UC San Diego
Recent Work

Title
Manipulation of Preferences and Relative Utilitarianism

Permalink
https://escholarship.org/uc/item/1x32m32n

Author
Sobel, Joel

Publication Date
1998-07-01

eScholarship.org Powered by the California Diqital Library

University of California


https://escholarship.org/uc/item/1x32m32n
https://escholarship.org
http://www.cdlib.org/

98-17

UNIVERSITY OF CALIFORNIA, SAN DIEGO

DEPARTMENT OF ECONOMICS

MANIPULATION OF PREFERENCES AND RELATIVE UTILITARIANISM
BY

JOEL SOBEL

DISCUSSION PAPER 98-17
JULY 1998



Manipulation of Preferences and Relative Utilitarianism

JOEL SOBEL*

July 3, 1998

ABSTRACT. Given n agents with von Neumann-Morgenstern utility
functions who wish to divide m commodities, consider the n-person noncoop-
erative game with strategies consisting of concave, increasing von Neumann-
Morgenstern utility functions, and whose outcomes are the relative utilitarian
solution. It is shown that any constrained equal-income competitive equilib-
rium allocation for the true utilities is a Nash equilibrium outcome for the
noncooperative game. Conditions are presented under which these are the only
pure strategy equilibrium outcomes.

1.  INTRODUCTION
When solution concepts make predictions on the basis of unobservable information,
agents will have incentives to distort their private information. The paper adds to
a literature that studies the robustness of axiomatic bargaining models to strategic
misrepresentation of preference information.

The paper identifies what outcomes can be expected if a social planner selects
an allocation that maximizes a weighted average of the agents’ reported utility func-
tions. It studies a particular distortion game. There is a fixed quantity of a finite
number of commodities. Players’ strategies consist of utility functions defined over
these commodities. Given the reported utility functions, the social planner provides
an allocation that maximizes the weighted sum of reported preferences according
to the relative utilitarian solution (an agent’s weight is equal to the inverse of his
maximum utility gain). Motivation for this solution and axiomatic derivations for
it, are provided in recent work by Dhillon and Mertens [1996] and Segal [1998]. If
reports are limited to continuous, increasing, concave functions, then any constrained
equal-income competitive allocation for the true preferences (that is, a constrained
equilibrium allocation reached when agents have equal initial endowments) is an equi-
librium allocation to the distortion game. The paper also provides conditions under
which constrained equal-income competitive allocations are the only allocations that
arise in pure-strategy equilibria of the distortion game. In equilibrium, agents report

* T thank a UCLA seminar audience, Uzi Segal, and Joel Watson for comments and NSF for
financial support.
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that their marginal utility is constant and equal to the price that supports the com-
petitive equilibrium for quantities within the equal-income budget set and that their
marginal utility is zero otherwise.

Sobel [1981] studies the distortion game induced by a class of bargaining game
solutions that satisfy axioms of Pareto optimality, symmetry, independence of equiv-
alent utility representations, and midpoint domination. The first three axioms are
familiar. The fourth axiom requires that the bargaining solution of an n-player game
gives each player a utility that exceeds the disagreement utility by at least one-nth of
the difference between his largest feasible utility and his disagreement utility. Sobel
shows that the Nash bargaining solution and the Kalai-Smorodinsky solution satisfy
these four assumptions. The paper goes on to show that any constrained equal-income
competitive allocation for the true utilities is an equilibrium payoft for the distortion
game derived from one of these bargaining game solutions; and that if players are
restricted to reporting linear strategies, then the constrained equal-income compet-
itive allocations are the only pure-strategy Nash equilibria of the distortion game
in two-player games. The relative utilitarian solution fails to satisfy the midpoint
domination axiom. Nevertheless, it is still true that any constrained equal-income
competitive allocation for the true utility functions is an equilibrium allocation for
the distortion game. Furthermore, if players are restricted to truncated linear reports,
the only pure-strategy Nash equilibrium allocations of a modification of the distortion
game are the constrained equal-income competitive allocations in two-player games.

Several other paper study distortion games and establish related results. Crawford
and Varian [1979] study the distortion game derived from the Nash bargaining solu-
tion when there is only one commodity. They show that it is a dominant strategy to
report a linear utility function. The model predicts equal division of the commodity.

Thomson ([1979] and [1984]) characterizes Nash equilibria for the distortion game
derived from performance correspondences that yield individually rational and Pareto-
efficient outcomes. Thomson [1979] finds that if reported utility functions must be
twice continuously differentiable, concave, and have transferable utility, then the Nash
equilibria for the distortion game derived from the Shapley value with fixed initial
endowments are exactly the constrained competitive allocations with respect to those
endowments. Thomson [1984] generalizes this result in an environment with trans-
ferable utility to a broader class of performance correspondences. Thomson [1987]
identifies a class of performance correspondences for which equilibrium outcomes of
the distortion game are equal-income Walrasian equilibria for the reported prefer-
ences.

Kurz ([1977] and [1980]) studies the distortion game derived from his model of
tax determination in an exchange economy. Regardless of the true preferences of
the agents, the distortion game has a dominant strategy equilibrium that yields a
Pareto-efficient outcome. Mas-Colell [1980] presents analogous results in his study
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of the manipulability of the Shapley-value in an economy with an infinite number of
agents falling into a finite number of types.

There are three lessons to learn from this paper. First, the distortion game can be
viewed as another way to implement the constrained Walrasian correspondence. This
point is minor, given the existence of many other procedures that do the same thing.
Second, the paper generalizes the results of Sobel and Thomson. The generalization
may be surprising because, in contrast to the earlier results, equilibrium strategies
are necessarily non linear and dominant strategy equilibria do not arise even in the
one-dimensional case. Third, the equilibria of the distortion game predict a particular
qualitative behavior for the players. In the bargaining solutions considered in this
paper and earlier work, weight is given to a player’s valuation of the last unit he
receives. It is to a player’s advantage to claim that his marginal unit is as valuable
as possible. Since reports are limited to concave functions, equilibrium reports tend
to be linear in order to maximize the marginal utility of marginal units. The earlier
papers emphasized the importance of linear strategies. For the case of the relative
utilitarian solution, it is advantageous for agents to claim to be uninterested in units
they will not receive. This creates a role for truncated linear reports in which agents
report that anything that they receive beyond their equilibrium allocation is worthless
to them.

Section 2 describes the distortion game formally. Section 3 introduces the relative
utilitarian solution. Section 4 briefly describes the results for the special case of two
agents and one commodity. Section 5 presents the main results. Section 6 attempts
to reconcile the results with earlier findings. Section 6 introduces a one-parameter
family of bargaining solutions, which includes the relative utilitarian solution, the
Nash bargaining solution, and the Kalai-Smorodinsky solution. Each of these games
has the property that constrained equal-income competitive allocations are equilib-
rium outcomes of the distortion game, but results differ as to whether equilibria are
supported by linear or truncated linear strategies.

2. DEFINITIONS AND NOTATION
Consider n agents with von Neumann-Morgenstern utility functions who are to divide
a bundle of m commodities. Let A,, denote the m — 1 dimensional simplex and let
er € A, be the unit vector in the kth direction. Let a = (a, ...,a). An outcome will
be an element of the set

T = {x: (X1, ey Tp) ER™ 2, € R fori=1,...,n, and 0 < Zazz < 1}

i=1

where agent i receives x;. The true utility function of player ¢ is denoted by wu;.
These functions are assumed to be concave and strictly increasing. The players
report utilities that are restricted to lie in the class U, where U consists of those
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functions: U : R™ — [0, 1] such that (i) U is continuous, increasing, and concave in
R™; (ii) U is normalized so that U(0) = 0 and U(1) = 1. The class of admissible
utilities should include those functions that are credible representations of the agents’
true preferences. Condition (i) is a regularity assumption on the range of potential
players. The concavity assumption means that the agents cannot pretend to be risk
lovers. In order to guarantee existence of equilibrium, it is necessary to permit U to
include functions that are not strictly increasing. Since the solution to the bargaining
problem studied in this paper is independent of affine transformations, condition (ii)
is not essential.

The distortion game is played by each agent revealing a utility function in ¢. Let
U; denote the utility function revealed by player i. Given the report U = (Uy, ..., U,),
a set of outcomes B(U) is selected. B(U) is the set of allocations that give rise
to a bargaining solution determined by utility functions U. Section 3 discusses the
particular bargaining solution that is the focus of this paper. However, in order to
define the distortion game, it is only necessary that B(U) be a non-empty subset of
T for any admissible reported utilities.

If B(U) is single-valued, then all of the elements of the definition of the distortion
game would be in place. Players would be restricted to admissible strategies and,
denoting the ¢th component of B(U) by B;(U), the payoff to player ¢ would be
w;(B;(U)). While it is typical to assume that the bargaining solution selects a unique
utility for each player, there is no reason to believe that there will be a unique
allocation associated with these utilities. B(U) will typically not be single valued,
so it is necessary to specify how to make a selection from the bargaining solution.
I assume that agents have the right to select their most preferred outcome in B(-).
This assumption leads to the following definition.

Definition 1. (U*;2*) = (U7, ...,U}); (z7,...,x})) is an equilibrium for the distor-
tion game determined by B if and only if x* € B(U*) and for each i, (U}, x}) solves
maxu;(z;) subject to z; € {Bi(U;,U*,) : Ui €U} .

The definition implies that for equilibrium reports U*, there exists an allocation
x* € B(U*) such that z} solves maxu;(x;) subject to x; € B;(U*). That is, players’
true preferences can agree on a most preferred allocation in B(U™).

In Sobel [1981], strategy sets of the distortion game consist of both reported pref-
erences and tie-breaking rules that make unique selections from the correspondence
B. The paper introduces a class of tie-breaking rules that permit agents to select
their most preferred outcome in B. Consequently, an equilibrium for the distortion
game corresponds to a Nash equilibrium of an extended game in which each agent
reports a tie-breaking rule in addition to a utility function. Thomson [1984] adopts
the definition above.
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Bargaining solutions uniquely determine the utilities of agents according to the
agents’ reported preferences. One might think that players would be indifferent be-
tween all of the allocations in B(U). However, unless an agent reports his true utility
function, there is no reason to expect that he would be indifferent over all elements in
the bargaining solution according to his true preferences. In the equilibria described
in Section 5, B(U) consists of a budget hyperplane, and agents will generally not be
indifferent over the elements in B.

In what follows, I prove that the Nash equilibrium outcomes in the distortion
game correspond to certain competitive outcomes.

Definition 2. A constrained equal-income competitive equilibrium (EICE) is a pair,
(p*,z*) where (i) p* € A,,; (i) z* € T'; (iii) x} solves:

1
max u;(x;) subject to p* - x; < —p* -1 and 0 < x; < 1.
n

In an exchange economy, an equal-income competitive equilibrium is a competitive
equilibrium to the economy in which agents have equal initial endowments. In a
constrained equal-income competitive equilibrium, agents’ demands are restricted to
be both in their budget set and feasible relative to the total resources of the economy.
The constraint that an agent i’s demand z; satisfy 0 < z; < 1 is not placed on
(unconstrained) equal-income competitive equilibria.! Any equal-income competitive
equilibrium is a constrained equal-income competitive equilibrium and, provided that
preferences are convex, any interior constrained equal-income competitive equilibrium
is an equal-income competitive equilibrium. I will call * in the definition of EICE a
competitive allocation.

3. THE RELATIVE UTILITARIAN SOLUTION

This paper studies the distortion game induced by the relative utilitarian solution
proposed by Cao [1981], Dhillon and Mertens [1996], Karni [1996], Karni and Safra
[1996], and Segal [1998]. Cao’s approach focuses on a bargaining problem. The other
papers present the functional form described below for social-choice problems. This
section presents additional detail on bargaining games. The discussion this section
is a bit more general than needed for the main results in Section 5. I include the
additional detail in order to contrast this paper with earlier work and analyze the
more general games in Section 6.

A bargaining game is described by a pair (S,d), where: (i) d = (di,...d,) € R™;
(ii) S C R™ is compact, convex, and contains d as well as some point s > d.

'Hurwicz, Maskin, and Postlewaite [1995] introduced the concept of constrained competitive
equilibrium. It is the smallest extension of the competitive correspondence that can be implemented
in Nash strategies.
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The set S is normally interpreted as the set of feasible utility payoffs to the
players. A point s € S can be achieved if all players agree to it. In case of agreement,
player i receives s;. If the players are unable to agree, then the outcome d, called the
disagreement outcome, is the result.

In this paper, the reported utilities U = (Uy, ..., U,,) with each U; € U determine
the set S. That is,

S=8SU)={s=(s1,...,5n) : s; = Uj(x;) for some z € T} .

The disagreement outcome will always be taken to be 0 =U(0).

When the functions U; are admissible, the set S is compact, convex, and contains
a point s > 0. In fact, the ¢th unit vector e; € S for i = 1,...,n and A, € S. Such a
game will be called 0 — 1 normalized.?

Beginning with Nash [1951], axiomatic bargaining theory has studied solutions to
bargaining games. A solution is a function f, defined on the class of all bargaining
games with f(S,d) = (f1(S,d), ..., fn(S,d)) € S for all pairs (S,d). Nash charac-
terized his bargaining solution in terms of four axioms, three of which are relevant
here.

Axiom 1. (Pareto Efficiency): If f(S,d) = x and y > x, then eithery =z ory ¢ S.

Axiom 2. (Independence of Equivalent Utility Representations): If (S, d) and (S',d')
are bargaining games such that

S'={s"=(s),...,8,) : 8, = a;s; + b; for s = (s1,...,8,) € S}

and
d/ = (a1d1 -+ bl, ceey andn + bn)

where a; > 0 for all i, then
f(S,d) = (a1 f1(S,d) + by, ..., an fu(S, d) + by).

Axiom 3. (Symmetry): If (S,d) is a symmetric game (that is, s = (s1,...,8,) € S if
and only if (Sz(1), ..., Sz(n)) € S for any permutation w), then f;(S,d) is independent
of i.

2The normalization of S(U) anticipates the observation that the relative utilitarian solution is
invariant with respect to equivalent utility representations. With that property, any game can be
taken to be 0 — 1 normalized without loss of generality.
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Given a bargaining game (S, d), let 5; = max {s; : s = (81, ..., $») : s € S} be player
7’s maximum utility. The relative utilitarian quasi-solution consists of

{s* = (s7,...,s3) : 8" solves max » <_ i y > subject to s = (s1, ..., Sn) € S}. (1)

i=1 \Si T @i
Note that if (S, d) is 0 — 1 normalized, then (1) simplifies to

n

{s* = (7, ..., s3) - 8" solves max » _s; subject to s = (s1,...,8,) € S}. (2)

o Sn
i=1

Since (1) may contain more than one point, it defines a quasi-solution rather than
a solution. One forms a relative-utilitarian solution by making a selection from (1). It
is convenient to work with symmetric relative-utilitarian solutions. In what follows,
therefore, assume that the social planner makes a selection from (1) whenever (1)
contains more than one point. The selection can be arbitrary, although when S is
symmetric, it makes sense to assume that the selection is symmetric. Denote the
selection by RI(.S).

Admissible reported utilities U = (Uy,...,U,) determine a set S(U) of feasible
utilities wtih respect to the reported preferences. The social planner will select an
allocation according to the relative utilitarian solution. This selection determines the
set B(U) resource allocations that give rise to the relative utilitarian solution:

BU) ={z = (z1,...,xn) € T : (Uy(21), ..., Up(zy,)) = RI(S(U))} .

It follows that if z* € B(U), then z* solves:

maxz Ui(z;) subject to z = (z1,...,x,) € T (3)
i=1

In the equilibria described in Sections 4 and 5 agents report utility functions that
are not necessarily strictly increasing. This creates the possibility that there exist x
and y € B(U) such that > y; < > 7, x;; that is, both = and y solve the planner’s
optimization problem, but y does so using strictly less of each commodity. When
this situation arises, the social planner might restrict attention to allocations that
are resource Conserving.

B*(U) = {xGB(U): if iyiﬁixi, then y ¢ B(U) ory:x}.

If all of the reported utilities are strictly increasing, then B*(U) = B(U). In general,
B*(U) € B(U). B*(U) consists of the allocations that give rise to utilities that
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solve the social planner’s problem without wasting resources. The distortion game
determined by a relative utilitarian solution B(-) is called the relative utilitarian
distortion game. The corresponding game determined by B*(U) is called the resource-
conserving relative utilitarian distortian game.

It is apparent that the relative utilitarian quasi-solution is invariant with respect
to equivalent utility representations and is Pareto efficient with respect to the reported
utilities. Any symmetric relative-utilitarian solution also satisfies the symmetry ax-
iom.

Sobel [1981] describes equilibria of distortion games for bargaining solutions that
satisfy Axioms 1, 2, 3, as well as Axiom 4.

Axiom 4. (Midpoint Domination): f;(S,d) > m for all i.

If (S,d) is 0 — 1 normalized, then Axiom 4 becomes: f;(S,d) > < for all i. Sobel
[1981] introduced Axiom 4 under the name symmetric monotonicity. Thomson [1994]
refers to it as midpoint domination.

Sobel [1981]demonstrates that any bargaining solution for a two-person game that
is risk dominant (see Roth [1979]) satisifies Axiom 4. It follows from Roth [1979] that
the Nash and Kalai-Smorodinsky bargaining solutions satisfy Axiom 4. On the other
hand, the relative utilitarian solution does not satisfy midpoint domination. For
instance, let

S ={s=1(s1,52) : 51 €[0,1] and s, € [0,1 — as;]}

When a € (0,1) the solution to max s; + s subject to (s1,s2) € S'is (1,1 —a). For
a > .5, player 2 receives utility less than .5.

The example demonstrates that the theorem of Sobel [1981] does not apply to
the relative utilitarian solution. Nevertheless, as I now demonstrate, the qualitative
conclusions of the earlier work do apply.

4. THE ONE-COMMODITY CASE
To get an intuition for the results, consider the special case in which there are two
players and one commodity. When there is only one commodity, all monotonic pref-
erences are ordinally equivalent. Given the symmetry of the game, one would expect
that equal division is the only equilibrium outcome of the distortion game. This
conjecture is correct. Each agent can guarantee at least one half of the commodity
by reporting the utility function U*(z) = min[2z,1]. This utility function is con-
cave, continuous, and increasing. Furthermore, a player who reports this utility must
receive at least .5. To see this, note that under U*(-) the agent asserts that the
marginal utility of each x < .5 is two. If the solution were to give the other player
more than one half, then the other player’s reported marginal utility must be greater
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than or equal to two for each of the first 1 —z > .5 units. This is not consistent with
monotonicity and the restriction that U(1) = 1.

The one-commodity case provides several lessons. First, the outcome of the game
is efficient with respect to the true preferences. (Indeed, it is the unique EICE.)
Second, equilibrium strategies of the agents are not linear and the equilibrium is not
a dominant strategy equilibrium. Notice that if one agent reported the linear utility
function U(z) = z, then for any € > 0 the opponent could respond with the function
V(z) = min[(1 4 €)z,1] and obtain almost the entire unit of the commodity (the
share l%re) Third, the equilibrium strategies are not strictly increasing. Equilibria
would not exist if players were restricted to strictly increasing strategies. Agents
could guarantee arbitrarily close to .5 by playing continuous approximations to U*(-).
Hence, in equilibrium, both players must receive .5. However, given any continuous
strategy of one player, it is possible for the other to obtain strictly more than one half
by choosing a better approximation to U*(-). Fourth, while the equilibrium strategies
are not linear, they are linear when restricted to x < .5, the quantities that the agent
consumes in equilibrium. In order to make a claim for a marginal unit, it is in the
interest of bargainers to claim that the marginal unit is as valuable as possible to
them. They deny any interest in units that they are not going to receive and report
nondecreasing marginal utility over the units that they do receive. These observations
generalize to the case of more than one commodity.

While agents lack strictly dominant strategies in the one-commodity model, when
players are restricted to truncated linear strategies, the equilibrium strategies are the
only strategies that satisfy iterated deletion of weakly dominated strategies provided
that the selection from the relative utilitarian correspondence is symmetric. Limit
players to strategies in the set £ = {U(z) = min[ax, 1] for a > 1} . This restriction is
plausible because given any U € U, a player always has a best response in £. Let
Xy = {minfaz, 1] € L : 2 > a > b}. Suppose agent i uses strategies in X,. Player j # i
receives less than .5 when he uses minfax, 1] for a < b or a > 2. If a = b, then the
player receives exactly .5 when the other player uses the same strategy (by symmetry)
and strictly less against any other strategy in X,. On the other hand, the strategy
U* guarantees that agent j receive x = .5. Consequently, U*(-) is the only strategy
that survives iterative deletion of weakly dominated strategies. The same argument
applies when there are n > 2 players (each agent uses the function min[nz, 1]).

The one-commodity case also provides a clear indication of the importance of the
assumption that agents’ reports are concave functions. Assume instead that agents
could report arbitrary monotonic functions and that agent one reports [z], where [-]
is the greatest integer function.> A solution to the problem:

max [z] + V(1 — z) subject to z € [0, 1] (4)

3The argument does not depend on the discontinuity of [-] .
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is to give the first agent everything for all V' € U (given agent one’s report, the
value of the objective function in (4) can be no greater than one; this upper bound
is attained if player one receives everything). An equilibrium in which all players
report “all-or-nothing” preferences exists whenever arbitrary monotonic reports are
permitted.*

5. THE GENERAL CASE
When there is more than one commodity, agents may not have the same ordinal pref-
erences. It need not be efficient to split each unit equally. This section demonstrates
that the equilibrium outcomes of the distortion game are still efficient in the general
setting.

For p € Ay, let L(z;p) = minnp - z,1]. Given V € U, limy, o+ ﬂfuvh%l
exists; let D V(z) denote the limit. When V/(-) is differentiable at x, D; (z) is
a partial derivative; in general it is a one-sided partial derivative. Let VV(z) =
(Dy (%), ..., D, (2)). Since V(0) =0 and V is concave,

V(z) > VV(z) -z for all z > 0. (5)

Lemma 1. If player j reports the truncated utility L(-;p), then for all admissible
U, ifx=(z1,...,2,) € B(L(:;p),U_;), then np - z; > 1.

Lemma 1 is a special case of Lemma 2, which I state and prove in Section 6.
The lemma establishes that using a truncated linear report, a player can guarantee
an allocation that is at least as good as equal division according to the reported
preferences. If players are restricted to reported preferences of the form L(z;p) for
p € A,,, then the result is particularly easy to understand. In this case, equal division
yields the maximum value of the relative-utilitarian social welfare function. Hence
any allocation in B(-) for truncated linear reports must give each agent utility one
with respect to his reported preference. This is the conclusion of the lemma. The
actual proof is a bit more involved because agents are not limited to truncated linear
reports.

Theorem 1. If(p*,z*) is an EICE for the true preferences, then (L(-;p*), ..., L(+; p*); x*)
is a Nash equilibrium for the relative utilitarian distortion game.

Proof. Assume that all of the players except player i use the strategy L(-;p*).
Suppose that if player i selects the strategy V', then the allocation is x = (1, ..., z,,).
It follows from Lemma 1 that for all ¢ # j, np* - x; > 1. Since x € T\, np* - x; < 1. It

4“When reports need not be concave, it is natural to permit the bargaining solution to randomize.
Symmetry suggests that the solution to the bargaining problem when all agents report “all-or-
nothing” preferences is to give everything to a randomly selected player.
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follows that the maximum utility player 7 could receive in response to his opponents’
strategies is
max u;(x;) subject to np* - x; <1 and 0 < z; < 1. (6)

Since (p*,z*) is an EICE, z} solves (6). Since z* € B(L(-;p*), ..., L(-;p*)) it follows
that it is a Nash equilibrium for player i to report L(-,p*) and obtain the EICE
allocation.

The theorem demonstrates that any EICE allocation is a Nash equilibrium of the
distortion game. The lemma guarantees that if each agent reports the same truncated
linear strategy L(-,p*), then the set of solutions to the planner’s problem consists of
the entire budget hyperplane with normal p* through equal division. If p* supports
an EICE, then all players can agree upon a most preferred outcome in the set of
allocations that maximize the relative utilitarian objective function. Consequently,
an EICE allocation is an equilibrium of the distortion game.

There is a curious aspect of the equilibrium strategies that support an EICE
allocation. The value of the social planner’s optimization problem is equal to n, the
maximum feasible value. Even though there is conflict over the goods, the equilibrium
allocation provides each agent utility one (according to reported preferences). If the
social planner were naive enough to believe that the reported preferences were honest
representations of the agent’s motives, then she would be delighted to know that
every agent received his maximum utility.

In the one-commodity case, the equilibrium allocation was unique. Since there
may be multiple ECIE allocations, the uniqueness property will not carry over into the
many commodity case. The best that one might hope for is that the only equilibrium
allocations are the EICE allocations. This result fails to hold, as the next example
demonstrates. The example is a modification of an example in Sobel [1981].
Example 1. In a two-consumer, two-commodity model, let ui(xy, o) = x‘;)/Gx;/G,
us(zq, x9) = $%/2$;/2,Ul($1,$2) = min[(5z1 + 3x2)/4,1], and Uy(x1,x9) = x%ﬂxé/z.
Fori =1 and 2, u; and U; € U. A routine computation shows that (Uy,Us, z*) is a
Nash equilibrium for the distortion game. The allocation x* gives agent 1 (3/5,1/3)
and agent 2 (2/5,2/3). In this example, there is a unique EICE for the true pref-
erences. It is (p*,y*) = ((2/3,1/3),(5/8,1/4)) [(y* is player 1’s allocation in the
equilibrium. Player 2 receives 1 — y* = (3/8,3/4)]. A computation shows that the
first player prefers the inefficient outcome x* to the EICE. Also, the second player is
worse off at the Nash equilibrium even though he is reporting his true utility function.

Sobel [1981] shows that in two-player games, the only equilibrium allocations
of distortion games derived from bargaining solutions satisfying Axioms 1 through
4 are EICE allocations provided that agents are restricted to linear strategies. This
restriction makes no sense in the present context, since linear strategies do not support



MANIPULATION OF PREFERENCES AND RELATIVE UTILITARIANISM 12

the equilibria described in Theorem 1. It does suggest that a partial converse to
Theorem 1 holds if players are limited to truncated linear strategies. Even this result
fails to hold, as the next example demonstrates.

Example 2. In a two-consumer, two-commodity model, let u;(x11,212) = xf{sx}éz)’,
Uz(l’gl,l’gz) = xé{?’x%g,Ul(xn,xlg) = min[2(x11 -+ 23712)/3, 1], and UQ(Z’Ql,l’Qz) =

min[2(2x9; + x92)/3,1]. For i = 1 and 2, u; € U. Let the allocation z* give both
agents (.5,.5). A computation shows that (U, Uy, x*) is a Nash equilibrium for the
distortion game. Lemma 1 implies that an upper bound to the utility that agent 1
can attain is the value of maxuy(z11,z12) subject to 2(2x1; + x12)/3 < 1 (because
the lemma guarantees that player 2’s allocation satisfies 2(22; + x92)/3 > 1) and
similarly that the upper bound for player 2 is the value of max us (a1, 22) subject to
2(z91 + 2x92) /3 < 1. For the reported preferences (Uy, Us),

B(Ul, UQ) = {(1’11,1’12,1’21,1’22) c T: 2(3311 + 21’12)/3 Z 1 and 2(23321 + 1’22)/3 Z 1}

For the true preferences, both agents agree that x* is the best allocation in B(Uy, Us).

It is apparent that the allocation x* is not efficient. The only EICE in this example
2 1 102

jSp = (5, 5) (xn,xlg) = (g, g) and (J?Ql,xgg) = (g, g)

In the example, B(U) contains allocations that are not resource conserving. It
is not necessary to use all of the endowment to attain the maximum in the social
planner’s utility function. This suggests the possibility that the inefficient equilibrium
would disappear if the planner used a resource-conserving selection from the set of
maximizing allocations.

Imposing the additional requirement that the solution be resource conserving
shrinks the set of allocations. The planner allocates the minimum quantity of re-
sources needed to maximize the relative utilitarian objective function. For the re-
ported preferences

. 3 3 5 3 3 3 5 3
B (UlaUZ) - {(OaZasaé _28)7 RS (gaZ)}U{(§_2tvta170)v le (gvz)}a

x* ¢ B*(Uy, Us) and the agents have conflicting preferences over allocations in B*(Uy, Us)
(Agent one prefers the allocation (z11, 1) = (i, %) and (91, To2) = (%, 0), while agent
two prefers the allocation (11, 12) = (0, 2) and (221, 222) = (2, 1)).

The two examples suggest that a partial converse to Theorem 1 requires both a
restriction on strategies and a selection from the set of maximizing allocations. The

next theorems provide the results.

Theorem 2. Letn = 2. If (L(-;p1), L(; p2); «*) is a Nash equilibrium for the resource
conserving relative-utilitarian distortion game, then x* is an EICE allocation.
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Proof. It follows from Lemma 1 that for all i, 2p; - f > 1. Let j # 7. Since
x* €T, 2p; -z} < 1. It follows that the maximum utility player i could receive in
response to his opponent’s strategy is

max u;(x;) subject to 2p; - z; < 1land 0 < z; < 1. (7)

Player ¢ can indeed achieve this payoff by using the strategy L(-;p;). It follows from
monotonicity of u,(-), that 2p; - 27 = 1. The resource conserving condition therefore
implies that p; = p; for otherwise the planner would solve (3) with an allocation z*
such that 2p; -z} < 1. It follows that in equilibrium p; = p;. Consequently, (7) implies
that z* is an EICE allocation.

I conjecture that Theorem 2 holds when n > 2.

There are two justifications for the restriction to truncated linear strategies. From
the point of view of implementation, the planner can make whatever restrictions on
strategies needed in order to guarantee desirable outcomes. From the point of view
of the strategic behavior of the agents, it is possible to show that even when there
are no restrictions on admissible reports (other than continuity, monotonicity, and
concavity), agents always have a truncated linear best response.

6. RECONCILIATION

Earlier results demonstrate that the Nash equilibria of distortion games derived from
admissible bargaining games are EICE allocations and that in these equilibria, players
report linear utility functions. This paper studies the distortion game derived from
a bargaining game that fails to satisfy the assumption of midpoint domination. Still,
the Nash equilibria of distortion games are EICE allocations. Equilibrium reports are
non-linear, but they are piecewise linear. There is no logical contradiction here. The
relative utilitarian solution does not satisfy the assumptions in the earlier paper.

It may be instructive to reflect more on the sense in which the results generalize
the earlier ones. First, the restriction to linear strategies in the earlier work is not
always necessary. For the distortion game derived from the Nash Bargaining Solution,
one can support the same outcomes as equilibria by using piecewise linear reports of
the kind introduced in this paper. Second, while the relative utilitarian solution fails
midpoint domination, it does not fail midpoint domination if players are restricted
to truncated linear strategies that are used to support equilibria. This is essentially
the conclusion of Lemma 1.

To make these points formally, consider a family of bargaining solutions. For

s = (s1,...,8,) and a < 1, let W(s,a) = {Z?Zl %sf}z 2 Let (S, d) be 0—1 normalized.
For a < 1, W (-, a) is strictly concave and generates a bargaining solution
f(S;a) ={s" = (s}, ...,s},) : s" solves max W (s, a) subject to s € S}.

99

5When a = 0, define W (s,0) = limg_o W (s, a) = {IT%_ s;}7 .
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Of course, W (s, 1) is the utilitarian objective function. Since W (s,0) = {H?lei}%and
lim, oo W(s,a) = min{sy, ..., s}, f(5;0) corresponds to the Nash Bargaining So-
lution and f(.S; —o0) corresponds to the Kalai-Smorodinsky solution. Increases in
a tend to make W (-) more like the utilitarian solution, while decreases in a make
the solution more sensitive to the relative welfare of agent who receives the lowest
(normalized) utility.

Since the family of bargaining solutions are defined as solutions to optimization
problems, one might be tempted to conclude that they all satisfy Nash’s Independence
of Irrelevant Alternatives Axiom. In fact, only f(S;0) (the Nash Bargaining Solution)
satisfies this axiom. The possible confusion arises because I have defined the solution
for 0 — 1 normalized bargaining games. In general, changing the maximum utility
available to a bargainer will change that bargainer’s weight in W(-), leading to the
possibility of a violation of the Independence of Irrelevant Alternatives Axiom.

Imagine a family of distortion games that varies with the parameter a. For
a < 0,one can show that the bargaining solutions satisfy the midpoint domination
axiom. Hence results from Sobel [1981] can be used to characterize the solution to
the distortion game. For a > 0, Lemma 1 of Section 5 continues to hold. Hence the
results from the previous section apply. In all cases, EICE allocations are equilibria
of the distortion game. In the case of solutions with non-negative parameter a, these
equilibria are supported by truncated linear strategies. When a is nonpositive, the
equilibrium is supported by linear strategies. Curiously, the Nash bargaining solution
is the only one in which both kinds of strategy support the equilibrium.

Lemma 2. If player j reports the truncated utility L(-;p), then for all admissible
U_;, ifx=(z1,...,2,) € B(L(-;p),U_j;a) and a > 0, then np - z; > 1.

Proof. Assume that player j uses the strategy L(-;p). Suppose that if player
i selects the strategy V, then the allocation would be z = (z1,...,z,). In order to
obtain a contradiction, assume that

np-x; < 1. (8)
Since x must maximize (3) for the reported preferences,
[np - (2 + W))" + V(@i = h)]" < Inp - 2]" + [V (2:)]" (9)

for all 0 < h < z;. By (9), the partial derivative of [np-z;]" + [V (z;)]" in the
direction of e, must be less than or equal to zero whenever z;;, > 0. It follows that
npr < DV (x;) whenever z;;, > 0; consequently

anp - ;)" nppa, < a V()" DV (x;)wy for all k.
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Summing this inequality over k yields for all i # j,
[np - 2" np - w < [V (@) VV () - 2 (10)
It follows from (5), (10), and 1 > V(z), that for all ¢ # j,
np-x; < [np-x;) 0. (11)

Since a < 1, (8) and (11) imply
np-z; < 1. (12)

Since > ;x; = 1 and p € A,,, summing (12) over all ¢ # j contradicts (8) and
establishes the lemma.

Lemma 2 demonstrates that when a > 0, the crucial lemma from Section 5 con-
tinues to hold. One can establish the same result for the Nash Bargaining solution
(a = 0) directly or through a limiting argument. Lemma 2 states that a player can
obtain an allocation at least as good as a %th share of each commodity according to
his reported preferences, provided that his reported preferences are in an appropri-
ate class. One can state this condition directly on bargaining solutions. I have no
interpretation for this property, however.

Lemma 3. When a <0, f(S,a) satisfies Axiom 4 (midpoint domination).

Proof. Let S C R"be a 0 — 1 normalized compact, convex set. When a < 0,
maximizing W (-, a) is equivalent to minimizing >7* ; s¢. Therefore, it suffices to show

i=1 7"
that if s* = (s7, ..., s7) solves:

min ) s subject to s € S (13)
i=1

then sf > X for all i. Without loss of generality, assume that s{ = min {s, ..., s} .
Define the function ¢(s;) = max {\ : (s;,As_1) € S}. Since S is 0 — 1 normalized and
convex, ¢ is a real-valued, decreasing, concave function satisfying: ¢(s7) =1, ¢(1) >
0, and (s1,¢(s1)s_1) € S for all s; € [0,1]. Since s* solves (13), it must be the case
that s] solves

min {s‘f +> [go(sl)si]“} subject to s; € [s], 1] (14)

=2

Differentiating the objective function in (14) and using a < 0, it follows that

n

()" "+ @ (sD)els1)" 1 D (s7)" <0, (15)

i=2
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. *+h)— * . .
where, ¢'(s}) = lim,_q+ Mﬁ. Since ¢ (+) is concave,

Psy) > P =) (16)
Substituting (16) into (15) yields
(1= s ()™ 4 [o(1) — o(sD)] (s 32 () < 0 (17)

=2

Since o(s*) = 1 and (1) > 0, (17) implies that (s¥)* ' < " (s5)* or

1

S—’] <n (18)

where the second inequality in (18) follows from a < 0 and s} = min {s}, ..., s} }.

As in the case of Lemma 2, Lemma 3 also holds for the Nash Bargaining solution
(a=0).

Combining Lemmas 2 and 3, one obtains a generalization of Theorem 1.

Theorem 3. If (p*,z*) is an EICE for the true preferences, then x* is a Nash
equilibrium allocation for the distortion game determined by the solution f(-;a).
If a € [0,1], then it is an equilibrium strategy for all players to report the truncated
linear utility function L(-;p*). If a < 0, then it is an equilibrium strategy for all
players to report the linear utility function U(y) = p* - y.

Proof. When a € [0,1], result follows from Lemma 2 (and the same argument
used to establish Theorem 1). When a < 0, the result follows from Lemma 3 and
Sobel [1981].

The family of bargaining solutions shares the property that agents want to act
as if the marginal unit they are allocated is valuable. The optimal manipulation
always involves claiming that the first units allocated add the minimum possible
utility (subject to the concavity constraint). Strategies differ as to how agents should
represent their utility for what they do not receive in equilibrium. Utilitarian solutions
(a > 0) induce agents to claim that the units that they do not receive are worthless.
Denying an interest in these units permits agents to exaggerate their interest for the
units that they actually receive. Eqalitarian solutions (a < 0) favor an agent who
appears to be getting a small utility relative to the maximum available utility for
that agent. Consequently, it is in the interest of an agent faced with an egalitarian
planner to report preferences in a way that exaggerate his maximum utility relative
to the utility he receives. This force creates an incentive to report linear preferences.
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