurred without forced
withdrawals in either scenario A or B. Bank runs occurred regularly (48% of the time) under
scenario A payoffs with forced withdrawals, even though there was only 1/8 probability that
forced withdrawal would cause the bank to fail. There were a small number of bank runs
under scenario B payoffs with forced withdrawals (one occurrence in session 2 of the control
treatment and one occurrence in the final round of each of the two sessions of the primary
treatment) despite there being zero probability that forced withdrawals will cause the bank
to fail.

Figure 7 shows bank run frequencies (out of 8 groups) that occurred in each trial of
each treatment under scenario A payoffs with forced withdrawals. It is apparent from the
figure that frequencies of bank runs rose much more quickly in the primary treatment (with
3 withdrawal opportunities) than the control (with 1 withdrawal opportunity), despite sim-
ilar occurrences of bank runs in the early trials. This offers a compelling reason why the
proportion of panicky subjects rose more quickly in the treatment with multiple withdrawal
opportunities: the subjects in that treatment were exposed to more bank runs.

8
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Figure 7: Bank run frequecies for each treatment, trials 4-11
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VI. Conclusions

The key findings of this study as it relates to breakdowns in coordination and the oc-
currence of bank runs are that (1) forced withdrawals frequently lead to the occurrence of
bank runs even when they do not present a likely threat to the solvency of the bank, and
(2) it matters whether subjects are given multiple withdrawal opportunities (with feedback)
or a single opportunity. Elaborating on point (2), subjects were equally likely to withdraw
at the first opportunity in the first trial of both treatments, but exposure to bank runs had
a greater (positive) effect on future withdrawals in the treatment with multiple withdrawal
opportunities.?’ Of course, some caution is required in extrapolating these results to con-
sumer behavior during financial crises. There does seem to be very strong evidence that the
ability of people to coordinate on the payoff-dominant equilibrium is sensitive to forced with-
drawals, which are meant to imitate aggregate uncertainty about individual-level shocks that
occur during times of financial crises. However, the repeated play aspect of the experiment
is somewhat artificial, and this is where the strongest treatment effect was observed. Nev-
ertheless, it is interesting from a theoretical perspective to note that the standard approach
of modelling bank runs using a simultaneous-move game may not be the most appropriate
one. Moreover, the results suggest that in countries where people have a history of exposure
to financial crises, withdrawal behavior might depend on the system in place for providing
withdrawal opportunities and on the informational flow regarding the withdrawal activity of
others.

Another key finding concerns the analysis of withdrawal behavior in the treatment with
multiple withdrawal opportunities. We tested various cutoff rules for characterizing individ-
ual decisions. The experiment was specifically designed to differentiate between two such
rules, one of which was consistent with Bayesian updating and one of which was not. We
found that the cutoff rule associated with Bayesian updating outperformed the other rules.
This effect disappeared over time, however, as increased rates of immediate withdrawals
eventually made the panic rule — withdraw immediately — a superior predictor. As men-
tioned above, this does not suggest that subjects learned not to be Bayesian. Rather, it
suggests they stopped believing that others would play their part of the payoff-dominant
equilibrium.
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Appendix A: Primary Treatment

ITAM
Department of Economics and Centro de
Investigacion Economica

University of California at Santa Barbara
Department of Economics

Bank Deposit Experiment
INSTRUCTIONS

This experiment has been designed to study decision-making behavior in groups. If you follow the
instructions carefully and make good decisions, you may earn a considerable amount of money.
The participants may earn different amounts of money in this experiment because each participant’s
earnings are based partly on his/her decisions and partly on the decisions of the other group
members. The money you earn will be paid to you, in cash, at the end of the experiment. Therefore,
it is important that you do your best. A research foundation has contributed the money to conduct
this study.

Description of the Task

You and four other people each have $1 deposited in an experimental account. You must decide
whether to request to withdraw your $1 at any one of THREE withdrawal opportunities you will be
given, or leave it deposited in the account.

How much money you will receive if you make a withdrawal request or if you leave your money
deposited depends on the withdrawal decisions of the other four people in the experiment. This is
explained below. Withdrawal opportunities are numbered using roman numerals | through IlI.

Withdrawal Opportunity I. Below is a chart that you can use to figure out the payoffs associated
with your withdrawal decision in Withdrawal Opportunity I. You will see this chart on your

computer screen when the experiment begins. Remember, how much you receive if you make a
withdrawal request or how much you earn by leaving your money deposited depends on how many
other people place withdrawal requests. The chart gives you payoffs for all the possible numbers of
requests. The word “hypothetical” is used in the chart because you do not know how many
withdrawal requests will be made when you make your decision. If TWO or fewer withdrawal
requests are made then each requester with receive $1 and each remaining depositor will have a
projected payment of $1.50. The projected payment is the amount each remaining depositor will
receive if there are no more withdrawal requests in the remaining two withdrawal opportunities. If
there are future withdrawals, remaining depositors might get less, as the following charts will show.
If THREE or more withdrawal requests are made then each requester will receive $1 or less as
shown in the chart, and the remaining depositors will get $0.

Hypothetical Amount each | Projected payment to
number of new requester would| each remaining
withdrawal requests receive depositor

0 not applicable $1.50

1 $1 $1.50

2 $1 $1.50

3 $1 $0

4 $0.75 $0

5 $0.60 not applicable




Withdrawal Opportunity I1. The payoff chart for Withdrawal Opportunity Il depends on the
number of withdrawal requests made in Withdrawal Opportunity |. Below is the payoff chart that
would apply if 1 withdrawal request were made during Withdrawal Opportunity I. Now the highest
possible number of new requestsis 4, so the chart has 1 less row then before. The projected
payment assuming ONE or fewer withdrawal requestsis $1.50. However, now if there are TWO or
more withdrawal requests remaining depositors get $0. The amount each requester receivesis $1 for
up to two new withdrawals and less than that for more than two withdrawals, as shown in the chart.

Hypothetical Amount each Projected payment to
number of new requester would | each remaining
withdrawal requests | receive depositor

0 not applicable | $1.50

1 $1 $1.50

2 $1 $0

3 $0.67 $0

4 $0.50 not applicable

Withdrawal Opportunity I11. The payoff chart for Withdrawa Opportunity 111 depends on the
number of withdrawal requests made in withdrawal opportunities| and Il. At the beginning of
Withdrawal Opportunity I11 you will again see a payoff table that reflects the previous
withdrawals and shows the projected payments corresponding to any additional withdrawals.
Now, since thisisthe last withdrawal opportunity, the projected payments corresponding to each
hypothetical number of new withdrawal requests will be the actual payments.

Wher e do these payoffs come from? It is not important that you fully understand how the
numbers are determined. However, the underlying story is that the account manager has invested
the $15 from the experimental account in assets that cannot be converted to cash before the end
of the trial without paying a penalty. The dollar anounts you see reflect the ability of the account
manager to meet her obligations of paying requesting individuals $1 (if possible) during the
withdrawal opportunities and up to $1.50 to remaining depositors at the end of the trial.



Procedure

Y ou will perform the task described above numerous times. Each timeiscalled atrial. Each tria
is completely separate. That is, you will start each trial with $1 in the experimental account. Y ou
will keep the money you earn in every trial. At the end of each trial, your earnings for that trial
and your total earnings will appear on your computer screen.

Y ou do not play with the same people each trial. New groups of five are formed randomly every
trial out of the twenty people participating in the experiment.

At the beginning of each withdrawal opportunity, you will be shown a screen similar to the
pictorial representation below.

Trial A1

Withdrawal Opportunity |

Payoff Table

Hypothetical number Amount each Projected payment to
of new withdrawal requester would each remaining
requests receive depositor
0 not applicable $1.50
1 $1 $1.50
2 $1 $1.50
3 $1 $0
4 $0.75 $0
5 $0.60 not applicable

Time remaining in Withdrawal Opportunity I: 30 seconds

To make a withdrawal request click the "Withdraw Now" button at the bottom of
the page before time expires. If you do not click the "Withdraw Now" button
before the time expires your money will remain deposited.

Withdraw Now

Y ou can make awithdrawal request by clicking the “Withdraw Now” button before time expires.
At each withdrawal opportunity you will be given 30 seconds to make your decision. If you do
not click the “Withdrawal Now” button your money will remain deposited and you will either
advance to the next withdrawal opportunity. If it is Withdrawal Opportunity Il the trial will end
and you will receive the payoff to remaining depositors.

At the end of each withdrawal opportunity you will see a summary that lists the number of new
withdrawal requests that were placed during that opportunity, the amount each requester
received, the number of remaining depositors, and the projected payment to remaining
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depositors. A pictorial representation of a possible summary following Withdrawal Opportunity |
is provided below.

Trial Al

New Amount | Remaining Projected payment to

Opportunity requests | received | depositors each remaining
depositor
I 1 $1.00 4 $1.50

Withdrawal Opportunity | is over.

The other people in the experiment will also view the same screens.

At the end of each trial you will see asummary that lists your earning for the trial and your
cumulative earnings for the experiment (not including the show-up fee).

Trial Variations

There are two types of trials. Type A trials are played as described above. Type B trialsinvolve a
randomly determined number of forced withdrawals each withdrawal opportunity. The specific
rules for the type B trials will be reviewed as these trials are reached during the experiment.

Payment at the End of the Session
Y ou will participate in amaximum of 18 trials. The first two trials will be unpaid practice trials.
At the end of the entire experiment, the supervisor will pay you your earningsin cash.

Please remember, communicating with other people during the experiment is strictly forbidden.

Thank you for your participation.



TRIAL SUMMARY
Trail A1-A2: no forced withdrawals (unpaid)
Trails A3-A4: no forced withdrawals
Trials B1-B8: At the beginning of EACH withdrawal opportunity there is a 50% chance that one

of the remaining depositors will be forced to withdraw. When they occur, forced withdrawals are
randomly assigned.

New payoffs
Hypothetical Amount each Projected payment to
number of new requester would | each remaining
withdrawal requests | receive depositor
0 not applicable | $1.50
1 $1 $1.50
2 $1 $1.50
3 $1 $1.50
4 $1 $0
5 $0.80 not applicable

Trial A5: no forced withdrawals (unpaid)
Trials A6-A7: no forced withdrawals
TrialsB9-B12: These trials use the same rules as B1-B8, but with new payoffs. At the beginning

of EACH withdrawal opportunity there is a 50% chance that one of the remaining depositors will
be forced to withdraw. Once again, any forced withdrawals are randomly assigned.



Appendix A: Control Treatment

ITAM . . N
Department of Economics and Centro de University of California at Santg Barbara
Investigacién Econémica Department of Economics

Bank Deposit Experiment
INSTRUCTIONS

This experiment has been designed to study decision-making behavior in groups. If you follow the
instructions carefully and make good decisions, you may earn a considerable amount of money.

The participants may earn different amounts of money in this experiment because each participant’s
earnings are based partly on his/her decisions and partly on the decisions of other group members.
The money you earn will be paid to you, in cash, at the end of the experiment. Therefore, it is
important that you do your best. A research foundation has contributed the money to conduct this
study.

Description of the Task

You and four other people each have 1 experimental dollar deposited in an experimental bank. You
must decide whether to request to withdraw your $1 or leave it deposited. At the end of the
experiment we will be pay you $0.50 US for each experimental dollar you earn during the
experiment.

How much money you will receive depends on your own decision and on the decisions of the other
four people in your group. This is explained below.

Withdrawal Decision. You will see the chart below on your computer screen when the experiment
begins. How much you receive if you make a withdrawal request or how much you earn by leaving
your money deposited depends on how many other people in your group place withdrawal requests.
The chart lists the payoffs for all the possible numbers of requests. The word “hypothetical” is used
in the chart because you do not know how many withdrawal requests will be made when you make
your decision. If ONE or TWO withdrawal requests are made, each requester will receive $1 and
the remaining depositors will get $1.50. If THREE or more withdrawal requests are made, each
requester will receive $1 or less, as shown in the chart, and the remaining depositors will get $0.

Hypothetical Amount each

number of new requester would| Payment to each
withdrawal requests receive remaining depositor
0 not applicable $1.50

1 $1 $1.50

2 $1 $1.50

3 $1 $0

4 $0.75 $0

5 $0.60 not applicable

Where do these payoffs come from? It is not important that you fully understand how the

numbers are determined. However, the underlying story is that the account manager has invested
the $5 from the experimental account in assets that cannot be converted to cash before the end of
the trial without paying a penalty. The dollar amounts you see reflect the ability of the account
manager to meet her obligations of paying requesting individuals $1 (if possible) during the
withdrawal opportunity and up to $1.50 to remaining depositors at the end of the trial.



Procedure

Y ou will perform the task described above numeroustimes. Each timeis called atrial. Each trial
is completely separate. That is, you will start each trial with $1 in the experimental bank. Y ou
will keep the money you earn in every trial. At the end of each trial, your earnings for that trial
and your total earnings will appear on your computer screen.

Y ou do not play with the same people each trial. New groups of five are formed randomly every
trial from the twenty people participating in the experiment.

At the beginning of each trial, you will be shown a screen similar to the pictorial representation

below. Thetitle “Withdrawal Opportunity I’ will be on your screen, suggesting that there might
be additional withdrawal opportunities (i.e., I, lll, etc.). This is not the case. There is only ONE
withdrawal opportunity per trial.

Trial A1

Withdrawal Opportunity |

Payoff Table

Hypothetical number Amount each Projected payment to
of new withdrawal requester would each remaining
requests receive depositor
0 not applicable $1.50
1 $1 $1.50
2 $1 $1.50
3 $1 $1.50
4 $0.75 $0
5 $0.60 not applicable

Time remaining in Withdrawal Opportunity I: 30 seconds

To make a withdrawal request click the "Withdraw Now" button at the bottom of
the page before time expires. If you do not click the "Withdraw Now" button
before the time expires your money will remain deposited.

Withdraw Now

You can make a withdrawal request by clicking the “Withdraw Now” button before time expires.
You will be given 30 seconds to make your decision. If you do not click the “Withdrawal Now”
button, your money will remain deposited.



At the end of each trial you will see a summary that lists the number of withdrawal requests that
were placed during the trial, the amount each requester received, the number of remaining
depositors, and the payment to remaining depositors. A pictorial representation of a possible
summary following Trial Al is provided below.

Trial Al

Withdrawal| Amount [ Remaining| Payment to each
requests | received | depositors | remaining depositor

I 1 $1.00 4 $1.50

Opportunity

Withdrawal Opportunity | is over.

The other people in the experiment will also view the same screens.

Y ou will also see asummary that lists your earning for the trial and your cumulative earnings for
the experiment (not including the show-up fee).

Trial Variations

There are two types of trials. Type A trials are played as described above. In Type B trials, some
people may be randomly chosen and forced to withdraw. The specific rules for the type B trials
will be discussed as these trials are reached during the experiment.

Payment at the End of the Session
Y ou will participate in amaximum of 31 trials. Thefirst two trials will be unpaid practice trials.
At the end of the entire experiment, the supervisor will pay your earnings to you in cash.

Please remember, communicating with other people during the experiment is strictly forbidden.

Thank you for your participation.



TRIAL SUMMARY
Trail A1-A2: no forced withdrawals (unpaid)
Trails A3-A4: no forced withdrawals
Trials B1-B8: At the beginning of EACH trail there is a 3/8 chance that one depositor will be
forced to withdraw, a 3/8 chance that two depositors will be forced to withdraw, and a 1/8

chance that three depositors will be forced to withdraw. When they occur, forced withdrawals are
randomly assigned.

New payoffs
Hypothetical Amount each
number of new requester would | Payment to each
withdrawa requests | receive remaining depositor
0 not applicable | $1.50
1 $1 $1.50
2 $1 $1.50
3 $1 $1.50
4 $1 $0
5 $0.80 Not applicable

Trial A5: no forced withdrawals (unpaid)
Trials A6-A7: no forced withdrawals

TrialsB9-B12: These trids use the same rules as B1-B8, but with new payoffs. At the beginning
of EACH trail there is a 3/8 chance that one depositor will be forced to withdraw, a 3/8 chance
that two depositors will be forced to withdraw, and a 1/8 chance that three depositors will be
forced to withdraw. Once again, any forced withdrawal s are randomly assigned.



Appendix B
Optimal Actions with Bayesian Updating, Liquidation Value = .6.

Withdrawal Opportunity IlI

Posterior prob Expected payoff from not withdrawing Expected payoff from withdrawing
Number of of a forced
previous withdrawal in # of forced withdrawals Expected # of forced withdrawals  Expected Optimal
withdrawals  this opportunity 0 1 payoff 0 1 payoff Action
0.44 1.50 1.50 1.50 1.00 1.00 1.00 not withdraw
1 0.43 1.50 1.50 1.50 1.00 1.00 1.00 not withdraw
0.40 1.50 0.00 0.90 1.00 0.50 0.80 not withdraw

Withdrawal Opportunity Il

Posterior prob Expected payoff from not withdrawing Expected payoff from withdrawing
Number of of a forced
previous withdrawal in # of forced withdrawals Expected # of forced withdrawals  Expected Optimal
withdrawals  this opportunity 0 1 payoff 0 1 payoff Action
0.44 1.45 1.44 1.44 1.00 1.00 1.00 not withdraw
1 0.43 1.44 0.92 121 1.00 1.00 1.00 not withdraw
0.40 0.92 0.00 0.55 1.00 0.50 0.80 withdraw

Withdrawal Opportunity |

Posterior prob Expected payoff from not withdrawing Expected payoff from withdrawing
Number of of a forced
previous withdrawal in # of forced withdrawals Expected # of forced withdrawals  Expected Optimal
withdrawals this opportunity 0 1 payoff 0 1 payoff Action
0 0.44 1.40 1.19 131 1.00 1.00 1.00 not withdraw

Game ends if there are 3 withdrawals. Players factor in probability of being forced to withdraw in future rounds when calculating
expected payoff to not withdrawing. Optimal actions are determined under the assumption that all other agents do not withdraw
unless withdrawing is a dominant strategy. Situations that are shaded necessarily represent off-equilibrium behavior.
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Appendix C

Optimal Actions with Bayesian Updating, Liquidation Value = .8.

Posterior prob
of a forced
withdrawal in
this opportunity

0.44
0.43
0.40
0.33

Posterior prob
of a forced
withdrawal
this period

0.44
0.43
0.40
0.33

Posterior prob.
# of forced
w/d this
period =1

0.44

Withdrawal Opportunity IlI

Expected payoff from not withdrawing Expected payoff from withdrawing
# of forced withdrawals Expected # of forced withdrawals  Expected
0 1 payoff 0 1 payoff
1.50 1.50 1.50 1.00 1.00 1.00
1.50 1.50 1.50 1.00 1.00 1.00
1.50 1.50 1.50 1.00 1.00 1.00
1.50 0.00 1.00 1.00 0.50 0.83

Withdrawal Opportunity Il

Expected payoff from not withdrawing Expected payoff from withdrawing
# of forced withdrawals Expected # of forced withdrawals ~ Expected
0 1 payoff 0 1 payoff
1.45 1.44 1.44 1.00 1.00 1.00
1.44 1.42 1.43 1.00 1.00 1.00
1.42 1.00 1.25 1.00 1.00 1.00
1.00 0.00 0.67 1.00 0.50 0.83

Withdrawal opportunity |

Expected payoff from not withdrawing Expected payoff from withdrawing
# of forced withdrawals Expected # of forced withdrawals  Expected
0 1 payoff 0 1 payoff
1.40 1.38 1.39 1.00 1.00 1.00

Optimal
Action

not withdraw
not withdraw
not withdraw
not withdraw

Optimal
Action

not withdraw

not withdraw

not withdraw
withdraw

Optimal
Action

not withdraw

Game ends if there are 4 withdrawals. Players factor in probability of being forced to withdraw in future rounds when calculating
expected payoff to not withdrawing. Optimal actions are determined under the assumption that all other agents do not withdraw

unless withdrawing is a dominant strategy. Situations that are shaded necessarily represent off-equilibrium behavior.





