UCLA
Recent Work

Title

A Comparison of Single and Multifactor Portfolio Performance Methodologies (formerly WP
#13-83)

Permalink
https://escholarship.org/uc/item/1tw5w5rg
Authors

Chen, Nai-fu

Copeland, Thomas E.
Mayers, David

Publication Date
1987-02-01

eScholarship.org Powered by the California Diqital Library

University of California


https://escholarship.org/uc/item/1tw5w5rs
https://escholarship.org
http://www.cdlib.org/

#2-86

A COMPARISON OF SINGLE AND MULTIFACTOR
PORTFOLIC PERFORMANCE METHODOLOGIES

September 1985
Revised February 1987

Nai-Fu Chen *
Thomas E. Copeland

David Mayers

* Graduate School of Business
University of Chicago, Chicago, IL
60637

Graduate School of Management
University of California, Los Angeles, CA
90024

Forthcoming JFQA



A Comparison of Single and Multifactor
Portfolio Performance Methodologies

February 1987

Naij-Fu Chen
Thomas E. Copeland
David Mayers

Graduate School of Business
University of Chicago, Chicago IL 60637

Graduate School of Management
University of California at Los Angeles 90024

We benefited from comments and suggestions of Eugene Fama, Michael Hanssens,
Richard Roll, Myron Scholes and George Tiao. Our thanks to Glenn Graves, Profes-
sor of Mathematical Methods, Graduate School of Management, UCLA, for lending
us the use of his mathematical programming system. An earlier version of this paper

appeared in Stock Market Regularities, Dimson, E., editor, Cambridge University
Press, 1986.




Abstract

A comparison of single and multifactor portfolio performance methodologies using
Value Line and size-ranked portfolios indicates that although both methodologies
provide unbiased estimates of portfolio performance, there are systematic differ-
ences in the power of the two methodologies. The predictive power of the multi-

factor methodology is superior for well- diversified portfolios but inferior for less

diversified portfolios.



1 Introduction

Efficient methods to measure the economic significance of new information ar-
rival are of great interest to financial economists. In their seminal paper, Fama,
Fisher, Jensen, and Roll (1969) used the residuals from the single factor market

mode] to measure the unanticipated returns of securities:

Ry = a; + (;iRmt + €, (1)

where R;; and R,,; are the returns of security 7 and a market index at time ¢, @;
and b; are asset-specific time-stationary parameters, and ¢; is the market model
residual for asset ¢ at time ¢t. Thus, the normal relation between the return of asset
¢ and the return of the market is described by d; + IA)ngt, which is the conditional
expected return of asset 7 given the realization of R,,. The residual, ¢;, contains

the conditional unanticipated return, including the effect of new information.

The advantage of using the conditional residuals comes from removing the unan-
ticipated “systematic” term, i);(Rm, — E(Ru)), from the residuals. Copeland and
Mayers (1982) found that using the residuals from a future benchmark market
model methodology (conditional expected returns) produced more powerful tests
than using the residuals from the mean return (unconditional expected return)
in their study of the information content of Value Line recommendations. Their
findings differ from that of Brown and Warner’s (1980) simulation study which
indicated about equal power between the two choices. A likely reason for the dif-
ference is that more efficient market model parameter estimates were obtained in
the Copeland-Mayers study using portfolio rates of return as opposed to individual
security rates of return as in Brown-Warner.

In this study, we examine the question of whether efficiency is further improved
using a multifactor market model for the conditional expected returns. The ra-
tionale behind this approach is derived from the empirical regularity that there is
more than one source of common covariation among asset returns (see King(1966)
or Roll and Ross (1980)). Our approach is quite apart from the equilibrium consid-
eration of Ross’ Arbitrage Pricing Theory, which was the focus of the Roll and Ross
study. Here, we are merely trying to determine whether extracting more common
covariation from the residuals improves the efficiency of measuring the economic

impact of new information.



The use of market model residuals always provides unbiased estimates of the
unanticipated returns provided that the model parameters are stationary. For ex-
ample, if we use the equally-weighted stock market index in a single factor market
model, we estimate a;, b; in equation (1) in the benchmark period. If the model also
holds in the test period with the same @; and b;, then the conditional residuals, €,
will be unbiased estimates of the unanticipated returns, regardless of whether the
true underlying process is single or multi factor, and regardless of whether CAPM
or APT or some other model is the correct asset pricing model. The result follows

from .
€ = Ry — Et(Ritl&i, bi, Rmt)

= Rig — [a + b Ront]-
Note that we need not make assumptions relating E(R;) to any pricing model.

The consistency of & follows from the stationarity assumptions about the market

(2)

model parameters.

Similarly, a sufficient condition for the consistency of the residuals from a mul-
tifactor market model is that the parameters are stationary. If both the parameters
for a single and a multiple factor model are stationary, then both models will give
consistent estimates of the residuals, but their variances may be different.

If the multifactor market model is correct and stationary, and if the associated
parameters are known, then we would expect that the multifactor model will purge
more common covariation from the residuals. However, the multifactor model re-
quires more parameter estimates. If one uses out-of-sample conditional forecast
errors, it is not obvious that the multifactor market model will dominate the tra-
ditional single factor market model even if the parameters are time stationary. To
facilitate the comparison, we use two data sets. The first is the Value Line data set
as in Copeland and Mayers (1982) and the second is a set of five size-ranked port-
folios. As all other aspects of our research methodology are held constant, the only
difference in the observed residuals comes solely from the single and multifactor
specification of the return generating process.

Section 2 of our study provides brief descriptions of the data and our rate of
return calculations. Section 3 outlines our experiment and provides a comparison of
the single and multifactor models using the future benchmark procedure. We find
that the two models yield measures of abnormal returns that are similar. However,
there is evidence of systematic differences between the mean square errors of the

single and multifactor models. Section 4 summarizes the results.



2 Data Description and Rate of Return Calcula-
tions

Our Value Line data base was obtained from The Value Line Investment Survey
(Weekly Summary of Advices and Index) which lists the Value Line rankings for
the set of securities contained in their universe. ! These rankings are entitled,
“Probable Market Performance, Next 12 months,” and consist of Roman numerals
I through V assigned to each firm. ? The announcements of these rankings may

constitute information events. > Commencing with the November 26, 1965 Survey,

Value Line performance rankings were obtained at intervals at least 26 weeks apart
for a total of 24 holding periods for all firms that are also contained on the CRSP
daily rate of return file. 4 Thus, our study covers a 12 year history. °

We also constructed 5 size-ranked portfolios for each of the 24 holding periods.
Portfolio 1 represents the smallest quintile of firms on the CRSP daily tape and
portfolio 5 the largest. Market values for all NYSE and AMEX listed companies
were computed by multiplying the number of shares outstanding on the Value Line
ranking date by the price per share at the end of the previous month. There is no
reason to believe that firm size on a given Value Line ranking date constitutes an
information event. However, size-ranked portfolios possess certain empirical regu-
larities and may prove interesting for distinguishing between single and multifactor

market model estimates of residual returns.

1Since April of 1965, Value Line has published performance predictions using their present ranking
system. They rank stocks from 1 to 5 with 1 being the most favorable. Currently, they are the
world’s largest (based on number of subscriptions) published advisory service, employing over 200
people. Security rankings result from a complex filter rule which utilizes four criteria (1) the
earnings and price rank of each security relative to all others, (2) a price momentum factor (3)
year-to-year relative changes in quarterly earnings, and (4) an earnings “surprise” factor. Roughly
53% of the stocks are ranked 3rd, 18% are ranked 2nd and 4th, and 6% are ranked 1st or 5th.

2Value Line indicates in a pamphlet entitled Investing in Common Stocks that for rank I stocks,
“Expect the best price performance relative to the other stocks covered in the survey.” Similarly,
for rank V one should expect the poorest.

3See Copeland and Mayers (1982) or Stickel (1985) for evidence concerning the information content
of Value Line rankings.

4The CRSP (University of Chicago Center for Research in Security Prices) file contains daily returns
for all New York and American Stock Exchange listed securities, since July of 1962.

5Exact ranking dates are in Copeland and Mayers (1982). The intervals are occasionally irregularly
spaced because the early data was originally collected for a slightly different experiment. The
intervals always contain at least 26 weeks. There are 3 occasions when the intervals are greater

than 26 weeks.



The daily CRSP rate of return file was converted to a weekly file using a Friday
close to Friday close return interval.  The rates of return are adjusted, by CRSP,
for dividends, splits, etc.. A weekly equally weighted rate of return index, R, of all
CRSP listed securities was constructed as a single factor market index. Justification

for this index is provided in Brown and Warner (1980).

We also constructed five weekly factor return indices for the multifactor model;
using Chen’s (1983) procedure which is outlined in the appendix. We form well
diversified mimicking portfolios, one for each factor, which have high sensivity to
the kth factor and zero sensitivity to all other factors. Chen’s procedure first
estimates factor loadings for ten factors using the Joreskog asymptotic maximum
liklihood procedure. Then five mimicking portfolios are formed. The weekly rates of
return , Ryuw...Rsw, on these five mimicking portfolios are our factor return indices.
Our choice of five factors (rather than some larger number) is arbitrary, but the
procedure guarantees that the factor loadings are not biased due to misspecification
(so long as there are no more than ten factors). We estimated the mimicking
portfolio returns separately for the first 12 holding periods and for the last 12
periods in order to allow for nonstationarity in the factor returns. 7 Test periods
are defined as the 26 weeks following each Value Line recommendation date and

8

benchmark periods as the 26 weeks following each test period. We evaluate

weekly rebalanced, equally weighted portfolios of Value Line securities, and equally
weighted portfolios based on firm size. There are five portfolios in each set. Both

sets are reconstructed at the beginning of each of the 24 test periods. For each

6Of some concern is the timing of Value Line activities and when the clients actually have the Value
Line recommendation. The construction of our weekly rate of return file assumes investors buy
or sell at the closing price on the date of the recommendation, which is always a Friday. Value
Line staggers mailings so they will arrive on the recommendation date. The recommendations
are actually printed over the weekend preceeding the ranking date. Thus, Value Line analysis is
completed the week prior to the week that the recommendation arrives and recommendations are
one week old when received.

"Mimicking portfolio weights were also estimated from the entire 12 year variance-covariance matrix.
The results, which are reported in footnote 14, lead us to conjecture that nonstationarity may be

a problem.

8Copeland and Mayers (1982) refer to this as the future benchmark technique. Picking a future

benchmark period avoids selection bias problems associated with using historic benchmarks to
evaluate managed portfolios. However, it has problems of its own. For example, future benchmarks
may be biased if the manager’s predictive ability extends into the benchmark period. These
problems (as well as others, e.g. the effects of statistical dependencies on significance tests) are
discussed in detail in Copeland and Mayers(1982).



portfolio (p = 1,...,5) the weekly raw rate of return is defined as

N: R't
Ry = In(1 + 3_—7) (3)

j=1 N,
Here R;; is the weekly rate of return for security 7 in the portfolio of interest during
week ¢. N is subscripted by ¢ to note the possibility of delisting of listing. ° Table 1
gives the raw rates of return for each Value Line and size-ranked portfolio averaged
across all 24 test periods and cumulated from week 1 of the test period to week 26.

10 Table 1 also provides the average number of securities per portfolio.

Table 1 — Average 26 Week Cumulative Raw Returns for

24 HoldingPeriods from November 26, 1965 to February 3,

1978; and Average Number of Securities per Portfolio
Portfolio Number

1 2 3 4 5
Value Line .0738 .0651 .0410 .0270 .0037
Avg. No. 95 273 521 270 91
Size Ranked .0964 .0672 .0495 .0406 .0265
Avg. No. 406 406 406 406 406

Note that the 26 week average cumulative returns are positive for all 10 portfolios.
Also, the difference between the gross returns on the largest and smallest size-
ranked portfolios 6.99%, is roughly the same as the difference in returns between
Value Line portfolios 1 and 5, 7.01%.1!

9The amount of listing and delisting was minor. For a discussion of their possible impact on mea-
surement of Value Line performance, see Copeland and Mayers (1982, pp. 27-28). In addition,
the possibility of delisting explains why we formed portfolios before measuring abnormal returns
rather than measuring individual security abnormal returns and then averaging them. It is im-
possible to obtain a future benchmark return for a delisted security. Hence, selection bias would
be introduced if we were to purge delisted securities when using a procedure based on individual
security benchmarks.

10Copeland and Mayers repeated all of their performance experiments in non-log form also. The
results were practically identical to the log form. Thus, we do not replicate our experiment in the
log form.

" Copeland and Mayers (1982) found the Value Line portfolio 1 and 5 firms, not significantly different
in size.



3 Abnormal Performance Using the Market Model
Methodology —

3.1 Description of Methodologies —

The specifics of the market model methodology are given in the following for-
mulae. Benchmark rates of return are estimated for each week, w, of a given test

period, p. The single factor market model benchmark return is
Bl,, = &, + byRpy, w=1,..26. (4)
The coefficients a, and I;p are estimated from the simple market model regression,
Ry = ap + byRmt + €, t=27,...,52, (5)
estimated over the future benchmark period, i.e., the 26 weeks following the test

period. 12

The five factor market model benchmark return is
BS,, = &, + bipRiy + bypRyy + bsyRaw + bepRew + bspRsu (6)
where the intercept and slope terms are estimated from the multiple regression
Ryt = ap + bipRit + bypRay + bgpRa + bypRyr + bspBse + mpe (7)

again estimated over the future benchmark period.

For each Value Line portfolio and size-ranked portfolio, we then estimate the

cumulative excess returns for period p and the average cumulative excess rates of

return,
26
CR, = 3 (Bpw — By) (8)
w=1
12
ACR = EZZ CR, (9)

using both benchmark models, and test for whether the cumulative excess rate of
return performance is different from zero. The standard deviation for this test is
the usual unbiased estimator calculated with the period-by-period cumulative test

period excess returns. !3

12Cpefficients were also estimated over a 52 week benchmark period, following the test period. Results
for the Value Line portfolios are reported in footnote 15.

13T he formula is

S(CR — CR)?
24 — 1

D(CR)



3.2 Abnormal Performance Results —

Table 2 and Figure 1 contain the abnormal performance results. The table
presents the average cumulative residuals (ACR’s) and t-statistics for the five Value
Line portfolios (Panel A) and the five size-ranked portfolios (Panel B) for both the
single-factor and the five-factor market models over the entire 24 period history.
The figure contains plots of cumulative abnormal performance for weeks relative to
the Value Line ranking date using both models.

The results for the single and multifactor market models are practically indis-
tinguishable. For the Value Line portfolios (Panel A) the 3.05% ACR reported for
the single-factor model for portfolio 5 is marginally significant at the 0.05 level.
The 2.89% ACR reported for the five-factor model for portfolio 5 is marginally
insignificant. '* Moreover, the differences between the portfolio 1 and 5 ACR’s are
almost identical for the two market models; 3.38% for the single-factor model and
3.42% for the five-factor model. %

As expected, the results for the size-ranked portfolios (Panel B) show no statis-
tically significant performance at all. The largest t-statistic is only -1.2051, and the

difference in ACR’s between the smallest and largest size portfolios is only 1.33%

14Recall that the mimicking portfolio returns for the five-factor model in Table 2 were estimated
separately for the first 12 and the second 12 holding periods in order to allow for possibile non-
stationarity. The results given below are estimated using an identical procedure except that the
mimicking portfolio returns were estimated over the entire 12 year period, not allowing for non-
stationarity.

Value Line Portfolio Residuals
1 2 3 4 5
ACR 0.0193 0.0218 0.0117 0.0084 -0.0105
AR 0.0007 0.0008 0.0004 0.0003 -0.0004
t-stat 1.4580 1.8696 1.1853 0.8438 -0.8528
Size-ranked Portfolio Residuals
1 2 3 4 5
ACR 0.0243 0.0186 0.0141 0.0103 0.0112
AR 0.0009 0.0007 0.0005 0.0004 0.0004
t-stat 1.2261 1.5939 1.0946 1.0413 1.2414

The difference between portfolios 1 and 5 remains about the same but the ACR’s for all portfolios

have shifted upward.

15We also repeated the experiment using 52-week rather than 26 week benchmarks. In this case, the
difference between portfolios 1 and 5 for the Value Line data set was 4.49% for the single factor
model and 3.25% for the five-factor model. This was the greatest difference which we found and
it was not large.



Table 2 - Abnormal performance for 24 ranking
dates from November 26, 1965 to February 3, 1978;
single-factor and five factor market model benchmarks,
estimated over a 26 week benchmark period

Panel A: Value Line Abnormal Returns®

Market Model Portfolio Number
1 2 3 4 5

Single factor: ACR | 0.0033 0.0035 -0.0057 -0.0112  -0.0305
AR | 0.0001 0.0001 -0.0002 -0.0004 -0.0012
t-stat | 0.2545 0.3801 -0.5935 -1.10074 -2.1258*

Five factor: ACR | 0.0053 0.0058 -0.0005 -0.0071  -0.0289
AR | 0.0002 0.0002 -0.0000 -0.0003 -0.0012
t-stat | 0.3606 0.6704 -0.0699 -0.8054 -1.9640

“Portfolio numbers correspond to the Value Line rankings of the
securities in the portfolio. ACR is the average cumulative 26-week
test period residual return, AR the average weekly residual return
and t-stat the t-statistic under the null hypothesis that ACR = 0.
Degrees of freedom for t-stats are 23. Thus, any t-stat greater
than 2.069 is significant at the 0.05 level, and is marked with

an asterisk.

Panel B: Size-ranked Portfolio Abnormal Returns®

Market model Portfolio Number
1 2 3 4 5

Single factor: ACR | 0.0031 0.0027 -0.0020 -0.0113 -0.0098
AR | 0.0001 0.0001 -0.0001 -0.0004 -0.0004
t-stat | 0.2272 0.4997 -0.3665 -1.2051  -0.6850

Five factor: ACR | 0.0088 0.0062 0.0004 -0.0065 -0.0045
AR | 0.0003 0.0002 -0.0000 -0.0003 -0.0002
t-stat | 0.5320 0.5916 0.0396 -0.8659  -0.4879

Portfolio numbers correspond to the size rankings of the securities
in the portfolio. ACR is the average cumulative 26-week test period
residual return, AR the average weekly residual return and t-stat the
t-statistic under the null hypothesis that ACR = 0. Degrees of
freedom for t-stats are 23. Thus, any t-stat greater than 2.069 is
significant at the 0.05 level.
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Figure 1 -Exeess rate of return performance plots for five Value Line rankings

portfolios (Panels A and B) and for five size-ranked portfolios (Panels C and D)

for 24 ranking dates from November 26, 1965, to February 3, 1978. The ACR are ,(kyagnnki

the average (across 24 periods) of the weekly(éff;gﬁ)rates of return cumulated to

the designated week relative to the ranking daté in the test period (week zero).

The numbers 1 to 5 correspond to the Value Line rankings of the securities in the

portfolios, in Panels A and B, and to firm sizes (with 1 being the smallest quintile)

{n Panels C and D.
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using the multifactor model or 1.29% using the single factor model.

Figure 1 goes here.

Note, however, that the ACR plots of the size-ranked portfolios for the single
factor model reveal negative cross-sectional correlation. Portfolios 1 and 5, and
portfolios 2 and 4, seem to be reflections of each other. This is confirmed by large
negative correlations between excess returns of portfolios 1 and 5(—.610) and 2 and
4(—.662). However, these large negative correlations are reduced to .281 and —.007
respectively, when the single-factor model is replaced with the five-factor model.
This suggests that there is a left out variable in the single factor model which is

uncorrelated with the single factor market index.

3.3 Mean Square Error Comparisons —

We observed above that the ACR’s of the single and multifactor models are
similar and not significantly different from zero. These results are to be expected if
the market is efficient and the model parameters are stationary across the bench-
mark and the test periods. However, the single and multifactor model may still
differ in their forecasting power. The forecast error variances, under the station-
arity assumption, can be drived by comparing equation (4) and equation (6) with
the realized returns.

The prediction error for the single factor model is

Ply = Ry — E(Rpwlip, by, Ronw)
ap + by R + €pw — |8p + bp Rinw]
= [aP - &P] + [bp - bP]me + €pw

1l

and its variance under the usual assumptions is given by (see Theil (1971), p. 106):

1 me - ﬁm z
Var(Ply) = [-]—V— + 5(2 ) + 1]o? (10)
(Rmt - —Em)z



where o2 is the variance of €,, R is the market return during the future benchmark
period and R,, is the average of R,u.

The prediction error for the multifactor model is

P5, = Ry, — E(Rpwldpai)lp’""85P’R1“’""’R5w)

5
= [aP - &P] + Z(bkp - bkp)Rkw + Mpw
k=1

and the variance under the usual regression assumptions and the assumption that
the five underlying factors are constructed to be orthogonal can be derived as:!®
. (Rkw — By)?

52

k=1 Z (Rkt _ Rk)2

t=27

Var(P5,) = [-]1\7 + + 1)o? (11)

where 0,27 is the variance of n,, Ry is the kt* factor return during the future bench-
mark period and R is the average ;.

As we compare expression (10) with (11), it becomes immediately clear that the
condition 0,’; < o? is not sufficient to imply that the forecast error variance is lower
for the multifactor model. If indeed o} < o?, we still have to tradeoff the lower
residual variance with the uncertainty arising from parameter estimation,

52 5 52
(me - R—m)z/ Z (Rmt - Fm)z V8. Z[(Rkw - Rk)z/ Z (Rkt - —Rm)zl'
t=27 k=1 t=27
This is true even in the special case where factor one, R, is constructed to be the
market, R, (i.e., Rz,..., Rs are obtained by factor analyzing the market residuals).
On the other hand, if factor one is a noisy approximation of the market (i.e.,
Ry = R,, + ¢ where ¢ is noise uncorrelated with R,,), and the right hand side is
greater than the left hand side in the above expression, then o2 > o? is sufficient
to imply that the forecast error variance of the single factor is lower.
By comparing (10) with (11), we can also infer under what conditions the fore-
cast error variance of the multifactor model is likely to be lower. If we hold all
other things (parameters, i.e. @,, 13p, R, 6y, bipyry 135,,, Ry, ..., Rs, 0% — 0%} the same,

then since 67 and o} enter (10) and (11) multiplicatively, the lower ol is, the more

16The orthogonality condition is not crucial for the discussion that follows. It does simplify the
expression in Eq. (11).



likely (10) is greater than (11). In other words, the forecast error variance for the
multifactor model is likely to be lower if the portfolio is well-diversified.

The above anlysis is derived under certain stationarity assumptions and offers
us some guidelines of what to expect. A more informative comparison of the models
still must come from the comparison of the realized forecast errors. In this section,

we examine the mean square error criterion, which is defined as

1 24
MSE = -3 (CR,)". (12)
p=1

The results of these calculations are reported in Table 3. The multifactor model
appears to do better. It has smaller MSE for Value Line portfolios 2, 3, and 4, and

for size-ranked portfolios 1, 4, and 5. However, we need a significance test.

fable 3 — Mean Square Error Terms for the Single-

Factor Model (column 2), the Five-Factor
Model (col. 3), and Their Ratio (2+3 = column 4)
Panel A: Value Line Portfolios

(1) (2) (3) (4)

portfolio single factor five factor ratio =

number MSE MSE 23
1 .00387 .00508 0.762
2 .00196 .00176 1.114
3 .00217 .00109 1.991
4 .00298 00182 1.673
5 .00567 .00581 0.967

Panel B: Size-ranked Portfolios

(1) (2) (3) (4)

portfolio single factor five factor ratio =

number MSE MSE 23
1 .10387 10315 1.007
2 .01687 .04518 0.373
3 01724 .03075 0.561
4 .05118 .02594 1.973
5 .11598 .02604 4.454

If the test-period cumulative forecast errors of the two models were indepen-

10



dent, the ratio of mean square errors could be interpreted as a doubly non-central
F-test. However, as the cumulative forecast errors of the two models are correlated,
a different significance test must be employed. A procedure introduced by Ashley,
Granger, and Schmalensee (1980) is used to test the null hypothesis that the dif-
ference in the mean square error terms for the two models is zero. To explain their
procedure, let €;, and €5, be the test period CR’s for the single and multifactor

models respectively. The difference between the mean square errors is
MSE(e;) — MSE(es5) = [s%(e1) — s*(es)] + [m(el)2 - m(e5)2] (13)

where MSE is the sample mean square error, s? is the sample variance, and m is
the sample mean. Now defining A, as the difference in error terms and 0, as their

sum,
Ay = €, — €5p and 0, = €p + €5p, (14)

equation (13) can be written as
MSE(e)) — MSE(e5) = [COV(D,0)] + [m(er)? — m(es)?], (15)

where COV is the sample covariance. From equation (15), a significant difference
between the MSE’s for the two models is indicated if we can reject the joint null
hypothesis that COV (A,0) = 0 and m(A) = 0. This joint hypothesis can be
tested by running the OLS regression

Hp = A + A2[0p - m(0p)] + Hp (16)

where y, is a mean zero error term and is independent of #,. Equation (16) also
assumes no significant autocorrelation. The null hypothesis of no difference in the
MSE is equivalent to the joint hypothesis that A; = A; = 0. The two simple null
hypotheses of no difference in prediction bias and of equivalent prediction variances
are the same as A; = 0 and A; = 0, respectively.

Table 4 shows the results of regression (16) for the five Value Line portfolios and
for the size-ranked portfolios. The intercept term, which is an estimate of the dif-
ference in excess returns between the single and multifactor models, is insignificant
in all regressions. The slope term is significantly positive for Value Line portfolio 3
and size-ranked portfolio 5, indicating superiority of the multifactor model. How-
ever, the slope is significantly negative for size-ranked portfolios 2 and 3, indicating
superiority for the single-factor model. These results are consistent with the ratios

of mean-squared errors which were reported in Table 3.

11



Table 4 — Results of the OLS regression
Dp = A + Aol — m(Bp)] + pp
for each of the five portfolios.

Panel A: Value Line Portfolios

Value Line Parameter
Portfolio Estimate t-test r2/DW  F-test

1 Ap-.0020  -0.2386  0.0541 1.26
Ap-.0747  -1.1214  1.9809

2 A3-.0023  -0.2994  0.0068 0.15
A20.3780 0.3874 2.2257

3 A;-.0052  -0.7804 0.1766 4.72*
A20.1989  2.1721*  2.1433

4 A3-.0041  -0.5535 0.1082 2.67
A20.1365 1.6336 2.3342

5 A;-.0016  -0.1573  0.0014 0.03

A,-.0140  -0.1752  2.1340

Panel B: Size-ranked Portfolios

Size-ranked Parameter
Portfolio Estimate t-test rt/DW F-test

1 A1-.0057  -0.7250  0.1263 3.18
Ag-.1002 -1.7831  2.7603

2 A;-.0034  -0.5673  0.4490 17.93*
Ay-.3658  -4.2338"  2.3643

3 A;-.0024 -0.4106  0.3289 10.78*
A,-.3003  -3.2832* 2.3138

4 A;-.0047  -0.6668 0.0791 1.89
A30.1322 1.3750 2.3993

5 Ay-.0054  -0.7407 0.3750 13.20*

A0.2444  3.6334"  2.6903

An asterisk (*) indicates that the variable is statistically
significant at the 5% confidence level or better.

DW is the Durbin Watson statistic.

F-test degrees of freedom are (2,22) with F' > 3.44
being significant at the 5% confidence level.




In Table 5, for both the Value Line and Size-Ranked portfolios, we report the
average standard deviations of the raw returns (Panel A), as well as the average
residual standard deviations, (o,), of the single-factor model (Panel B), and (o)
of the five-factor model (Panel C) from the benchmark period. For all the Value
Line portfolios, their single-factor residual variances (0?) are larger than the corre-
sponding five-factor residual variances (af’). The middle portfolio has the smallest
five-factor residual variance. From Table 4, it is also the portfolio where the five-
factor model does significantly better in terms of forecast MSE. This is consistent
with our analysis that the five-factor model is more likely to do better for well-
diversified portfolios.

On the other hand, as a consequence of the choice of market index (the equally
weighted index), the middle size-ranked portfolio has relatively low single-factor
residual variance. The larger firm portfolios, which are usually regarded as more
diversified, actually have higher residual variance. In fact, the equally-weighted
market index captures so much of the return variations of the smaller firms that
the single-factor model has lower residual variances than those of the multifactor
model for the lowest three size-ranked portfolios. Even though the first factor from
the multifactor model usually is also a proxy for the equally-weighted market, our
factor is constructed with only 180 stocks rather than with the thousands of stocks
that enter the market index and therefore is relatively noisy. These appear to be
sufficient to push the forecast error variances the other way, and, as we observe
in Table 4, the simple-factor model is significantly better for the second and third
size-ranked portfolios.

Nevertheless, for the larger firm portfolios, their average multifactor model resid-
ual variance is lower than that of the smaller firm portfolios. Both the fourth and
the fifth size-ranked portfolios have lower forecast MSE in the multifactor model,
and significantly so for the largest firm portfolio. This pattern is again consistent
with the expectation that the multifactor model performs better than the single-

factor model when the portfolio is well-diversified.
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Table 5 - Average Standard Deviations for the
Simple-Factor and Five-Factor Model

Panel A: Benchmark Period Raw Return Standard Deviations
Portfolio Value Line Size-Ranked

1 .03332 .03392

2 .03224 .03321

3 .03089 .03226

4 .03014 .03152

5 .03125 .03057
Panel B: Benchmark Period Residuals: Single-factor (o)
Portfolio Value Line Size-ranked

1 .02590 .02523

2 .02451 .02248

3 .02382 .02291

4 .02473 .02411

5 .02595 .02574
Panel C: Residuals from benchmark period: five-factor (oy)
Portfolio Value Line Size-ranked

1 .02563 .02529

2 .02345 .02360

3 .02237 .02309

4 .02320 .02268

5 .02481 .02334
Average standard deviations are the average across the 24 holding periods.

4 Summary and Conclusions

We have compared single and multifactor residual analysis evaluation techniques
in a specific application to determine if a multifactor model improves on the more
familiar single factor model. The ACR measurements were unbiased and similar
whether using a single factor or a multifactor model. Upon reflection it should not
be too surprising that the abnormal performance estimates were not different. The
future benchmark methodology is essentially a market model technique, whether
one uses a single or a multifactor index. Consequently, the intercept term accounts
for the average return. Our results show no significant differences in the average
cumulative returns. However, when portfolios were based on a CAPM anomoly,
namely firm size, the patterns of ACR’s were considerably different. The single
factor ACR’s exhibited significant negative cross-sectional correlation while the
multifactor residuals did not.

Even though the single and multiple factor methodologies give the same point
estimates of abnormal returns it is still possible that their mean square errors are
different. A priori, one would expect the multifactor model to be more powerful

when the model parameters are known with certainty. However, since we have to

13



estimate the model parameters empirically, we have to trade off reductions in resid-
ual variance against parameter estimation errors. Our results show that the single
and multifactor model mean square forecast errors are similar. However, the single
factor model tends to have relatively more power for forecasting conditional returns
for poorly diversified portfolios while the multifactor model tends to have relatively

more power for forecasting conditional returns for well diversified portfolios.
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Appendix A: How to Form the Mimicking Portfolios

Assume that returns for assets (¢ = 1,...I) are generated by a k-factor (k =

1,..., K) linear model such as

Ty = Ei + bil 51 + ...+ b,’}'{ gK + gi (Al)

where E; is the expected return during the next time interval; 6, are the mean
zero factors common to all assets; b;; is the sensitivity of return on asset ¢ to
the fluctuations in factor k; and & is the idiosyncratic risk for the ¢'* asset with
E(&,6;) = 0for all k.

Chen (1983) has shown that there exists a unique linear- transformation that can
generate the factor sensitivities, i.e., the by, for all assets corresponding to a fixed set
of common factors. Chen’s theorem enables us to form well diversified “mimicking”
portfolios, one for each factor, which have high sensitivity to the k** factor and
zero sensitivity to all other factors. The subperiod (e.g., weekly) returns on these
mimicking portfolios may be used as estimates of the factor returns (analogous to
a K-factor market index), and then employed in a multi- index market model to
estimate subperiod abnormal portfolio performance.

The procedure we used for estimating the weekly rates of return on the mim-

icking portfolios is:

1. Compute the variance covariance matrix for the weekly rates of return of the
first 180 securities on the CRSP tape which had weekly returns every week.!”
The data was separated into two halves. The first half began with Friday
November 19, 1965 and ended with Friday May 4, 1973, thereby spanning
the first 12 holding periods. The second half began on Friday August 4, 1972
and ended with Friday October 26, 1979. It spanned the second 12 holding

periods.18

2. Compute ten factor loadings for the 180 stocks by using the Jéreskog asym-

pototic maximum likelihood method.®

170f the 4063 companies on the CRSP tape, 999 had weekly returns for each of the 861 weeks
between the beginning of July 1962 and the end of December 1978. Of these, we used only the
first 180 stocks (chosen alphabetically) because we were constrained by the processing capacity of
the IBM 3033 in use.

18The mean weekly rate of return for the #** security in the tt" year was used to compute the mean
deviations that year. This was done yearly in order to emphasize the covariability among securities.

19The software package EFAP II, written by Joreskog was utilized.
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3. Based on the factor loadings, form 5 mimicking portfolios.

Note that although ten factor sensitivities for each of the original 180 securities
were produced by the Joreskog routine, we created only five mimicking portfolios.
There are two reasons. First, no one knows the exact number of true underlying
factors, but Roll and Ross (1980) suggest there are at least three and probably
four “priced” factors. Hence, our choice of five factors is arbitrary, but is probably
reasonable. The second reason has to do with a possible misspecification problem.
So long as the eleventh and higher order factors are immaterial (and there is good
reason to believe that they are) we can be sure that the first five factor loadings are
not contaminated by misspecification by setting the loadings for the sixth through
tenth factors to zero.

A linear programming model (using 180 securities) was used to determine sets
of weights for 5 mimicking portfolios. 2 The objective was to minimize departures
from a well diversfied, equally weighted portfolio, subject to constraints that 1)
the mimicking portfolios should be uncorrelated with each other and 2) that the
weights in the first portfolio should sum to one while the weights in the remaining
four portfolios sum to zero. This procedure was repeated twice to produce first
half and second half matrices of mimicking portfolio returns (where there were 390
weeks in the first half and 378 weeks in the second). Table Al shows summary
statistics for the mimicking portfolios: the matrix of sensitivities, and a correlation
matrix for the first half data.?’ Panel A shows that the p** portfolio has high
sensitivity to the k** factor when p = k but virtually zero sensitivity to all other
factors where p # k. Panel B, the correlation matrix, provides a way of checking
the quality of the mimicking portfolios. The non-diagonal elements should ideally
be zero. The largest two correlations are 6.202% and -3.070%.

20This is the GUB routine within the elastic programming in the XS mathematical programming
system developed by Glenn Graves, Professor of Mathematical Methods, Graduate School of Man-
agement, UCLA.

211 order to save space we have not printed either the entire period or the second half tables. They
are essentially the same except that the maximum correlations which resulted from fitting over the
entire period were as high as 16.8% and 11.6%. This is further evidence that non-stationarity was

a problem.
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Table A1

Summary statistics for 5 mimicking portfolios chosen from 180 securities. Factors

estimated using the first half of the returns data (April 65 - January 72)%?

Panel A: Factor sensitivities, ), wip bix. For example, row 1 - column 1
is the sensitivity of the first mimicking portfolio of
the first factor.

Factor Number
1 2 3 4 5
Mimicking 1 -.4154E+400 .3169-06  .4556E-06 .49990E-07 -.4398E-08
Portfolio 2 .6694E-06 .2000E4-00 J146E-06 .2002E-06 -.4398E-08
Number 3 -.1544E-06 .15464E-06 .2000E4+00 .5945E-07 -.7503E-09
4 .2792E-06 .1824E-06  .9242E-07 .1500E-+00 -.5650E-07
-.402812-07 .1214E-07 -.4060E-08 -.4736E-07 .1682E+400
Panel B: Correlations Among the 5 mimicking portfolios
Factor Number

T

1 2 3 4 5

Mimicking 1 1.00000 -.00164 -.00023 -.00398 .00766
Portfolio 2 1.00000 -.03076 -.06202 .00450
Number 3 1.00000 -.02809 .01286
4 1.00000 -.00993

5 1.00000

22The second half factor sensitivities and correlations among the mimicking portfolios were very

similar.
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