Skip to main content
eScholarship
Open Access Publications from the University of California

UC Riverside

UC Riverside Previously Published Works bannerUC Riverside

PS18kh: A New Tidal Disruption Event with a Non-axisymmetric Accretion Disk

Abstract

We present the discovery of PS18kh, a tidal disruption event discovered at the center of SDSS J075654.53+341543.6 (d ≃ 322 Mpc) by the Pan-STARRS Survey for Transients. Our data set includes pre-discovery survey data from Pan-STARRS, the All-sky Automated Survey for Supernovae, and the Asteroid Terrestrial-impact Last Alert System as well as high-cadence, multiwavelength follow-up data from ground-based telescopes and Swift, spanning from 56 days before peak light until 75 days after. The optical/UV emission from PS18kh is well-fit as a blackbody with temperatures ranging from T ≃ 12,000 K to T ≃ 25,000 K and it peaked at a luminosity of L ≃ 8.8 × 1043 erg s-1. PS18kh radiated E = (3.45 ± 0.22) × 1050 erg over the period of observation, with (1.42 ± 0.20) × 1050 erg being released during the rise to peak. Spectra of PS18kh show a changing, boxy/double-peaked Hα emission feature, which becomes more prominent over time. We use models of non-axisymmetric accretion disks to describe the profile of the Hα line and its evolution. We find that at early times the high accretion rate leads the disk to emit a wind which modifies the shape of the line profile and makes it bell-shaped. At late times, the wind becomes optically thin, allowing the non-axisymmetric perturbations to show up in the line profile. The line-emitting portion of the disk extends from r in ∼ 60r g to an outer radius of r out ∼ 1400r g and the perturbations can be represented either as an eccentricity in the outer rings of the disk or as a spiral arm in the inner disk.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View