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Abstract

Our primary goal is to develop and analyze a dynamic economic model
that takes into account several sources of information-based trade�the
markets for a stock and options on that stock�and that ultimately ac-
counts for salient features of stock price data, including serial correlation
in stock trades, serial correlation in squared stock price changes (stochastic
volatility), and more persistent serial correlation in stock trades than in
squared stock price changes. We derive the dynamic relationships among
the stock, the call option, and the put option and capture the leverage
effect offered by options. We derive consistency results for the learning
process and the convergence of an asset�s quotes to the asset�s true value.
We also derive closed-form analytic results for expected calendar period
price changes and trades, and we examine calendar period serial correla-
tion properties of squared price changes and trades.

1. Introduction

Much recent attention has focused on modeling high-frequency stock price be-
havior. On the theoretical side, the blossoming area of market microstructure

∗We thank Steve LeRoy and John Owens for helpful comments.



is providing valuable insights into the trade-by-trade stock price process.1 On
the empirical side, a wealth of research has focused on capturing salient features
of calendar period stock data, including conditional heteroskedasticity in calen-
dar period price changes, or stochastic volatility. We provide a theory-based link
among asymmetric information, the behavior of market participants, and stochas-
tic volatility through a market microstructure model of securities markets.
Our work follows on from Kelly and Steigerwald (2000), in which the stochastic

properties of calendar period trades and squared price changes are derived from
a market microstructure model. In the current paper, we make two principle
contributions. First, we consider a model in which trade occurs in an options
market as well as the stock market. Working from the microstructure model of
Easley, O�Hara, and Srinivas (1998) we derive the dynamic pattern of trade across
markets as well as the stochastic properties of trades and squared price changes
for each market. Second, we obtain analytic expressions for the serial correlation
in calendar period squared price changes and so can directly relate stochastic
volatility to the parameters of the underlying model.
Market microstructure, broadly speaking, is the area of economics that deals

with the evolution of prices by focusing on the actual trading process [Demsetz
(1968), Garman (1976), Amihud and Mendelson (1980), Kyle (1985), Glosten and
Milgrom (1985), Easley and O�Hara (1987), Easley and O�Hara (1992), and Harris
and Raviv (1993), among many others]. While market microstructure models
come in a wide variety of styles�from inventory- and information-based models, to
batch-order and sequential-trade models, to strategic behavior and game-theoretic
models�we focus on information-based, sequential-trade models [Glosten and
Milgrom (1985) and Easley and O�Hara (1992)]. In particular, information-based,
sequential-trade market microstructure models capture the link between asset
prices and informational asymmetries among traders and model the bid-ask spread
as an adverse selection problem. The raison d�être of these models rests in the
assertion that trades in a stock are correlated with private information regarding
the value of that stock.
In modeling the market microstructure of a stock market, Glosten and Mil-

grom (1985) allow for fully informed traders, uninformed (liquidity) traders, and a
market maker, all of whom are risk neutral and competitive. The market consists
of a single stock and the market maker is the asset dealer. The risk neutrality of
the market maker eliminates inventory effects. Both the informed and uninformed
trade with the market maker and are chosen to transact randomly. The informed

1Cohen et al (1986) and O�Hara (1997) are notable references.
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receive a signal indicating the true value of the asset, but the uninformed and the
market maker do not�thus, there is information asymmetry. The information
asymmetry poses an adverse selection problem for the market maker and is the
reason for the bid-ask spread. Glosten and Milgrom show that the bid-ask spread
bounds the expected value of the asset via a Bayesian learning process. Easley
and O�Hara (1992) expand the basic model to take into account �event uncer-
tainty� by allowing for the possibility that there is no signal regarding the true
value of the asset�thus in some periods all traders are uninformed. This event
uncertainty gives rise to the importance of time in the stock price process: if an
information event is not a certainty, then a given trader�s decision to trade or not
to trade may provide information to the market. They examine the time process
of the stock price in this less restrictive framework and show that the sequence of
bid and ask prices converges to the true value of the asset for a given information
event.
We posit that private information is a driving factor in the stock price process,

as suggested by French and Roll (1986). It seems reasonable, therefore, that
when modeling the stock price the sources of information-based trade related to
the stock should be considered. Heretofore most market microstructure mod-
els considered only the market for a stock�but the stock market is not the only
medium for information-based trade in the stock. Derivative instruments based on
the underlying stock�such as call and put options�may provide another vehicle
through which informed traders can proÞt from their information. The introduc-
tion of the options market is a natural extension of asymmetric information market
microstructure models that allows for further sources of information-based trade,
recognizing the important insight of Black (1975) that the options market may
provide a better venue for informed traders and the fact that, when investigating
insider trading cases, the Securities and Exchange Commission carefully exam-
ines trades in options. Easley, O�Hara, and Srinivas (1998) expand the standard
market microstructure model to include both a stock market and an options mar-
ket. Their sequential-trade, asymmetric information model of the stock and op-
tions markets demonstrates that both markets can host information-based trade.
The model is analogous to that of Easley and O�Hara (1987), a sequential trade,
asymmetric information model of the stock market that allows for multiple trade
sizes. In Easley, O�Hara, and Srinivas (1998), rather than choosing between stock
trade sizes, traders choose between transacting in the stock and options markets.
Via equilibrium arguments, they show that informed traders will transact in the
options market under certain conditions regarding the depths of the stock and
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options markets as well as the available leverage offered by the options relative to
the stock.
Easley, O�Hara, and Srinivas (1998) note that the inclusion of sources other

than the stock market of information-based trade can blur the linkages between
stock market transactions and information. They also point out the seemingly
paradoxical implication that information-based transactions in derivatives on an
underlying stock may have on the stock price itself [see Biais and Hillion (1994)
and Back (1993)]. The prices of derivative instruments such as options are sup-
posed to be determined unilaterally by the underlying stock price [for example,
see Black and Scholes (1975)]; if, however, these derivatives are not redundant
assets then this relation does not necessarily hold. Given that the trading process
itself contains information about the stock price, transactions in derivatives on
the underlying stock can have information for the stock price and thus affect the
stock price. In particular, if derivatives markets are more attractive to informed
traders, then the trading process in these derivatives may contain new informa-
tion about the stock price before it is reßected in the stock or derivatives prices.
Hence, these derivatives are not redundant assets.
Empirically, calendar period stock data tend to exhibit numerous regularities.

There is strong evidence of serial correlation in calendar period squared price
changes and in the number of trades across calendar periods, and the serial corre-
lation in the number of trades tends to be more persistent than serial correlation
in squared price changes [Harris (1987), Andersen (1996) and Steigerwald (1997)].
For example, we consider the behavior of the stock of IBM from January 3, 1995
through December 31, 1996. Using trade-by-trade data from the New York Stock
Exchange Trade and Quote database, and eliminating the period from 9:30 AM
until 10:00 AM each day as in Engle and Russell (1998), we aggregate the daily
price and trade data to twelve 30-minute intervals per day, resulting in 6,023 cal-
endar period observations. The data reveal strong cyclical patterns as illustrated
in Figure 1. In particular, the Þrst and last few intervals of an NYSE day tend
to be very noisy, characterized by increased trading activity and price volatility.
These diurnal patterns may be the result of a wealth of institutional and eco-
nomic factors, including the notion that information can arrive during nontrading
hours�4:00 PM through 9:30 AM (until recently)�and thus increase uncertainty
at the open, as well as the fact that many institutional market participants use
�market-on-close� orders to match widely-tracked indices. These regularities gen-
erate strong serial correlation at lags of integer multiples of the number of calendar
intervals per day for both the number of trades and squared price changes. While
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removing the 30-minute sample means from the trades data appears to remove
much of the cycle, removing the sample means from the price change data does
little to remove the cycle in squared price changes. It may be the case that the
price change process is simply much noisier than the trades process. Nonetheless,
the sample autocorrelation functions of the raw and demeaned calendar period
data in Figure 1 reveal that both squared price changes and trades are serially
correlated. After removing the sample means, serial correlation in the number of
trades tends to be much higher and ßatter than serial correlation in squared price
changes.
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Figure 1: Sample Autocorrelations of IBM Stock Data Aggregated to 30-Minute
Intervals

The aforementioned empirical regularities have important implications for eco-
nomic modeling of the stock price process. One very popular�and successful�
avenue for capturing serial correlation in squared price changes has been through
the employment of sundry conditional heteroskedasticity models [see Bollerslev,
Engle, and Nelson (1993) for a survey]. Such models are purely statistical, how-
ever, and are not based on economic theory. Steigerwald (1997) provides a step
toward linking economic theory and conditional heteroskedasticity models through
the formulation and analysis of mixture models [Clark (1973) and Gallant, Hsieh,
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and Tauchen (1991)]. Economic theory suggests that the evolution of a stock price
is not necessarily concordant with calendar time but rather is based on random
transactions between buyers and sellers. These transactions can be driven by the
random arrival of information, independent of calendar time. In this way, the
information contained in a price can vary from one calendar period to the next,
as can the number of transactions between buyers and sellers.
Easley, O�Hara, and Srinivas (1998) develop an information-based, sequential-

trade market microstructure model of both the stock and options markets, but
they do not allow for no-trade intervals and do not attempt to capture the impor-
tant role of time in the price process. We generalize the model of Easley, O�Hara,
and Srinivas (1998), allowing for no-trade intervals, and consider the dynamic
properties of the price and trade processes over calendar period intervals. We
derive the dynamic relationships among the stock, the call option, and the put
option and capture the leverage effect offered by options. We derive consistency
results for the learning process and the convergence of an asset�s quotes to the
asset�s true value. We also derive closed-form analytic results for expected cal-
endar period price changes and trades, and we examine calendar period serial
correlation properties of squared price changes and trades. While we model the
leverage effect of options, we do not address the timing difference between option
and stock ownership.

2. A Market Microstructure Model of the Stock and Op-
tions Markets

We consider a model with markets for a stock and for call and put options on the
stock. We base our dual-market, sequential-trade, asymmetric information model
on the market microstructure models of Easley and O�Hara (1992) and Easley,
O�Hara, and Srinivas (1998). There is a market maker in the stock market and a
market maker in the options market, and there are an inÞnite number of traders
who can trade in either market. The market makers and the traders are assumed
to be risk-neutral.
The model consists of pure dealership markets in which orders are solely of

the market type�thus the market makers neither keep order books nor provide
brokerage services. The market maker in the stock market sets an ask and a bid,
collectively termed the quotes, for one share of the stock. These are the prices at
which the market maker is willing to sell one share of the stock and buy one share
of the stock, respectively. Analogously, the market maker in the options market
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sets quotes for the call and put options. Each option contract grants rights to
a Þxed number of shares of the underlying stock, λ, with λ ≥ 1. Thus, each
transaction in the options market involves either buying or writing λ options.
Trade in the stock and options markets occurs over a sequence of trading days,

indexed by m. On trading day m, the stock realizes some per share dollar value,
given by the random variable Vm. The stock can take one of two known values,
Vm ∈ {vLm, vHm}, with vLm < vHm. The stock takes the lower value, vLm, with
positive probability δ. Prior to the commencement of trading on day m, informed
traders receive a randomly determined signal, Sm, about the value of the stock on
m. This signal is meant to capture private information and can take one of three
values, Sm ∈ {sL, sH , sO}. The informative signals, sL and sH , reveal the true
value of the stock. The low signal, sL, indicates bad news such that Vm = vLm, the
high signal, sH , indicates good news such that Vm = vHm, but the uninformative
signal, sO, provides no information regarding the true value of the stock. The
probability that the informed traders learn the true value of a share of the stock
through the signal is θ, with θ > 0, so the probability that they receive the high
signal is θ (1− δ). Proportion α of the traders receives the signal, characterizing
the informed universe of traders. The proportion of traders that does not receive
the signal characterizes the uninformed universe of traders. Neither market maker
is privy to the signal. At the end of each trading day, the signal is revealed to
the market makers and uninformed traders and, hence, all agree on the value of a
share of the stock.2 The general trading day construct is designed to capture the
interval over which asymmetric information due to a particular signal persists in
the markets. This interval is not necessarily coincident with a calendar day.
Each option is of the European type�precluding the possibility of exercise

prior to the end of the trading day�and expires upon revelation of the sig-
nal. Each call option provides the owner with the right to buy one share of
the stock for a speciÞed strike price, κCm, with κCm ∈ [vLm , vHm ], from the call
option writer at the end of the trading day. The value of the call option, VCm,
is max (Vm − κCm , 0). If Sm = sL, the call option is �out-of-the-money� and ex-
pires worthless. If Sm = sH , the call option is �in-the-money� and expires worth
vHm − κCm. If the signal is uninformative, however, VCm = max (EVm − κCm , 0).
Each put option provides the owner with the right to sell one share of the stock for
a speciÞed strike price, κPm, with κPm ∈ [vLm, vHm ], to the put option writer at the

2To ensure the continuity of prices over trading days, EVm = vm−1 if the informed traders
received an informative signal on trading day m−1. If the informed traders received an uninfor-
mative signal on trading day m− 1, then we presume the possible share values are unchanged.
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end of the trading day. The value of the put option, VPm, is max (κPm − Vm, 0). If
Sm = sL, the put option is in-the-money and expires worth κPm−vLm. If Sm = sH ,
the put option is out-of-the-money and expires worthless. If the signal is uninfor-
mative, however, VPm = max (κPm − EVm, 0).
Traders randomly arrive to the markets one at a time, so we index them by

their order of arrival, i.3 Let ωi denote the rate of time discount for consumption
at the end of a trading day for the ith trader. We deÞne Wim as a random
variable representing the value of trader i�s investment at the end of trading day
m. For example, if the ith trader buys λ call option contracts, then Wim = λVCm.
Each market participant assigns random utility to his investment and current
consumption, c, as ωW + c. The larger the value of ω, the greater is the desire to
forego current consumption.
We set ω = 1 for the market makers and informed traders. Conditional on

receiving Sm = sO, informed traders do not trade because of identical preferences.
Conditional on receiving an informative signal, informed traders trade as long as
the market makers are uncertain of the true value of the stock. If Sm = sL, then an
informed trader implements one of three possible �bearish� strategies, selling short
one share of the stock with probability ²IB, writing λ call options with probability
²IBC, or buying λ put options with probability ²IAP = 1− ²IB− ²IBC. If Sm = sH ,
then an informed trader implements one of three possible �bullish� strategies,
buying one share of the stock with probability ²IA, buying λ call options with
probability ²IAC, or writing λ put options with probability ²IBP = 1− ²IA− ²IAC.
Conditional on receiving an informative signal, the informed trader employs the
strategy that provides the largest net gain.
Given currently available public information, a trader who buys an asset at

the market maker�s ask pays more than the expected value of the asset, and a
trader who sells an asset at the market maker�s bid receives less than the expected
value of the asset. Thus, the trader who buys the stock if Vm = vLm or sells short
the stock if Vm = vHm loses on the trade. Given this knowledge, the rational
uninformed are assumed to trade for liquidity reasons and not speculation. To
induce them to trade, we let ω characterize three types of uninformed trader. Of
the uninformed traders with ω = 0, proportion ²UB potentially sells the stock
short, proportion ²UBC potentially writes λ call options, and proportion ²UBP
potentially writes λ put options. Proportion 1− ² of the uninformed traders has
ω = 1 and never makes any trade. Of the uninformed traders with ω = ∞,

3Due to the inÞnite number of traders, with probability one no trader will arrive to the
markets more than once.
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proportion ²UA potentially buys the stock, proportion ²UAC potentially buys λ
call options, and proportion ²UAP potentially buys λ put options.
The ith trader arrives, observes the quotes, and makes a trade decision, Di.

The random variable, Di, takes one of seven values. If trader i buys the stock
at the ask, Ai, then Di = dA. If trader i sells the stock short at the bid, Bi,
then Di = dB. If trader i buys λ call options at the ask, ACi

, then Di = dAC.
If trader i writes λ call options at the bid, BCi

, then Di = dBC . If trader i buys
λ put options at the ask, APi

, then Di = dAP . If trader i writes λ put options
at the bid, BPi

, then Di = dBP . If trader i elects not to trade, then Di = dN .
We deÞne the sequence of trading decisions on m as {Dk}ik=1. Given all publicly
available information prior to the commencement of trade on m, Z0, we specify
the publicly available information set prior to the arrival of trader i + 1 as Zi,
with Zi = {Z0, Dk}ik=1.
The information set, Zi, is shared by the market makers and all traders. We as-

sume that the market makers and uninformed traders also have the same Bayesian
updating process by which they learn the signal received by the informed. We
refer to the learning process of the market makers, noting that the same process
applies to the uninformed traders. After witnessing the ith trading decision, the
market makers� beliefs regarding the signal that the informed traders received are

P (Sm = sL|Zi) = xi,

P (Sm = sH |Zi) = yi,

and, by construction,

P (Sm = sO|Zi) = 1− xi − yi.

Each trading decision�even if the decision is not to trade�conveys information
about the signal received by the informed traders.

2.1. Quote Determination

Quotes are determined by two equilibrium conditions. The Þrst condition is that
a market maker earns zero expected proÞt from each trade. The zero expected
proÞt condition arises from the potential free entry of additional market makers.
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From the zero expected proÞt condition it follows that the quotes are equal to
the expected value of the asset conditional on the trade. The second condition
involves comparing the net gains from the various trading strategies available to
the informed. Because the informed will make the trade in the asset that offers
the highest net gain, in equilibrium it must be the case that the quotes are set so
that an informed trader earns an equal net gain from each possible trade.
To understand the interplay of the two conditions, we begin by studying the

opening ask in the call market, AC1 . The zero expected proÞt condition sets the
market maker�s expected gain from trade with an uninformed trader equal to the
expected loss from trade with an informed trader. The market maker�s belief that
an uninformed trader will buy λ call options on the Þrst trade is (1− α) ²UAC.
Because the uninformed have the same information as the market maker, the
market maker�s expected gain from writing λ call options to an uninformed trader
is

(1− α) ²UAC · λ [AC1 −E (VCm|Z0)] .

The market maker�s belief that an informed trader will buy λ call options on
the Þrst trade is α²IAC1y0. Because each of the λ call options purchased by an
informed trader will expire in-the-money, worth vHm − κCm per share, the market
maker�s expected loss from writing λ call options to an informed trader is

α²IAC1y0 · λ [AC1 − (vHm − κCm)] .

If net proÞts are zero, then

AC1 =
α²IAC1y0 (vHm − κCm) + (1− α) ²UACE (VCm|Z0)

α²IAC1y0 + (1− α) ²UAC .

The opening ask depends on ²IAC1 , which in turn depends on the potential net
gains available to the informed trader. To uniquely determine the probability that
an informed trader chooses to buy λ call options at the market opening, we Þrst
calculate the net gain from each of the three possible bullish trades. We deÞne
the net gain from a particular trade as the ultimate proceeds to the trader less
the cost of the trade. The informed trader can buy one share of the stock at the
ask, A1, and then sell it at the end of the trading day for vHm for a net gain of
vHm − A1. The informed trader can buy λ call options at the ask, AC1, each of
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which will expire in-the-money at the end of the trading day for a net gain of
λ [(vHm − κCm)−AC1]. The informed trader can write λ put options at the bid,
BP1 , each of which will expire out�of-the-money, or worthless, at the end of the
trading day for a net gain of λBP1 .

4

In equilibrium, the market makers set A1, AC1 , and BP1 so that the net gains
from the three bullish strategies are equal,

vHm −A1 = λ [(vHm − κCm)−AC1] = λBP1 .

Solution of this uniquely determines ²IAC1, ²IA1 , and ²IBP1 . We Þnd that

²IAC1 = ²UAC

½
[αy0 + (1− α) (²UA + ²UBP )]λ (vHm − κCm)−
(1− α) [(vHm − vLm) ²UA + λ (κPm − vLm) ²UBP ]

¾
αy0 [(vHm − vLm) ²UA + λ (vHm − κCm) ²UAC + λ (κPm − vLm) ²UBP ]

.

The opening ask in the call market is obtained as the solution to the zero
proÞt condition with the value of ²IAC1 determined above. With ϕS = vHm − vLm,
ϕC = vHm − κCm, and ϕP = κPm − vLm, we have

AC1 = ϕC −
(1− α) [ϕC −E (VCm|Z0)] (ϕS²UA + λϕC²UAC + λϕP ²UBP )

[αy0 + (1− α) (²UA + ²UAC + ²UBP )]λϕC
while the opening bid in the call market is

BC1 =
(1− α) (ϕS²UB + λϕC²UBC + λϕP ²UAP )E (VCm|Z0)

[αx0 + (1− α) (²UB + ²UBC + ²UAP )]λϕC
.

2.2. Intra-Trading Day Dynamics

The market makers adjust, or update, their beliefs about the signal received by
the informed traders�the conditional probabilities, xi and yi�to reßect the in-
formation revealed through the sequence of trading decisions. We detail how

4As AC1 depends on ²IAC1 , so to do the other quotes depend on informed trade frequencies.
For example, B1 depends on the informed trade frequency at the bid in the stock market, ²IB1 .
To determine ²IB1 , we equate the gains from each of the three bearish trades. The informed
trader can sell short one share of the stock at the bid, B1, and then buy it back at the end of
the trading day for vLm for a net gain of B1−vLm . The informed trader can write λ call options
at the bid, BC1

, each of which will expire out-of-the-money at the end of the trading day for a
net gain of λBC1

. The informed trader can buy λ put options at the ask, AP1
, each of which

will expire in-the-money at the end of the trading day for a net gain of λ [(κPm − vLm)−AP1 ].
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the market makers learn from the Þrst trader; learning from all successive trade
decisions follows similar logic. If D1 = dA, then from Bayes� Rule

x1 = x0
(1− α) ²UA

α²IA1y0 + (1− α) ²UA and y1 = y0
α²IA1 + (1− α) ²UA
α²IA1y0 + (1− α) ²UA .

For D1 = dAC, we simply replace ²UA with ²UAC and replace ²IA1 with ²IAC1 . For
D1 = dBP , we replace ²UA with ²UBP and replace ²IA1 with ²IBP1. If D1 = dB,
then

x1 = x0
α²IB1 + (1− α) ²UB
α²IB1y0 + (1− α) ²UB and y1 = y0

(1− α) ²UB
α²IB1y0 + (1− α) ²UB .

For D1 = dBC , we replace ²UB with ²UBC and replace ²IB1 with ²IBC1 . For D1 =
dAP , we replace ²UBC with ²UAP and replace ²IBC1 with ²IAP1 .
Consider the case in which the Þrst trade is at the ask in the stock market.

If ²IA1 = 0, then learning occurs only from trade in the options market. Suppose
that ²IA1 6= 0, so that learning occurs from trade in both the stock and options
markets. If y0 < 1, then a trade at the ask in the stock or the call option or a
trade at the bid in the put option increases y1 relative to y0. Similarly, if x0 > 0,
then a trade at the ask in the stock or the call option or a trade at the bid in the
put option decreases x1 relative to x0. We also Þnd that revisions in x1 and y1

are not symmetric in that an increase in y1 is accompanied by both a decrease in
x1 and a change in 1− x1− y1. If α = 1 or ² = 0 so that only the informed trade,
then learning is immediate with x1 = 0 and y1 = 1.
A decision not to trade also reveals information. If D1 = dN , then

x1 = x0
(1− α) (1− ²)

α (1− x0 − y0) + (1− α) (1− ²)
and

y1 = y0
(1− α) (1− ²)

α (1− x0 − y0) + (1− α) (1− ²) .

If 1−x0−y0 > 0, then a decision not to trade decreases both x1 and y1. If α = 1,
or if ² = 1 so that all uninformed traders trade, then learning is immediate and
x1 = y1 = 0.
The key parameters that govern the speed of learning are α, ², and the frequen-

cies of informed trade. As α increases, the information content of a given trade
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increases and learning is more rapid. Increasing the propensity of the uninformed
to trade, ², decreases the information content of a given trade and slows learning.
Increasing the frequency with which an informed trader makes a particular trade
also affects learning. Learning occurs most rapidly from trade in the market with
the least depth, that is the market for which the ratio of informed trade frequency
to uninformed trade frequency is highest.5 Consider the case in which the strike
prices are the limit values and λ > 1, so the informed trade frequency is higher in
the options market than in the stock market. If the uninformed trade frequency is
equal in all assets, then the market depth is lower and so trade is more informative
in the options market. Further, as the number of shares of the underlying stock
controlled by an option contract, λ, increases, then informed trade frequencies in
the options market increase. As a result, the information content of an option
trade increases and, because trade is more concentrated in the options market,
learning quickens. From Figure 2, which illustrates the average beliefs over 1,000
simulations with Sm = sH , one can readily conÞrm that as either ² declines or λ
increases, learning is more rapid.

5The depth of a market is the proportion of trades in a market made by uninformed traders.
For example, the depth of the stock market at the bid is

²UB

²IB + ²UB
.
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Figure 2: Learning Speed with xi−1(²,λ) and yi−1(²,λ) for α = 0.2

The formula for ²IAC1 generalizes to the ith trader in a straightforward fashion;
simply replace y0 with yi−1. We present the remaining frequencies of informed
trade in the Appendix.6 Analysis of the equilibrium frequencies of informed trade
reveals the
Equal Payoff Condition: The options leverage and strike prices satisfy

vHm − vLm = λ (vHm − κCm) = λ (κPm − vLm) .

If the equal payoff condition is satisÞed, then in equilibrium the informed trade
with constant and equal frequency in each asset:

²IAi
=

²UA
²UA + ²UAC + ²UBP

,

²IACi
=

²UAC
²UA + ²UAC + ²UBP

,

6We simplify the algebra underlying the informed trade frequencies by assuming, as do Easley,
O�Hara, and Srinivas (1998), that if Sm = sO then VCm

= (1− δ) (vHm
− κCm

) and VPm
=

δ (κPm
− vLm

). While such an assumption implies revelation of Vm rather than Sm, the two are
equivalent if the strike prices are at their limits and δ = .5.
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and

²IBPi
=

²UBP
²UA + ²UAC + ²UBP

.

In essence, the informed traders mirror the behavior of uninformed traders in that
they trade with identical relative frequency. Because the uninformed have six
potential trades, while the informed have only three, the frequency of informed
trade is always at least as great as the frequency of uninformed trade. If the
uninformed are equally likely to make each of the six possible uninformed trades,
then the informed are equally likely to make each of the three possible informed
trades. For example, if Sm = sH then ²IAi

= ²IACi
= ²IBPi

= 1
3
for all i.

If the equal payoff condition is not satisÞed, then in equilibrium the informed
trade with variable and unequal frequency in each asset throughout the trading
day.
For variable informed trade frequencies, we study how the frequencies de-

pend on the underlying parameters. To make the analysis concise, we focus
on an empirically relevant case in which the options offer greater leverage (over
stocks, so λ (κPm − vLm) > vHm − vLm) and the option payoffs are symmetric
(λ (κPm − vLm) = λ (vHm − κCm) ≡ λβ). Our results are contained in
Theorem 1: If the options offer greater leverage and have symmetric payoffs,

then the informed trade frequencies behave in the following ways.
(a) As λ increases, the informed are less likely to trade in the stock market.

As α increases, the informed are more likely to trade in the stock market.
(b) As learning evolves, the informed ßow from the options market to the stock

market. The rate of ßow declines over the course of a trading day. The rate of
ßow also declines as α increases.
(c) Informed trade frequencies in the option market are always positive. If the

uninformed trade each asset with equal frequency, then ²IACi
= ²IBPi

> ²IAi
and

²IBCi
= ²IAPi

> ²IBi
.

(d) The ith informed trade frequencies in the stock market are positive if, for
j = H,L,

λ <
(vHm − vLm)

β

µ
1 +

α

1− α
1

²j
bj,i−1

¶
,

with ²H = ²UAC + ²UBP , ²L = ²UBC + ²UAP , bH,i−1 = yi−1 and bL,i−1 = xi−1.

Proof. See the Appendix.
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Increasing the payoff of an option causes the informed to ßow into the options
market, as detailed in (a). Further, an increase in the proportion of informed
traders reduces the potential depth of the options market, which in turn makes
the stock market more attractive to informed traders. To understand the dynamic
pattern revealed in (b), consider a day on which Sm = sH . As the informed trade
and reveal their information, yi increases. As yi increases, the gains to trade
on information shrink, as does the advantage from trading in the options market.
Hence, over the course of a trading day the informed ßow from the options market
to the stock market. As the updating of yi slows over the course of a trading day
to reßect the reduced information content of trades, so too does the rate of ßow
of informed traders. In similar fashion, as α increases, the information gain from
each trader increases, so higher values of α lead to faster learning and greater
attenuation of the rate of ßow of informed between markets over the course of a
trading day. While the informed ßow from the options market to the stock market
over the course of a trading day, if the uninformed are equally likely to trade in
each market then the informed trade frequency is higher in the options market
uniformly over the trading day, as stated in (c).
As noted in (a), leverage attracts informed traders to the options market.

If λ is large enough, then the frequency of informed trade in the stock market
is zero and the equilibrium separates the markets in which the informed trade.
As either α decreases or ²j increases, the separating bound in (d) decreases and
informed trade is more likely to occur only in the options market. Such a result
is intuitive in that decreases in the proportion of informed traders or increases in
the proportion of uninformed traders in the (relevant) options allow the informed
to more easily hide in the options market.
Because λ is Þxed over the course of a trading day while bi evolves with the

trade ßow, it will generally not be the case that a separating equilibrium exists
in all periods. Consider a trading day on which Sm = sH . The relevant informed
trade frequencies correspond to the bullish trades and the corresponding bound
for λ is based on yi−1. As the market makers learn that the high signal is increas-
ingly likely, yi−1 increases toward 1 thereby increasing the bound. As the bound
increases the informed enter the stock market. As an aside, at each trader arrival
the equilibrium also requires calculation of the irrelevant bearish informed trade
frequencies, whose bound is based on xi−1. As xi declines to 0 the bound for the
bearish informed trade frequencies is violated and these irrelevant informed trade
frequencies can move outside [0, 1]. In essence, the market maker is attempting to
determine the frequency with which the informed are making bearish trades when,
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in fact, the informed are making only bullish trades. The import is potentially to
slow down learning, as uninformed trade at one of the three bearish quotes could
lead to erratic updating if the informed trade frequencies are not on [0, 1]. To
eliminate the erratic behavior, if the informed trade frequencies fall outside [0, 1],
we Þx them at their last values in [0, 1].
In parallel to the opening quotes in the call market, the ith-trade quotes for

each asset are obtained as the solution to the zero proÞt condition with the relevant
informed trade frequency (given in the Appendix). The ith-trade quotes for one
share of the stock are

Ai = vHm −
(1− α) [vHm −E (Vm|Zi−1)] (ϕS²UA + λϕC²UAC + λϕP ²UBP )

[αyi−1 + (1− α) (²UA + ²UAC + ²UBP )]ϕS
and

Bi = vLm +
(1− α) [E (Vm|Zi−1)− vLm ] (ϕS²UB + λϕC²UBC + λϕP ²UAP )

[αxi−1 + (1− α) (²UB + ²UBC + ²UAP )]ϕS
,

and the ith-trade quotes for the put option are

APi
= ϕP −

(1− α) [ϕP −E (VPm|Zi−1)] (ϕS²UB + λϕC²UBC + λϕP ²UAP )

[αxi−1 + (1− α) (²UB + ²UBC + ²UAP )]λϕP
and

BPi
=
(1− α) [ϕS²UA + λϕC²UAC + λϕP ²UBP ]E (VPm|Zi−1)

[αyi−1 + (1− α) (²UA + ²UAC + ²UBP )]λϕP
.

From these equations it is easy to see that each set of quotes is bounded by the
respective limit values of the asset, with strict inequality unless the market maker
is certain the informed learn the true value of Vm (no adverse selection). We also
Þnd that the quotes for the stock and the options bound the respective expected
values of the assets, which illustrates the spread generated by the market makers
in an effort to offset expected losses to traders with superior information. Thus
Bi ≤ E (Vm|Zi−1) ≤ Ai, BCi

≤ E (VCm|Zi−1) ≤ ACi
, and BPi

≤ E (VPm|Zi−1) ≤
APi
, each of which follows directly from the condition that the informed trade

frequencies lie on [0, 1].
To understand the key inßuences of the bid-ask spread, suppose that xi−1 =

yi−1 and that the uninformed are equally likely to make each of the six possible
trades. If the strike prices are Þxed at their limit values, we Þnd that

Ai −Bi = (vHm − vLm)
αyi−1 + (1− α) (1− λ) ²3

αyi−1 + (1− α) ²2
,

17



and

ACi
−BCi

= APi
−BPi

= (vHm − vLm)
αyi−1λ+ (1− α) (λ− 1) ²6£

αyi−1 + (1− α) ²2
¤
λ

.

While the spread in the options market is clearly positive, the sign of the spread
in the stock market depends on the magnitude of λ. Because the bid-ask spread
arises from potential trade with the informed, the separating bound that ensures
positive informed trade in the stock market also ensures a positive bid-ask spread.
If λ equals the separating bound, then the frequency of informed trade in the stock
market is zero and the bid-ask spread is zero. With vHm − vLm as a measure of
the variance of the stock price, we Þnd that, as vHm − vLm increases, the bid-ask
spreads for all of the assets increase. As ² increases, so does the market depth,
and the bid-ask spread declines. Increasing the probability of informed trade, α,
widens the bid-ask spread in all assets.
To illustrate the dynamics of informed trade frequencies implied by our an-

alytic results, we simulate the arrival of traders over the course of 1000 trading
days on which Sm = sH . We set the information advantage of the informed at
Þve percent of the initial value of the asset, so vHm = 105, vLm = 95 and δ = .5.
To ensure that option payoffs are symmetric, we set κCm = vLm and κPm = vHm.
(The greater leverage afforded by options is then captured by λ > 1.7) We fur-
ther suppose that the uninformed are equally likely to trade each asset, so that
the informed trade frequencies, and hence the spreads, are identical for the two
options. Finally, we suppose that α = 0.2 and ² = 0.75, noting that the essential
features we report are obtained with the other parameter values as well.8

In Figure 3 we present the average frequency of informed trade in each asset
over the course of a trading day. The analytic results are clearly revealed. First,
as λ increases ²IACi

and ²IBPi
increase toward .5 and ²IAi

decreases toward zero.
Second, as the market makers learn the signal we Þnd that informed traders ßow
into the stock market and do so at a decreasing rate over the course of a trading
day.

7For the given parameter values, the separating bound is 1.2.
8We conduct a series of a series of simulations with α ∈ {0.2, 0.4, 0.6, 0.8} and ² ∈

{0.25, 0.5, 0.75, 0.9}. Our decision to focus on the results of simulations with α = 0.2 and
² = 0.75 is based on the fact that these parameters produce slower learning and allow us to
more easily observe the dynamic process of the model.
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Figure 3: Informed Trade Flow in the Stock and an Option, ²IAi
(λ) and

²IACi
(λ), for α = 0.2 and ² = 0.75

In Figure 4 we present the average bid-ask spread over the course of a trading
day. First, as λ increases the adverse selection problem in the options is exacer-
bated and forces the market maker to widen the bid-ask spreads for the call and
put options, while the adverse selection problem in the stock is mitigated and
allows the market maker to reduce the spread for the stock. This is particularly
apparent initially, but over the course of the trading day diminishes as informed
traders ßow out of the options and into the stock.
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Figure 4: Bid-Ask Spreads with (λ) for α = 0.2 and ² = 0.75

2.3. Behavior of Individual Trader Price Changes

Price changes reßect public information after the decision of trader i but before
the arrival of trader i+1. The stock price change associated with a speciÞc trade
decision for trader i is Ui (Di = dj) = E (Vm|Zi−1, Di = dj) − E (Vm|Zi−1). The
form of the price change is intuitive and mirrors the logic of the learning rules.
To understand the logic for a speciÞc trade, at the ask in the stock, note Þrst that
because E (Vm|Zi) = xivLm + yivHm +(1− xi − yi)EVm, the stock price change is

Ui (Di = dA) = [vHm − E (Vm|Zi−1)]
α²IAi

yi−1

P (Di = dA|Zi−1)
.

The price change reßects expected learning from the informed; if the market
maker knows that the trader is uninformed, there is no learning from the trade
and the price change is zero. The expected learning from the informed is the price
change that would occur if the market maker knows that the trader is informed
vHm −E (Vm|Zi−1) multiplied by the frequency of trade with an informed trader.
The market maker�s belief that the trader is informed is simply the probability
that an informed trader trades at the ask in the stock market, α²IAi

yi−1, divided
by the probability of a trade at the ask in the stock market, α²IAi

yi−1+(1− α) ²UA.
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As expected, a trade in the stock also affects the prices of the options. Given
a trade at the ask in the stock, the corresponding price changes for the options
are

UCi
(Di = dA) = [(vHm − κCm)− E (VCm|Zi−1)]

α²IAi
yi−1

P (C1 = dA|Zi−1)

and

UPi
(Di = dA) = [0−E (VPm|Zi−1)]

α²IAi
yi−1

P (Di = dA|Zi−1)
.

With a bullish trade the value of the stock and the call option rise while the value
of the put option falls.
Another important feature of the model is that a trade in an option affects the

price of the stock. If trader i elects to buy the call option contract rather than
the stock, the three price change formulae differ only in the frequency of informed
trade. For example,

Ui (Di = dAC) = [vHm − E (Vm|Zi−1)]
α²IACi

yi−1

P (Di = dAC|Zi−1)
.

Because the decision not to trade also conveys information to the market makers,

Ui (Di = dN) = [EVm − E (Vm|Zi−1)]
α (1− xi−1 − yi−1)

P (Di = dN |Zi−1)
.

We Þrst establish that prices are unpredictable with respect to public infor-
mation. The price change expected by market makers and uninformed traders
resulting from the decision of the ith trader is

E (Ui|Zi−1) =
X

j=A,B,AC,BC,AP,BP,N

P (Di = dj|Zi−1)Ui (Di = dj)

or

E (Ui|Zi−1) = αyi−1 (²IAi
+ ²IACi

+ ²IBPi
) [vHm −E (Vm|Zi−1)] +

αxi−1 (²IBi
+ ²IBCi

+ ²IAPi
) [vLm −E (Vm|Zi−1)] +

α (1− xi−1 − yi−1) [EVm −E (Vm|Zi−1)]

= 0,
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where the Þnal line follows from ²IAi
+ ²IACi

+ ²IBPi
= ²IBi

+ ²IBCi
+ ²IAPi

= 1. By
identical logic, the expected price changes with respect to the public information
set are zero in the options market.
As one would expect, price changes are predictable on the basis of the signal.

Let EH (Ui|Zi−1) be the expected stock price change for trader i on a day in which
Sm = sH . Because the market maker does not know the signal, the quantities
EH (Ui|Zi−1) and E (Ui|Zi−1) differ only in the probability of trade. For example,
PH (Di = dA|Zi−1) = αεIAi

+ (1− α) εUA while P (Di = dA|Zi−1) = αεIAi
yi−1 +

(1− α) εUA. For the three bullish trades, j = A, AC, and BP, we have

PH (Di = dj|Sm = sH , Zi−1) > P (Di = dj|Zi−1) ,

while for the three bearish trades, j = B, BC, and AP, we have

PH (Di = dj|Zi−1) < P (Di = dj|Zi−1) .

The expected stock price change for trader i, given knowledge of the signal, is

EH (Ui|Zi−1) = X
j=A,B,AC,BC,AP,BP,N

PH (Di = dj|Zi−1)Ui (Di = dj) .

Because the market maker does not know the signal, only the probability of trade
is affected by the signal. For the three bullish trades, j = A, AC, and BP, we
have

PH (Di = dj|Zi−1) > P (Di = dj|Zi−1) ,

while for the three bearish trades, j = B, BC, and AP, we have

P (Di = dj|Sm = sH , Zi−1) < P (Di = dj|Zi−1) .

On a day in which Sm = sH , the expected stock price change is

EH (Ui|Zi−1) = E (Ui|Zi−1) + α (1 + yi−1) [vHm − E (Vm|Zi−1)] + αxi−1 [EVm − vLm ]

> 0.

In similar fashion, EL (Ui|Zi−1) < 0.
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We next establish that price changes are serially uncorrelated with respect to
public information. Let h and i be distinct, with h < i:

E (UhUi|Zi−1) = UhE (Ui|Zi−1) = 0.

Price changes are serially correlated on the basis of the signal. As above, consider
the case in which Sm = sH . The serial correlation between the price changes
resulting from the decisions of traders h and i, given knowledge of the signal, is

E (UhUi|Sm = sH , Zi−1) = UhE (Ui|Sm = sH , Zi−1) 6= 0.
The variance of price changes varies over the course of the trading day, with

E
¡
U2
i |Zi−1

¢
=

X
j=A,B,AC,BC,AP,BP,N

P (Di = dj|Zi−1)U
2
i (Di = dj) .

To determine the pattern of variation over the course of a trading day, we construct
analytic bounds. These bounds depend on the effective bid-ask spread. The
effective bid-ask spread captures the maximum revision in the price resulting
from a trade. If ²IACi

> ²IAi
and ²IBPi

> ²IAi
, or if ²IBCi

> ²IBi
and ²IAPi

> ²IBi
,

then the information content of a trade in the options market is greater than
that of a trade in the stock market. If a decision not to trade is quite rare and
generally made by informed traders (when ² is very large and α is very small) then
a decision not to trade can yield a larger price change than a decision to trade.
With this in mind, we deÞne the effective bid-ask spread for the stock as

�Ai − �Bi = max
j∈{AC,BP,N}

[Ai, E (Vm|Zi−1,Di = dj)]− min
j∈{BC,AP,N}

[Bi, E (Vm|Zi−1,Di = dj)] .

We deÞne the effective bid-ask spreads for the call option and the put option,
�ACi
− �BCi

and �APi
− �BPi

, in the same way. As in Kelly and Steigerwald, we Þnd
that, with respect to public information, although price changes of an asset are
mean zero and uncorrelated, they are dependent and not identically distributed.
Thus, an asset�s bid-ask spread drives the variance of its price changes, introducing
autoregressive heteroskedasticity.

Theorem 2: Price changes in economic time for each asset are mean zero
and serially uncorrelated with respect to the public information set. In addition

E
¡
U2
i |Zi−1

¢ ≤ ³ �Ai − �Bi

´2

,
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E
¡
U2
Ci
|Zi−1

¢ ≤ ³ �ACi
− �BCi

´2

,

and

E
¡
U2
Pi
|Zi−1

¢ ≤ ³ �APi
− �BPi

´2

.

Proof: See the Appendix.

The fact that the price change variance is bounded by the effective bid-ask
spread is an important component of the model. The result suggests that price
change behavior is systematically different on days for which the signal is informa-
tive than on days for which the signal is sO. In particular, the price uncertainty
associated with informed trading should widen the effective bid-ask spread, lead-
ing to greater price variance on days for which Sm 6= sO. We examine the price
uncertainty on a trading day with Sm = sH relative to the price uncertainty on a
trading day with Sm = sO.9 We study EH (U2

i |Zi−1)−EO (U2
i |Zi−1), which equals

X
j=A,B,AC,BC,AP,BP,N

[PH (Di = dj|Zi−1)− PO (Di = dj|Zi−1)]U
2
i (Di = dj) .

While the probability of a bearish trade is identical under either signal, the prob-
abilities of the remaining trades differ under the two signals as

PH (Di = dA|Zi−1) = PO (Di = dA|Zi−1) + α²IAi
,

PH (Di = dAC|Zi−1) = PO (Di = dAC|Zi−1) + α²IACi
,

PH (Di = dBP |Zi−1) = PO (Di = dBP |Zi−1) + α²IBPi
,

and

PH (Di = dN |Zi−1) = PO (Di = dN |Zi−1)− α.
9If the low and high signals are equally likely (δ = 1

2) and the uninformed trade with equal
frequency in all markets, then the behavior of price changes is identical on low and high signal
days and it is enough to study high signal days.
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Hence, we have

EH
¡
U2
i |Zi−1

¢− EO ¡U2
i |Zi−1

¢
= α²IAi

U2
i (Di = dA) + α²IACi

U2
i (Di = dAC)

+α²IBPi
U2
i (Di = dBP )− αU2

i (Di = dN) .

This difference is clearly positive for the price change associated with the Þrst
trader, U1, because δ = 1

2
implies that EVm = E (Vm|Z0) so that U1 (C1 = dN) =

0. In general, however, EVm 6= E (Vm|Zi−1) for i > 1, so the sign of the difference
is not clear.
To determine the sign of EH (U2

i |Zi−1)−EO (U2
i |Zi−1), we study the behavior of

U2
i for general i. We assume that the equal payoff condition is satisÞed, with λ = 1.
For trader i, there are 7i possible values for Ui, so calculation of the distribution
of U2

i is cumbersome for large i. If α is large, then learning is rapid and largely
occurs within the Þrst 10 traders. For illustration, in Table 1 we directly calculate
EH (U

2
i |Zi−1)− EO (U2

i |Zi−1) for α = .9, from the exact distributions for U2
i . We

Þrst note that the price uncertainty during a trading day on which Sm 6= sO is
always larger than the price uncertainty during a day on which Sm = sO. We
also note that, as traders arrive to the markets, the market makers learn and the
relative price uncertainty for an asset decreases as the ask and bid converge to
the true value of the asset. Convergence depends on the speed of learning, and
the speed of learning increases as the proportion of informed traders, α, increases
and the proportion of uninformed traders who trade, ², decreases. The magnitude
of each difference reßects the information content of a trade: as ² decreases, the
magnitude of the expected price change resulting from the Þrst trader arrival
increases.

Table 1: EH (U2
i |Zi−1)−EO (U2

i |Zi−1)
trader 1 2 3 4 5 6 7 8 9 10
² = 0.9 14.40 1.12 1.80 0.25 0.23 0.05 0.04 0.01 0.01 0.00
² = 0.8 15.06 1.21 1.81 0.20 0.20 0.04 0.03 0.01 0.00 0.00
² = 0.7 15.77 1.24 1.78 0.21 0.18 0.04 0.02 0.01 0.00 0.00
² = 0.6 16.53 1.22 1.65 0.23 0.15 0.04 0.02 0.00 0.00 0.00
² = 0.5 17.34 1.17 1.43 0.24 0.10 0.03 0.01 0.00 0.00 0.00
² = 0.4 18.23 1.11 1.15 0.27 0.06 0.04 0.01 0.00 0.00 0.00
² = 0.3 19.17 1.10 0.82 0.30 0.05 0.03 0.01 0.00 0.00 0.00
² = 0.2 20.19 1.20 0.52 0.31 0.04 0.01 0.01 0.00 0.00 0.00
² = 0.1 21.30 1.52 0.29 0.22 0.05 0.00 0.00 0.00 0.00 0.00
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For smaller values of α, learning is slowed and reduction of an asset�s bid-ask
spread to zero requires many more trader arrivals. With direct calculation of
the exact distribution cumbersome, we approximate the exact distribution with
simulations. In Figure 6 we calculate EH (U2

i |Zi−1) − EO (U2
i |Zi−1) for α = .2,

from 1,000 simulations. We again Þnd that the variance of Ui is higher, uniformly,
on a day with Sm 6= sO than it is on a day with Sm = sO, conÞrming the
results of Table 1. As the proportion of the uninformed who trade decreases,
the information content of a trade increases and learning speeds up, resulting in
more rapid convergence of an asset�s bid-ask spread and faster dissipation of price
uncertainty.
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Figure 5: EH (U2
i |Zi−1)−EO (U2

i |Zi−1) with ² = 0.25 and ² = 0.75

2.4. Consistency of Learning

To conÞrm consistency of the learning rules, we must establish the limiting values
of xi and yi as the number of trader arrivals on a trading day grows without
bound. If the informed trade with variable frequency, then it is difficult to obtain
a recursive structure. We therefore study learning with constant informed trade
frequencies.
We establish that if there were an inÞnite number of trader arrivals onm, then

market makers would learn the signal, Sm. As a result, the quotes for each asset
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converge to the strong-form efficient value of that asset, reßecting both public and
private information. As transaction prices are determined by the quotes, these
prices also converge to the respective strong-form efficient values of the assets.

Theorem 3: If the equal payoff condition is satisÞed, then the sequence of
quotes and, hence, the sequence of transaction prices for each asset converge al-
most surely to the strong-form efficient value of that asset at an exponential rate.
SpeciÞcally, the following results obtain as i −→∞.

If Sm = sL then xi
as−→ 1, yi

as−→ 0, so Ai
as−→ vLm, Bi

as−→ vLm, ACi

as−→ 0,
BCi

as−→ 0, APi

as−→ κPm − vLm and BPi

as−→ κPm − vLm.

If Sm = sH then xi
as−→ 0, yi

as−→ 1, so Ai
as−→ vHm, Bi

as−→ vHm, ACi

as−→
vHm − κCm, BCi

as−→ vHm − κCm, APi

as−→ 0 and BPi

as−→ 0.

If Sm = sO then xi
as−→ 0, yi

as−→ 0, so Ai
as−→ EVm, Bi

as−→ EVm, ACi

as−→
EVCm, BCi

as−→ EVCm, APi

as−→ EVPm and BPi

as−→ EVPm.

Proof: See the Appendix.

Convergence of the beliefs {xi}i≥0 and {yi}i≥0 immediately implies that Ui
as−→

0, so that individual trader price volatility converges to zero.

3. Calendar Period Implications

To determine the serial correlation properties of trades and squared price changes
for calendar periods, such as thirty-minute intervals, we divide each trading day
into k calendar periods. Each calendar period contains η trader arrivals, and each
trader arrival can be thought of as a unit of economic time. For a given trading
day, m, we have τ = kη trading opportunities.

3.1. Calendar Period Trades

First we focus on the covariance structure of the number of trades in the stock
and the call and put options in a calendar period. We let calendar periods be
indexed by t, so ISt, ICt, and IPt represent the respective number of trades in the
stock, the call option, and the put option in t, and we let It represent the total
number of trades. Given η trader arrivals in t, It (as well as the number of trades
in each market) takes integer values between 0 and η. Each trade variable is a
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binomial random variable for which the number of trades in t corresponds to the
number of successes in η trials.
As Kelly and Steigerwald consider only a stock market, their result on serial

correlation in trades applies directly to our total trades variable It. Because
news arrivals are independent across trading days, if r > k then It−r and It
are uncorrelated. For 0 < r < k, Kelly and Steigerwald prove that trades are
positively correlated as

Cor (It−r, It) =
θ (1− θ) (αη)2

σ2

µ
k − r
k

¶
.

They further show that the positive correlation between It and It−r is increasing
in α, increasing in k, increasing in η, but decreasing in r.
For correlation in trades in a speciÞc asset, we focus on trades in the call

option. (Analogous results hold for the stock and the put option.) For the call
option, in each period on trading day m we have

E (ICt|Sm 6= sO) = η (1− α) ²UC +
ηtX

i=η(t−1)+1

α [δ²IBCi
+ (1− δ) ²IACi

] = µC1

and

E (ICt|Sm = sO) = η (1− α) ²UC = µC0.

In general, derivation of calendar period trades is quite complicated, as the
informed trade frequencies are not constant. To begin, we assume that the equal
payoff condition holds so that the informed trade frequencies are constant through-
out the trading day. For simplicity, we assume that the uninformed trade frequen-
cies are equal across assets, so that the each informed trade frequency is 1

3
. We

then have that

E (ICt|Sm 6= sO) = η
·
α+ (1− α) ²

3

¸
= µC1

and

E (ICt|Sm = sO) = η
·
(1− α) ²

3

¸
= µC0.

We have

V ar (ICt|Sm 6= sO) = η
·
α+ (1− α) ²

3

¸ ·
1− α+ (1− α) ²

3

¸
= σ2

C1
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and

V ar (ICt|Sm = sO) = η
·
(1− α) ²

3

¸ ·
1− (1− α) ²

3

¸
= σ2

C0.

Unconditionally, we have

EICt = θµC1 + (1− θ)µC0 = µC

and

V ar (ICt) = θσ
2
C1 + (1− θ)σ2

C0 + θ (1− θ) (µC1 − µC0)
2 = σ2

C.

We arrive at the following theorem and corollary.
Theorem 4: Let r > 0. If r < k, then ICt−r and ICt are positively serially

correlated. If r ≥ k, then ICt−r and ICt are uncorrelated. For all r, we have

Cor
¡
ICt−r , ICt

¢
=
θ (1− θ) ¡α

3
η
¢2

σ2
C

·
k −min (k, r)

k

¸
.

Proof: See the Appendix.
Because the probability of success for a binomial random variable is not the

scale of the random variable, the variance of trades in a speciÞc asset is not a scale
transformation of the variance of total trades. Thus the correlation in trades for
a speciÞc asset is not the same as the correlation in total trades. Because the
covariance in trades for a given asset is simply one-ninth of the covariance of total
trades, while the variance of trades in an asset is larger than one-ninth of the
variance of total trades, the correlation in trades for a speciÞc asset is smaller
than is the correlation in total trades.
With our speciÞcation of k calendar periods per trading day, the underlying

random process generates sets of k observations. For example, if k = 2 then
there are two calendar period measurements in a trading day. In this case we
can heuristically segment the trading day into a morning period and an afternoon
period. As we assume that the information arrival process is independent over
time, the pair of calendar period measurements corresponding to one trading day
is independent of the pair of calendar period measurements corresponding to any
other trading day. We do not know in which calendar period�either the morning
or the afternoon�an information event occurs, and we assume that t is randomly
sampled so that ICt is equally likely to be a morning or afternoon observation. In
this way, the correlation in ICt is independent of time.
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Corollary 5: Let r < k. The positive correlation between ICt−r and ICt is
increasing in α, η and k. The correlation is decreasing in r. The effects of chang-
ing the market parameters, ² and θ, and of altering calendar period aggregation
through τ = kη, on the positive correlation between ICt−r and ICt are ambiguous.
Proof: Using τ = kη, we have

Cor
¡
ICt−r , ICt

¢
=

θ (1− θ)α2η
¡
τ−rη
τ

¢
(1− α) ² [1− (1− α) ²] + θα [αη (1− θ) + (1− α) (1− 2²)] +

2θ [α+ (1− α) ²] + 2 (1− θ) (1− α) ²
.

The comparative static results follow from differentiation.
To explore the comparative static results for the underlying parameters of the

market microstructure model�the proportion of informed traders, α, the pro-
portion of uninformed traders who trade, ², and the likelihood of an informative
signal, θ�we study the three key components of the Cor

¡
ICt−r , ICt

¢
. The three

components are: (µC1 − µC0)
2, which reßects the difference in the expected num-

ber of call option trades in a given calendar period on a day with Sm 6= sO
compared to a day with Sm = sO, and the conditional variances (σ2

C1, σ
2
C0). An

increase in (µC1 − µC0)
2 increases both Cov

¡
ICt−r , ICt

¢
and V ar (ICt), so the over-

all effect is ambiguous. An increase in either of the conditional variances, σ2
C1 or

σ2
C0, only leads to an increase in V ar (ICt), and so it weakens the serial correla-
tion in call option trades. Increasing α leads to a larger difference in the expected
number of trades in a given calendar period on a day with Sm 6= sO compared to
a day with Sm = sO, and thus (µC1 − µC0)

2 increases. Increasing ² has ambiguous
effects: if the proportion of uninformed traders who trade is relatively small so
that virtually all trades are made by informed traders (if Sm 6= sO), increasing the
proportion of uninformed traders who trade reduces the serial correlation, while if
the proportion of informed traders is relatively large, then increasing ² increases
the serial correlation. Increasing the probability of an informative signal, θ, also
has ambiguous effects, but it tends to increase the serial correlation in call option
trades if ² is relatively large and θ is relatively small.
We next analyze the effects on Cor

¡
ICt−r , ICt

¢
of the trade aggregation pa-

rameters, k and η. As either the number of calendar periods, k, or the number
of trader arrivals, η, increases, the serial correlation in trades increases through
the heightened impact of the entry and exit of informed traders. In moving from
hourly observations to Þve minute observations, we necessarily decrease the num-
ber of trader arrivals during each calendar period. The overall effect, while gener-
ally positive, is not constant across r. The effect is positive, so serial correlation
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is more pronounced in higher frequency data, if r ≥ k
2
.

Finally, we turn our attention to calendar period trades when the frequency
of informed trade varies over the trading day. In what follows we do not assume
that the equal payoff condition holds, nor do we assume that the frequency of
uninformed trade is constant across markets. We study the serial correlation
properties of stock trades and note that the correlation properties of option trades
follow from similar logic. From the analytic and simulation results of Section 2,
we have that the frequency of informed trade in the stock market rises as the
trading day evolves. To capture this mathematically, for each calendar period in
a trading day j = 1, ..., k we have

E
¡
ISj
|Sm = sO

¢
= µS0

and

E
¡
ISj
|Sm 6= sO

¢
= µSj,

with 0 < µS0 < µS1 < µS2 < ... < µSk.
The preceding displayed equations provide the conditional expectation of each

calendar period in the trading day. As news does not always arrive at the same
point in each day, such as the beginning of a day, the random arrival of news is
an important feature of actual stock prices. To capture this, we consider a given
calendar period t to be drawn at random over the course of the trading day. As
such, the unconditional mean of calendar period trades is

EISt = θµSk + (1− θ)µS0,

in which

µSk =
1

k

kX
j=1

µSj.

In deriving the serial correlation properties of {ISt}t≥1, an important condition
emerges that ensures the correlation is positive.
Positive Trade Covariance Condition: The positive trade covariance con-

dition is said to hold for period j, with 1 ≤ j ≤ k, if j is the smallest value of j
for which

µSj > θµSk + (1− θ)µS0.
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The positive trade covariance condition is most intuitive for the case k = 2.
From the structure for the expectation of calendar period trades it follows that
µS0 lies below the unconditional mean and µS2 lies above the unconditional mean.
Suppose that t−1 corresponds to the Þrst calendar interval�the morning�of the
trading day. For days without private news, we have E

¡
ISt−1 |Sm = sO

¢
= µS0 and

E (ISt|Sm = sO) = µS0. Thus for days on which the morning observation tends to
be below the unconditional mean, the afternoon observation also tends to be below
the unconditional mean. For days with private news, we have E

¡
ISt−1|Sm 6= sO

¢
=

µS1 and E (ISt|Sm 6= sO) = µS2. While it is clear that the afternoon observation
tends to be above the unconditional mean, it is not clear whether EISt < µS1. If
the positive trade covariance condition holds (for period 1), then EISt < µS1. As
a result, on days with private news both the morning and afternoon observations
tend to lie above the unconditional mean and positive serial correlation is assured.
Proposition 6: Let r > 0. The covariance of calendar period stock trades is

·
k −min (k, r)

k

¸ θ (1− θ)
k−rP
j=1

¡
µSj − µS0

¢ ¡
µSj+r − µS0

¢
+

θ2
kP
j=1

¡
µSk − µSj

¢ ¡
µSk − µSj+r

¢
 ,

where the addition is wrapped at k. That is, if j + r > k, then replace j + r with
j + r − k.
If r < k = 2 and the Positive Trade Covariance Condition holds for period

one, then

Cov
¡
ISt−r , ISt

¢
=·

2− r
2

¸ ·
θ (1− θ) (µS1 − µS0) (µS2 − µS0)+

θ2 (µS2 − µS1) (µS2 − µS2)

¸
≥ 0.

3.2. Calendar Period Price Changes

Serial correlation in an asset�s squared price changes stems from the information
content of trades. The information content of a trade depends on the history of
trades and the parameter values. Trade decisions in early economic time contain
more information than later trade decisions. For larger α, the information content
of a trade decision increases, while for larger ², a decision not to trade carries
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relatively more information. We attempt to analytically model the covariance
structure of calendar period squared price changes and begin with the simpliÞed
setting of Kelly and Steigerwald (2000) in which there is only a stock market. We
deÞne the calendar period price change of the stock as

∆Pt =

tηX
i=(t−1)η+1

Ui = E (V |Ztη)−E
£
V |Z(t−1)η

¤
,

and we note that the number of possible values that ∆Pt can take is the number
of possible values that E (V |Ztη)−E

£
V |Z(t−1)η

¤
can take.

The key elements in the recursive structure for ∆Pt are the market makers�
beliefs. The nonlinear recursions take the form

yi =
ai

1 + ai + bi
and xi =

bi
1 + ai + bi

,

in which

ai =
yi

1− xi − yi =
yi−1

1− xi−1 − yi−1
· fa (Di = dj)

and

bi =
xi

1− xi − yi =
xi−1

1− xi−1 − yi−1
· fb (Di = dj) .

For example, fa (Di = dB) = 1. The recursions allow us to express the market
makers� beliefs as a function only of the number of trades of each type.
Given (nonlinear) recursions for the market maker�s beliefs, one can standard-

ize the asset value so that the nonlinear recursions apply to E (V |Zi). If EV 6= 0
we can remove the mean from the price and obtain

E (V ∗|Zi) = xi (vL − EV ) + yi (vH − EV ) ,
from which we can reconstruct actual prices as

E (V |Zi) = E (V ∗|Zi) + EV .
If we assume that δ = 1

2
, then− (vL − EV ) = (vH − EV ). Further, if vH−EV 6= 1

then we can remove the scale from the price and Þnd

E (V ∗∗|Zi) = −xi + yi,

33



from which we can reconstruct correctly scaled prices as

E (V ∗|Zi) = E (V ∗∗|Zi) · (vH −EV ) .

Thus, we need only study

E (V ∗∗|Zi) = ai − bi
1 + ai + bi

.

Let nj,t be the number of trades of type j in calendar period t. Let nt =
(nA,t, . . . , nBP,t) be the vector of the six active trade outcomes, with the number
of trader arrivals for which no trade was executed equal to η −P6

j=1 nj,t. Then
E (V ∗∗|Zη) = hη (n1) yields the population moments for the Þrst calendar period
on a trading day,

E (∆P1)
s =

X
n1

hsη (n1) · f (n1) ,

in which f (n1) is the multinomial density deÞned over the 7 trade decisions.
In similar fashion, the population moments for the second calendar period on a
trading day are

E (∆P2)
s =

X
n1

(X
n2

[h2η (n2, n1)− hη (n1)]
s f (n2)

)
· f (n1) .

As we are interested in the covariance in calendar period squared price changes,
we will also need to calculate cross moments of the form E

£
(∆P1)

2 (∆P2)
2¤, which

equals

X
n1

(X
n2

[h2η (n2, n1)− hη (n1)]
2 f (n2)

)
h2
η (n1) f (n1) .

A closed-form expression for E (V ∗∗|Zi) as a function of all of the underlying
parameters is, in general, intractable. For illustration, however, we consider a
simple stylized example in which a trading day consists of 6 hours and there are
2 trader arrivals per hour. The market parameters are α = .2, ² = .5 and θ = .4.
In Figures 6 and 7 we present the Þrst two moments on each trading day and
the unconditional moments. In Figure 6 we see the expected pattern of upward
price movement for a trading day with good news, while there is no expected
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movement on a day without news. Figure 7 reveals that squared price changes,
after a period of initial uncertainty, decline over the course of the day. Further,
the squared price changes throughout the high signal day are larger than the price
changes on the uninformative day. The unconditional distribution of squared price
changes mirrors these effects, with a decline in magnitude over the course of the
day.
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E ( ∆∆∆∆P | Sm = sH )

E ( ∆∆∆∆P | Sm  = sO  )

E ( ∆∆∆∆P )

Figure 6: Behavior of Expected Price Changes (k = 6, η = 2)
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Figure 7: Behavior of Expected Squared Price Changes (k = 6, η = 2)

The serial correlation in squared hourly price changes is presented in Figure 8.
Because the news arrival process is independent across trading days, it would seem
that squared price changes are uncorrelated after lag k−1. Yet the nonstationarity
of the process, due to the signal arrival at the start of each trading day, leads to
correlation in squared price changes that mirror diurnal effects (see Figure 2). For
example, the Þrst hour of each trading day is noisier than other hours. Such an
effect leads to serial correlation at lag k (and at integer multiples of lag k) that
is more pronounced as θ moves away from .5 and as the persistence of correlation
on a trading day increases.
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Figure 8: Autocorrelation in Squared Price Changes (k = 6, η = 2)

To provide a more general idea of the serial correlation patterns in calendar
period squared price changes and trades generated by our model, we conduct a
set of simulation experiments and simulate sequences of trades and price changes
over the course of many information periods. In an effort to observe more trading
activity, we deÞne a trading day as 32.5 calendar hours, coinciding with a normal
NYSE trading week, and assume that a trader arrives to the markets once every
Þve minutes so that there are τ = 390 trader arrivals during a trading day.10 We
measure prices and trades at thirty-minute calendar intervals, corresponding to
η = 6 and k = 65, and simulate 195,000 trader arrivals over the course of 500
trading days. For each trading day, m, we randomly determine the signal, Sm,
with θ = 0.4 and δ = 1

2
. The latter speciÞcation ensures that asymmetries do not

inßuence the results. In the set of simulations, we examine the calendar period
dynamics of the model over a series of trading days, allowing for random signals
and various market conditions. We focus on the results of simulations with α = 0.2
and ² = 0.5.11 We focus on the calendar period properties of serial correlation

10While varying the number of trader arrivals for a given information period can be illumi-
nating by allowing for more trade decisions to be observed, theory offers little in the way of
guidance in terms of parameters. It is unclear how long private information persists in actual
markets. Moreover, it seems likely that private information arrivals are unlikely to be isolated
or independent.
11Easley, Kiefer, and O�Hara (1997) estimate α = 0.17 and ² = 0.33 for an actively traded
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in trades and squared price changes, attempting to reconcile the results of our
model with empirical evidence. Throughout, we assume that the frequencies of
uninformed trade are equal and that δ = 1

2
.

We illustrate the basic results of the model in Figures 9 and 10. Assuming that
α = 0.2 and ² = 0.5, the strike prices of the options are at their respective limits,
κCm = vLm = 95 and κPm = vHm = 105, and λ = 1, we Þnd serial correlation
in the total number of trades and serial correlation in an asset�s squared price
changes, with more persistent serial correlation in total trades (Figure 9).
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Figure 9: 30-Minute Autocorrelations (λ = 1, k = 65, η = 6)

We also Þnd evidence of serial correlation in the calendar period trades of an
individual asset, indicating that the homogeneous inßuence of the relatively small
proportion of informed traders on trades in an individual asset is not overwhelmed
by the noise generated by the uninformed (Figure 10). In accord with empirical
features, we Þnd that the serial correlation in calendar period stock trades is
more persistent than the serial correlation in squared stock price changes. The
serial correlation patterns in calendar period squared price changes for the stock
are identical to those for the call and put options, while the serial correlation
patterns in calendar period trades for all assets are similar.

stock.
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Figure 10: 30-Minute Autocorrelations (Stock Trades, λ = 1, k = 65, η = 6)

We also analyze the calendar period serial correlation patterns if λ > 1. In
Figures 12, 13 and 14 we illustrate the results for the case in which α = 0.2 and ² =
0.5, the strike prices of the options are at their respective limits, κCm = vLm and
κPm = vHm, and λ = 1.15. Comparing Figures 9 and 11, we Þnd more pronounced
serial correlation in calendar period total trades and slightly less persistent serial
correlation in calendar period squared stock price changes. Comparing Figures 10
and 12, we again Þnd evidence of more pronounced serial correlation in calendar
period trades for each asset.
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Figure 11: 30-Minute Autocorrelations (λ > 1, k = 65, η = 6)
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Figure 12: 30-Minute Autocorrelations (Stock Trades, λ > 1, k = 65, η = 6)
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Figure 13: 30-Minute Autocorrelations (Put Trades, λ > 1, k = 65, η = 6)

Essentially, the analytic results and simulations suggest that the serial correla-
tion in the number of trades is of greater magnitude than the serial correlation in
squared price changes for a given private information arrival when aggregated over
stylized calendar intervals, and it tends to remain so, simply due to the activity of
market participants in the presence of asymmetric information. Our simulations
also suggest that there are cyclical patterns in serial correlation, with the opening
of the market (corresponding to the arrival of private information) tending to be
noisier than the other periods (Figure 8). This feature is also observed in actual
data (Figure 1), perhaps because of overnight information arrival prior to the
open.

4. Conclusions

We focus on the role of private information in the formation of securities prices.
The model captures the link between asset prices and informational asymme-
tries among traders, given a stylized arrival process for private information. In
actual markets the arrival and existence of private information is not easily cap-
tured, and the theoretical construct of a deÞned period over which asymmetric
information persists is elusive. Moreover, the possibility of multiple, overlapping
information events occurring introduces signiÞcant complexity. It is not surpris-
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ing, therefore, that without knowledge of the existence of private information it
may be difficult to accurately detect such a pattern in actual data. Further, there
is widespread consensus that adverse selection problems faced by market mak-
ers are not solely responsible for bid-ask spreads; rather, they are the result of
multiple additional factors, including market maker inventory considerations and
market power. Nonetheless, our simple economic model provides a theory-based
explanation for observed empirical phenomena and, in so doing, establishes an eco-
nomic foundation for the use of statistical models employed to capture stochastic
volatility in asset prices.
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5. Appendix

Informed Trade Frequencies
We Þrst present the remaining bullish informed trade frequencies. If Sm = sH ,

then

²IAi
= ²UA

½
[αyi−1 + (1− α) (²UAC + ²UBP )] (vHm − vLm)−

(1− α) [λ (vHm − κCm) ²UAC + λ (κPm − vLm) ²UBP ]

¾
αyi−1 [(vHm − vLm) ²UA + λ (vHm − κCm) ²UAC + λ (κPm − vLm) ²UBP ]

and

²IBPi
= ²UBP

½
[αyi−1 + (1− α) (²UA + ²UAC)]λ (κPm − vLm)−
(1− α) [(vHm − vLm) ²UA + λ (vHm − κCm) ²UAC ]

¾
αyi−1 [(vHm − vLm) ²UA + λ (vHm − κCm) ²UAC + λ (κPm − vLm) ²UBP ]

.

The bearish informed trade frequencies, which correspond to Sm = sL, are

²IBi
= ²UB

½
[αxi−1 + (1− α) (²UBC + ²UAP )] (vHm − vLm)−

(1− α) [λ (vHm − κCm) ²UBC + λ (κPm − vLm) ²UAP ]

¾
αxi−1 [(vHm − vLm) ²UB + λ (vHm − κCm) ²UBC + λ (κPm − vLm) ²UAP ]

,

²IBCi
= ²UBC

½
[αxi−1 + (1− α) (²UB + ²UAP )]λ (vHm − κCm)−
(1− α) [(vHm − vLm) ²UB + λ (κPm − vLm) ²UAP ]

¾
αxi−1 [(vHm − vLm) ²UB + λ (vHm − κCm) ²UBC + λ (κPm − vLm) ²UAP ]

and

²IAPi
= ²UAP

½
[αxi−1 + (1− α) (²UB + ²UBC)]λ (κPm − vLm)−
(1− α) [(vHm − vLm) ²UB + λ (vHm − κCm) ²UBC ]

¾
αxi−1 [(vHm − vLm) ²UB + λ (vHm − κCm) ²UBC + λ (κPm − vLm) ²UAP ]

.

Proof of Theorem 1
We present analysis for εIACi

and εIAi
. Identical logic holds for the remaining

informed trade frequencies in the options and stock markets, respectively.
(a) Calculation reveals that

∂εIji

∂λ
> 0 for j indexing an option trade and

∂εIji

∂λ
> 0 for j indexing a stock trade. The sign of

∂εIACi

∂α
is the sign of

²UA [(vHm − vLm)− λβ] , (5.1)
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which is negative by the greater leverage of options. The sign of
∂εIAi

∂α
is the sign

of

(²UAC + ²UBP ) [λβ − (vHm − vLm)] , (5.2)

which is positive by the greater leverage of options.
(b) The sign of

∂εIACi

∂yi−1
is the sign of (5.1) while the signs of

∂2²IACi

∂y2
i−1

and
∂2²IACi

∂yi−1∂α

are opposite to the sign of (5.1). The sign of
∂εIAi

∂yi−1
is the sign of (5.2) while the

signs of
∂2²IAi

∂y2
i−1

and
∂2²IAi

∂yi−1∂α
are opposite to the sign of (5.2).

(c) Consider ²IACi
. This informed trade frequency is positive if

²UA [λ (vHm − κCm)− (vHm − vLm)] + ²UBP [λ (vHm − κCm)− λ (κPm − vLm)] > 0.

The Þrst term on the left side is positive because of the greater leverage of options.
The second term on the left side is zero because of equal option payoffs. If the
uninformed trade each asset with equal frequency, then the remaining inequalities
are deduced by inspection of the informed trade frequencies.
(d) For informed trade in the stock market, symmetric option payoffs imply

that ²IAi
is positive if

αyi−1 (vHm − vLm) + (1− α) (²UAC + ²UBP ) [(vHm − vLm)− λβ] > 0.

Because options offer greater leverage, the second term on the left is negative and
the inequality becomes

αyi−1 (vHm − vLm) > (1− α) (²UAC + ²UBP ) [λβ − (vHm − vLm)] ,

from which the bound in the text is easily deduced.
Proof of Theorem 2
For the proof of Theorem 2, let Dj represent Di = dj. We verify the theorem

for Ui, identical logic holds for UCi
and UPi

. Proof that E (Ui|Zi−1) = 0 is provided
in the text. For general h and i, with h < i, the serial correlation in price changes
with respect to public information is

E (UhUi|Zi−1) = EZi−1 {Uh [E (Vm|Zi−1)− E (Vm|Zi−1)]} = 0.

Thus, price changes are serially uncorrelated with respect to public information.
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Recall

E
¡
U2
i |Zi−1

¢
=

X
j=A,B,AC,BC,AP,BP,N

P (Dj|Zi−1) [E (Vm|Zi−1, Dj)− E (Vm|Zi−1)]
2 .

The upper bound for the conditional variance is

E
¡
U2
i |Zi−1

¢ ≤
X

j=A,AC,BP

P (Dj)
h
�Ai − E (Vm|Zi−1)

i2

+
X

j=B,BC,AP

P (Dj)
h
�Bi − E (Vm|Zi−1)

i2

+P (DN ) [E (Vm|Zi−1, DN)− E (Vm|Zi−1)]
2

≤
X

j=A,AC,BP,N

P (Dj)
h
�Ai −E (Vm|Zi−1)

i2

+
X

j=B,BC,AP,N

P (Dj)
h
�Bi −E (Vm|Zi−1)

i2

≤
h
�Ai − E (Vm|Zi−1)

i2

+
h
�Bi −E (Vm|Zi−1)

i2

≤
h³
�Ai −E (Vm|Zi−1)

´
−
³
�Bi − E (Vm|Zi−1)

´i2

=
³
�Ai − �Bi

´2

,

where the Þrst inequality follows from the deÞnition of �Ai and �Bi and the fourth
inequality follows from Bi ≤ E (Vm|Zi) ≤ Ai.
Proof of Theorem 3
Because the denominator of the learning formulae, conditional on the decision

of trader i, is identical for xi, yi, and 1 − xi − yi, we can construct ratios of xi
and yi that are recursive linear functions of xi−1 and yi−1. If Sm = sL, then the
relevant ratios are yi

xi
and 1−xi−yi

xi
; if Sm = sH , then the relevant ratios are xi

yi
and

1−xi−yi

yi
; and if Sm = sO, then the relevant ratios are xi

1−xi−yi
and yi

1−xi−yi
.

We present in detail the case Sm = sH , similar logic holds for the other values
of Sm. For any Di = j, we have

xi
yi
=
xi−1

yi−1

P (Di = j|Sm = sL)
P (Di = j|Sm = sH) .

If Di = dN , then
xi
yi
=
xi−1

yi−1

because P (Di = dN |Sm = sL) is identical to P (Di = dN |Sm = sH). Thus

ln

µ
xi
yi

¶
= ln

µ
x0

y0

¶
+ nA ln

·
P (Di = dA|Sm = sL)
P (Di = dA|Sm = sH)

¸
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+nB ln

·
P (Di = dB|Sm = sL)
P (Di = dB|Sm = sH)

¸
+ nAC ln

·
P (Di = dAC|Sm = sL)
P (Di = dAC|Sm = sH)

¸

+ nBC ln

·
P (Di = dBC|Sm = sL)
P (Di = dBC|Sm = sH)

¸
+ nAP ln

·
P (Di = dAP |Sm = sL)
P (Di = dAP |Sm = sH)

¸
+nBP ln

·
P (Di = dBP |Sm = sL)
P (Di = dBP |Sm = sH)

¸
in which nA is the number of stock trades at the ask in the Þrst i trading op-
portunities, nB is the number of stock trades at the bid in the Þrst i trading
opportunities, nAC is the number of call option trades at the ask in the Þrst i
trading opportunities, nBC is the number of call option trades at the bid in the
Þrst i trading opportunities, nAP is the number of put option trades at the ask in
the Þrst i trading opportunities, and nBP is the number of put option trades at
the bid in the Þrst i trading opportunities.
Because the trader arrival process is i.i.d., as i→∞ we have

1

i
ln

µ
xi
yi

¶ as

−→
X
j

P (Di = j|Sm = sH) ln
·
P (Di = j|Sm = sL)
P (Di = j|Sm = sH)

¸
.

When multiplied by minus one, the right side of this equation is a measure of
the distance between the probability measures P (·|Sm = sH) and P (·|Sm = sL),
which is the entropy of P (·|Sm = sH) relative to P (·|Sm = sL). We denote the
entropy distance measure by I (sH , sL), noting that, by construction, entropy is
nonnegative and equals zero only if the probability measures differ solely on a set
with measure zero. As i→∞ we have

1

i
ln

µ
xi
yi

¶
as−→ −I (sH , sL) .

Thus, we Þnd that xi

yi
behaves as e−iI(sH ,sL), so xi

yi
converges almost surely to

zero at the exponential rate iI (sH , sL). Similarly, we Þnd that 1−xi−yi

yi
converges

almost surely to zero at the exponential rate iI (sH , sO). Therefore, if Sm = sH
we have

xi
yi

as−→ 0
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and

1− xi − yi
yi

as−→ 0

as i→∞.
From the convergence properties of these ratios we can deduce the convergence

properties of xi and yi. Under Sm = sH , xi

yi

as−→ 0 and 1−xi−yi

yi

as−→ 0 imply that
1
yi
− 1 as−→ 0, which further implies that

yi
as−→ 1

and, hence,

xi
as−→ 0.

Then

E (Vm|Zi−1)
as−→ vHm,

E (VCm|Zi−1)
as−→ vHm − κCm,

and

E (VPm|Zi−1)
as−→ 0.

The equal payoff condition implies that

ϕS (εUAP + εUBC) = λ (ϕP εUAP + ϕCεUBC) .

The equal payoff condition, together with convergence of E (Vm|Zi−1) to vHm,
implies that

Ai
as−→ vHm and Bi

as−→ vHm.

If the equal payoff condition does not hold, then it is most helpful to write the
bid as

Bi =
αεIBi

xi−1vLm + (1− α) εUBE (Vm|Zi−1)

αεIBi
xi−1 + (1− α) εUB .
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Because |εIBi
| is bounded (between 0 and 1), Bi as−→ vHm.

By similar logic, it follows that

ACi

as−→ vHm − κCm and BCi

as−→ vHm − κCm,
and

APi

as−→ 0 and BPi

as−→ 0.

Proof of Theorem 4
The covariance between ICt and ICt−r is

Cov
¡
ICt−r , ICt

¢
= E

¡
ICt−r , ICt

¢−EICt−rEICt.

We Þrst note that EICt−r = EICt. As EICt = θµC1 + (1− θ)µC0 for any t, we
have

EICt−rEICt = [θµC1 + (1− θ)µC0]
2 .

Next we focus on E
¡
ICt−r , ICt

¢
. If r ≥ k, then the independence of the sig-

nal process implies that ICt−r and ICt are independent. Therefore, we have
E
¡
ICt−r , ICt

¢
= EICt−rEICt and, hence, Cov

¡
ICt−r , ICt

¢
= 0. If, however, r < k,

then there are three possible conditional expectations of ICt−rICt depending on
the trading day�or information period�in which ICt−r and ICt are measured.
With probability k−r

k
, ICt−r and ICt are measured during the same information

period, m, and the conditional expectation of ICt−rICt is

θµ2
C1 + (1− θ)µ2

C0.

With probability r
k
θ, ICt−r and ICt are measured over consecutive information

periods,m andm+1, with Sm+1 6= sO, and the conditional expectation of ICt−rICt

is

θµ2
C1 + (1− θ)µC0µC1.

With probability r
k
(1− θ), ICt−r and ICt are measured over consecutive informa-

tion periods, m and m + 1, with Sm+1 = sO, and the conditional expectation of
ICt−rICt is

θµC0µC1 + (1− θ)µ2
C0.
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Thus, we have

E
¡
ICt−r , ICt

¢
=

µ
k − r
k

¶£
θµ2

C1 + (1− θ)µ2
C0

¤
+
r

k
[θµC1 + (1− θ)µC0]

2 .

With the results for EICt−rEICt−r and E
¡
ICt−r , ICt

¢
, we have

Cov
¡
ICt−r , ICt

¢
=

µ
k − r
k

¶
θ (1− θ) (µC1 − µC0)

2 =

µ
k − r
k

¶
θ (1− θ)

³α
3
η
´2

if r < k. Thus,

Cor
¡
ICt−r , ICt

¢
=

µ
k − r
k

¶
θ (1− θ) ¡α

3
η
¢2

σ2
C

for r < k

and

Cor
¡
ICt−r , ICt

¢
= 0 for r ≥ k.

As all terms are non-negative, the serial correlation in trades is non-negative.
Proof of Proposition 6
We derive Cov

¡
ISt−r , ISt

¢
for k = 2. Derivation of the general covariance

expression follows similar logic. Let N = 1 if t − 1 is the Þrst calendar period in
a trading day and N = 2 if t− 1 is the second calendar period. First note that

Cov
¡
ISt−r , ISt

¢
= E

¡
ISt−rISt

¢− EISt−rEISt,

which can be written as

Cov
¡
ISt−r , ISt

¢
= E

½ £
E
¡
ISt−rISt|N

¢−E ¡ISt−r |N
¢
E (ISt|N)

¤
+£

EISt−r −E
¡
ISt−r |N

¢¤
[EISt − E (ISt|N)]

¾
,

or the sum of the conditional covariance and the covariance of the conditional
means. Given that

E
¡
ISt−1 |N = 1

¢
= θµS1 + (1− θ)µS0 = E (ISt|N = 2)

and

E
¡
ISt−1|N = 2

¢
= θµS2 + (1− θ)µS0 = E (ISt|N = 1) ,
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with

EISt =
θ

2
(µS1 + µS2) + (1− θ)µS0.

Because P (N = 1) = P (N = 2) = 1
2
, the conditional covariance is

P (N = 1) · Cov ¡ISt−1 , ISt|N = 1
¢
+ P (N = 2) · Cov ¡ISt−1 , ISt|N = 2

¢
=

1

2

£
E
¡
ISt−1ISt|N = 1

¢− E ¡ISt−1|N = 1
¢
E (ISt|N = 1)

¤
+

1

2

£
E
¡
ISt−1ISt|N = 2

¢−E ¡ISt−1 |N = 2
¢
E (ISt|N = 2)

¤
which simpliÞes to

1

2
θ (1− θ) (µS1 − µS0) (µS2 − µS0) .

As µS0 < µS1 < µS2, the conditional covariance is unequivocally positive. The
covariance of the conditional means,

E
©£
EISt−1 − E

¡
ISt−1 |N

¢¤
[EISt − E (ISt|N)]

ª
,

is

P (N = 1) · £EISt−1 − E
¡
ISt−1|N = 1

¢¤
[EISt −E (ISt|N = 1)] +

P (N = 2) · £EISt−1 −E
¡
ISt−1 |N = 2

¢¤
[EISt − E (ISt|N = 2)]

and simpliÞes to

θ2

µ
µS1 − µS2

2

¶µ
µS2 − µS1

2

¶
.

As µS1 < µS2, the covariance of the conditional means is negative. Ultimately we
have

Cov
¡
ISt−1 , ISt

¢
=

1

2
θ (1− θ) (µS1 − µS0) (µS2 − µS0) +

θ2

µ
µS1 − µS2

2

¶µ
µS2 − µS1

2

¶
.
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We have Cov
¡
ISt−1 , ISt

¢
> 0 if (1− θ) (µS1 − µS0) (µS2 − µS0) >

θ
2
(µS2 − µS1)

2.
By inspection, µS2 − µS0 > µS2 − µS1, so it is enough to show that

(1− θ) (µS1 − µS0) >
θ

2
(µS2 − µS1) .

Now, as θ
2
(µS2 − µS1) = θ (µS2 − µS1), this is equivalent to showing that

(1− θ) (µS1 − µS0) >
θ

2
(µS2 − µS1) .

From the Positive Trade Correlation Condition,

(1− θ) (µS1 − µS0) > θ (1− θ) (µS2 − µS0) .

Then

(1− θ) (µS1 − µS0)− θ (µS2 − µS1) >

θ (1− θ) (µS2 − µS0)− θ (µS2 − µS1) .

The right side of the preceding inequality equals

θ [(µS1 − µS0)− θ (µS2 − µS0)] > 0,

and the Positive Trade Correlation Condition implies (µS1 − µS0)−θ (µS2 − µS0) >
0.
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