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       ENDOGENOUS GROWTH THEORY IN A VINTAGE CAPITAL MODEL1

by

Pranab Bardhan and Rodrigo Priale

I INTRODUCTION

                                           
     1 We are grateful to Gene Grossman and Paul Romer for valuable comments on an
earlier draft. Of course, all errors remain ours alone.



3

 In the development of the endogenous growth models over the last decade, the

idea of a continual introduction of new inputs as an embodiment of technological progress

has played a central role. In particular, the original formulations by Ethier (1982) and

Romer (1990) in terms of an expanding variety of intermediate goods contributing to final

good productivity have been very popular. In the "old" growth theory literature, the vintage

capital models also carried the idea of a continual introduction of new inputs, with the

latest technology embodied in the newest machine that comes into operation. Some of the

early formulations of this type of models are associated with Johansen (1959), Solow

(1962), Phelps (1963) and Solow, Tobin, von Weizsacker, and Yaari (1966).2 However,

in all these vintage models, the ultimate source of technical progress embodied in the

latest machine was exogenous; in particular, the steady-state growth rate was not

amenable to policy influence. In contrast, in the more recent models, growth is driven by

endogenous processes of research and development (R & D) or learning, and these

processes can be influenced by policy. Furthermore, most of the earlier models assumed

competitive markets, whereas growth theory in the 1990's has formalized endogenous

technical progress in terms of a tractable imperfect-competition framework, in which

temporary monopoly power sometimes acts as a motivating force for private innovators

and there are scale economies.

On the other hand, in many of the recent models -- for example, in that of Romer

(1990) -- technical progress works through a horizontal expansion of the range of inputs,

and the wider the range the better for productivity. In these models, the old abacus goes

on being utilized for calculation jobs side by side with the latest desktop computer. In most

of the vintage models, as new inputs arrive, some of the old varieties are no longer

profitable to use, and a central focus of these models was the endogenous obsolescence

of machines.

                                           
     2  For extensions of these models, see Bliss (1968) and Bardhan (1969).
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In this case the economic life of machines becomes an important determinant of

productivity. Different countries with different wage rates (that are paid to operators of

machines) will thus have a different economic life of machines, even if "best-practice"

technology (or technology on the newest machine) is the same everywhere.3 One of the

earliest economists to have a serious empirical treatment of this issue was Salter (1960).

To quote him for an example:

"In fact there is some evidence to suggest that one of the chief reasons for
Anglo-American productivity differences lies in standards of obsolescence. It is a
common theme in Productivity Mission Reports that the productivity of the best
plants in the United Kingdom is comparable with that of the best plants in the United
States, and that the difference lies in a much higher proportion of plants employing
outmoded methods in the United Kingdom -- a much greater 'tail' of low-productivity
plants. Such a situation is consistent with a higher standard of obsolescence in the
United States which follows from a higher level of real wages. (pp.72-73)"

                                           
     3  For an early model of international trade patterns based on differences in
comparative advantage following from differences in the economic life of machines, see
Bardhan (1966).

Clearly, productivity differences on such grounds will be much sharper between rich

and poor countries.
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Of course, obsolescence of inputs is captured in part of the recent growth literature,

most notably in the Schumpeterian models of Aghion and Howitt (1998, chapter 2, for their

latest version) and Segerstrom et al. (1990), or the related quality ladder models of

Grossman and Helpman (1991). But in those models obsolescence of inputs takes place

in an extreme fashion: the state-of-the-art product completely and instantaneously

displaces all the old varieties.4 So the richness of the vintage models in this respect, with

some old inputs being scrapped while some others coexisting with the latest variety, is

missing in the recent literature, and accordingly the differential productivity effects of the

different length of the 'tail' that Salter talks about is not analyzed.

                                           
4 One exception is the paper by Redding (1996) where an innovation renders

obsolete only a fraction of the machines in use, but this paper addresses a different set
of issues, those relating to the disadvantage of an early starter.
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In this paper we combine this aspect of richness of the old vintage models with

endogeneity of technical progress and monopolistic competition and dynamic economies

of scale (aspects in which the recent models are richer). In particular, we show how the

endogenously determined economic life of machine, denoted by T in our model, affects not

just the level of productivity, as in the old vintage models, but also the steady-state growth

rate. Policies can affect the equilibrium value of T (for example, those influencing the gross

savings rate in the economy, accelerated depreciation allowance in tax laws, etc.), and

that will have an effect on the long-run growth rate. We also present a two-sector

extension of the basic model where we show that trade policy, by influencing the relative

price of goods, can affect T and thus the long-run growth rate of a trading economy.5

While our model is abstract, oversimplified and extremely limited in applicability, it

may not be entirely out of place to link the results with some of the issues that have come

up in the empirical and policy literature on comparative economic growth and economic

history. For example, in comparisons of fast economic growth in East Asia with relative

stagnation in Latin America in recent history, it is commonplace to point to the  significant

differences in the rates of saving in the two areas. Our model may suggest an additional

dimension of the effects of higher saving and investment on the growth rate in terms of

modernization of the capital stock. Our result is also consistent with the significant

correlation observed by de Long and Summers (1991) between equipment investment and

growth. We may also venture to suggest that embodied technical progress in new

machines may have some implications for the widely noted and remarkable empirical work

of Young (1995) which shows that factor accumulation largely explains the high growth in

East Asia. If a high rate of capital accumulation also leads to a modernization of the capital

stock and if embodiment matters, it may be statistically difficult to disentangle the effects

                                           
     5  In Bardhan and Kletzer (1984) there is an analysis of the dynamic effect of protection
on the time path of productivity in a partial equilibrium model of learning. Grossman and
Helpman (1991a) give several examples of how trade policies, by altering relative prices,
can affect the growth rate.
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of factor accumulation from those of technical progress. For a group of seven OECD

countries over the last century Wolff (1991) shows that catch-up in total factor productivity

is positively associated with capital accumulation and he considers the embodiment effect

as one of the important elements in this association. Consistent with our model, Wolff

shows that the average age of capital stock in these seven countries for the hundred years

since 1880 moves inversely with changes in the rate of growth of the capital stock.

In the economic history literature, the relationship between trade policy and

modernization of capital stock has sometimes been commented upon. For example,

Williamson (1971) has emphasized the importance of  highly protective tariffs in early

nineteenth-century United States in encouraging a faster scrapping of capital in favor of

technologically superior equipment in the textile industry and thus fostering rapid

productivity growth in that industry. Temin (1966), in interpreting the relative decline of the

British steel industry in the period from the 1880's to World War I, has referred to the

tariff-induced adoption of superior capital equipment in the United States and Germany.

For all its limitations, our two-sector model may provide a simple framework for analyzing

such questions of the impact of trade policy on the economic life of capital and thus on the

rate of growth, even though our particular results about the  effects of protection may be

model-specific.

The plan of the rest of the paper is as follows. In section II we enumerate the basic

vintage capital model with endogenous technical progress and economies of scale, both

external and internal, in the production of capital goods. In section III we derive some of

the comparative-dynamic results. In section IV we present a two-sector extension of the

basic model to focus on the effect of trade policy and relative price changes. Section V

provides some conclusions.
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II. THE BASIC MODEL

Let us consider an economy in which a single final good is produced, with a fixed-

coefficient production function, using labor and capital goods of different vintages.6  If

factors of production are fully employed, the final good is produced with the following

production function:

where Y(v,t) is output of the final good produced at time t using capital goods of vintage

v, LY(v,t) is labor used to produce that output, and K(v) is the composite of capital goods

of vintage v.

Since the final good can be produced using capital goods of different vintages, total

production in the final good sector at time t, Y(t), is given by

where t - T is the vintage of the oldest machines in use, and T is the economic life of the

machines.

                                           
     6  In this respect, our vintage model is akin to that of Solow, Tobin, von Weizsacker,
and Yaari (1966).

t)  ,(v L b(v) = K(v) a(v) = t)  ,Y(v Y

dv t)Y(v,  = Y(t)
t

tT
∫
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In this economy, at any time t, n(v) differentiated capital goods are produced by n(v)

monopolistic competitive firms, each of them producing Ii(v) units of capital good i of

vintage v.  The composite of those capital goods of vintage v, K(v), is

where Ii (v) stands for units of capital good i of vintage v, and n(v) is the number of

differentiated capital goods of vintage v.

In the production of these capital goods we assume increasing returns to scale,

both external and internal; this has family resemblance to the internal and external scale

economies assumed in the production, through the R & D process, of differentiated capital

goods in recent growth models, like that of Romer (1990). To produce each capital good

of vintage v, F/KH(v) units of labor has to be invested first, where KH(v) is the stock of

general knowledge capital available at the moment of producing the new machines of

vintage v. Once the fixed cost in terms of labor is invested, it is possible to produce ß(S(v))

units of  Ii (v) with one unit of labor, where S(v) is the quality index of machines of vintage

v. This implies that

That quality index increases as new machines are produced, according to the

following equation

1<  < 0         ]di  (v) I  [ = K(v)
1

i

n(v)

0

αα
α∫

(v) L (S(v)) = (v)I ii β
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where, as we shall see later, I(v) = Ii(v) for all i. Thus, we have internal scale economies

through the fixed cost and external scale economies through learning effects. The learning

effect operates both on reducing the fixed cost as general knowledge capital improves and

on the variable cost through the cumulated quality index, S(v). This index has a learning

effect akin to that of the "serial number of machines" used in Arrow's (1962) original

learning by doing model.

With these assumptions, the variable cost of producing capital goods of vintage v

is w(t) Li (v), where w(t) is the wage rate at time t. Using (4), we can write the marginal cost

of producing capital good i of vintage v at time t, for all i, as

Because of the symmetric way in which each capital good i of a given vintage v

enters in the sub-production function (equation (3)) and also because the cost of producing

each capital good of a given vintage is the same, equal quantity of the  capital goods of

the same vintage are produced, that is,  Ii (v) = I (v) for all i. Then, from (3) it is easy to

obtain that

Let X(v) = ∫0n(v) Ii(v)di  be the aggregate demand for capital goods of vintage v. 

I(v) n(v) = (v) S&

(S(v))
w(t) = t)MC(v,

β

n(v) I(v) = K(v)
1

 
α
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Since Ii(v) = I(v) for all i, then

Using equation (8), equation (7) can be rewritten as follows:

Let us assume that in the final good sector technological progress is purely labor-

augmenting. Additionally, to simplify the model's solution, we are going to assume that

labor productivity in the production of final goods is also a function of past experience and

depends on the quality index, that  is,

and

Firms in the final good sector are competitive and maximize profits. They maximize

pf(t) = PY(t) ∫t-T t Y(v,t)dv - ∫t-T t w(t) LY(v,t)dv - ∫t-T t [ ∫0 n(v) Ri(v,t) Ii(v) di]dv, where PY(t) is the

price of the final good, and Ri(v,t) is the price of the capital good i of vintage v, at time t.

Taking the price of the final good as the numeraire, so that this price is unity, the first order

conditions of profit maximization are:

I(v) n(v) = X(v)

X(v) n(v) = K(v)
1

 
α
α

b(S(v)) = b(v)

a = a(v)
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In the capital good sectors, to maximize profits, each monopolistic competitive firm

equates marginal revenue to marginal cost. Marginal revenue is equal to MRi(v,t) = (1 -

1/?)Ri(v,t), where ?  is the price elasticity of the demand for Ii(v). From equation (13) we

have that  ? = 1/(1-a). Therefore, MRi(v,t) = aRi(v,t), whereas the marginal cost is given by

equation (6). Thus, each firm in the capital good sector maximizes profits setting aRi(v,t)

= w(t)/ß(S(v)), which implies that7

In the final good sector, a machine is scrapped when the wage bill paid to operate

it exhausts the value of total output.8 Then, from equation (1) the following scrapping

condition is obtained

                                           
     7  Equation (14) states that profit maximization in the capital good sectors implies that
Ri(v,t) = R(v,t), for all i, which according to equation (13) allows us to conclude that Ii(v) =
I(v) = [ aK(v)(1-a)/R(v,t)]1/(1-a), for all i.

     8 Machines of vintage v are scrapped when w(t)LY(v,t) = Y(v,t), that is, when w(t) =
Y(v,t)/LY(v,t). 

 w(t)= b(S(v))

] 
t)  ,(vR
)K(va 

 [ = (v)I 1
1

i

1

i α

α

(S(v)) 
w(t) = t)  ,(vRi βα
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Let PK(v,t) be the price of the composite of capital goods K(v). Then the following

relationship must hold:  PK(v,t) K(v) =  ∫0 n(v) Ri(v,t)Ii(v)di. But since Ii(v) = I(v) and  Ri(v,t) =

R(v,t) for all i, from this last relationship we obtain

Combining equations (7) and (16), the price of the composite of capital goods is

determined by

In the final good sector, wages plus quasi-rents must exhaust the value of output,

that is,

where ?K(v,t) is the quasi-rents of the composite of capital goods of vintage v at time t.

Using equations (1), (10), (11) and (15), from equation (18) we find that the quasi-rents are

given by

 w(t)= T)) b(S(t  = T)  b(t

I(v) t)  ,R(v n(v) = K(v) t) ,(vPK

n(v) t)  ,R(v = t)  ,(vP
1

K α
α

t)  ,(v K(v) +  w(t)t)  ,(vL = t)  ,Y(v KY ρ
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In equilibrium, the price at time t of the composite of capital goods K(v) must be

equal to the present value of the expected quasi-rents, discounted at the market rate of

interest, r(t). Since PK(v,t) is the price of K(v) at time t, then

As v = t, equation (20) gives PK(t,t), which is the market price of the composite of

capital goods at the moment of their construction. Since in steady-state the interest rate,

r, is constant, setting v = t equation  (20) becomes

Labor market equilibrium requires that the supply of labor at time t be equal to the

sum of labor used to produce final goods and capital goods. Assuming that labor supply

is constant and equals L, this implies that

where LY (t) is labor used to produce final goods, and ∫t-T t n(v)Li(v) dv is labor used to

produce capital goods. Since F/KH(v) units of labor are required to develop capital goods,

and since to obtain a simpler solution we are assuming that the fixed costs are paid each

] 
b(S(v))

T)) b(S(t    1 [a  = t)  ,(vKρ

du e r(z)dz  u)  ,(v  = t)  ,(vP

u

t

 
K

t

K ∫∫ρ
τ

du e u)  ,(t  = t)  ,(t P t)  r(u 
K

T+t

t

K ρ∫

F  + dv (v)L n(v)   + (t)L = L i

t

tT

Y ∫
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period, at time t,  ∫t-T t n(v)F/KH(v) dv is the amount of labor devoted to research and

development.  Let us now suppose that the stock of capital knowledge is proportional to

the economy's cumulative experience in research and development. With that assumption

and by an appropriate choice of units, the factor of proportionality may be set to one, so

that KH(v) = n(v)T.9 Therefore, at time t, labor employed in the development of new capital

goods is given by  ∫t-T t n(v)F/KH(v) dv = F, which is the third term of the right hand side of

equation (22).

Labor employed in the production of final goods is equal to  LY (t) = ∫t-T t LY(v, t) dv.

But from equation (1) we have that LY(v, t) = a(v) K(v)/b(v), and since from (7), (8), and (11)

we know that K(v) = I(v) n1/a, X(v) = n(v) I(v), and a(v) = a,  then LY(t) =∫t-Tt n(1-a)/aX(v)/b(v) dv.

Therefore, using this last expression together with equations (4) and (8), the labor market

equilibrium condition becomes

The operative profits at time t of a typical firm that produces capital good i of

                                           
     9 While one may postulate that R&D experience is proportional to KH(t) = ∫-∞ t n(v)dv,  in
this model we are assuming that this experience "depreciates" over time, so that only the
experience with the recent capital goods is predominant in the determination of the stock
of knowledge capital. Therefore, an "approximation" for the stock of knowledge capital is
given by KH(t) = ∫t-Tt n(v)dv. We will see later that due to the assumption that technical
progress in both the final good sector and the capital good sectors depend on the quality
index, and as a result both grow at the same rate, it is obtained that n(v) = n for all v. This
implies that KH(t) = n(t)T.

F  +  dv 
(S(v))
X(v)

   + dv 
b(S(v))

X(v)
 n(v) a  = L

t

tT

1 
t

tT β
α
α

∫∫
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vintage v are equal to p(v,t) = R(v,t) I (v) - w(t) LI(v). But since from (4) we know that LI(v)

= I(v)/ß(S(v)), then p(v,t) = [ R(v,t) - w(t)/ß(S(v)) ] I(v). Using equation (14), this last

expression can be rewritten as  p(v,t) = (1 - a)  R(v,t) I(v).

There is free entry in the capital good sectors. Therefore, firms in these sectors are

going to enter until the operative profits are equal to the entry costs, that is, until p(v,t) =

(1 - a)  R(v,t) I(v) = w(t) F/n(v)T.10  Recalling that I(v) = X(v)/n(v), and using (14), the

following zero-profit condition is obtained

To close the model it remains to specify the equilibrium in the final good sector. To

this end, let us assume that consumers save a constant fraction, s, of their income,11 so

that  total investment at time t, IT(t),  is given by

                                           
     10 Here we are assuming that the fixed costs are paid each period by the monopolistic
competitive firms. However, this is a simplifying assumption which allows us to obtain a
cleaner solution. The model has been solved for the general case in which in equilibrium,
at time t, the entry costs w(t)F/n(v)T (paid once) are equal to the present value of the
stream of profits, that is, w(t) F/n(v)T = ∫tt+T p(v, u) e-∫ r(z)dz du. Under certain conditions on
the parameters, the results obtained for that general case are similar to the ones obtained
here. The proof is available on request from the authors.

     11 We have worked out a more general non-constant savings rate case (with a constant-
elasticity intertemporal utility function) for the one-sector model, but we omit it here.

T
F (S(v)) 

)  (1
 = X(v) β

α
α

(t)Q  s= (t)I TT



17

where QT(t) is the economy's income (or total output).

III COMPARATIVE DYNAMICS

Having specified the basic equations of the model, in this section we are going to

show how the economic life of the machines, denoted by T, and the growth rate of the

economy are jointly determined.

To simplify the model's solution, let us now assume that ß(S(v)) = ß S(v), and

b(S(v)) = b S(v), where ß and b are positive constants. Since from (8) we know that X(v)

= n(v) I(v), equation (5) implies that the quality index, S,  accumulates according to dS(v)

/dt = n(v) I(v) = X(v), which in turn implies that

Substituting equation (24) in (26), and then integrating both sides of the resulting

equation, it is obtained that ß(S(v)) = ß e?v and b(S(v)) = b e?v, where ? = ßaF/(1-a)T. With

these results, equation (19) becomes    

S(v))
X(v)

 = 
S(v))

n(v) I(v)
  = 

S(v)
(v)S&

] e    1 [a  = t)  ,(v v)  T  (t 
K

λρ
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Substituting equation (27) in (21) and then integrating, after some algebraic

manipulations, we get that  the price of the composite of capital goods at the moment of

their construction is equal to

From equation (17) we have that as v = t, n(v=t)(1-a)/a = R(t,t)/PK(t,t) and from (14) we

know that R(t,t) = w(t)/aß(S(t)). Therefore, n(v=t)(1-a)/a = w(t)/[aß(S(t))PK(t,t)]. Since  ß(S(v))

= ß e?v, substituting equation (28) in this last expression, for the case in which v = t, and

using the scrapping condition, equation (15), it is obtained that the number of differentiated

capital goods of vintage v, when they are first produced, that is,  as v = t,  is given by

Equation (29) implies that if the rate of interest and the economic life of the

machines are constants, the number of differentiated capital goods is the same for all

vintages.12 Replacing equation (24) in the resource constraint equation (23)), after

integrating we get

                                           
     12 This result is mainly obtained due to the assumption that technical progress in both
the final good sector and the capital good sectors is a function of the quality index S(v).
Without this assumption, n(v) would not be the same across vintages and it would be much
more complicated to derive an analytical solution for the model.

] 
)(r  r 

e  + er   )(r  
[a  = t)  ,(tP

rT T 

K λ
λλ λ

]e + er  )(r [
)(rr  

a  
e b = n(v) rTT

 F]
1

[1

λλ
λ

αβ λ
α
αβ

α
α
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 To be able to solve the model, it remains to determine the economy's income. To

do so, let us define the value of the economy's stock of capital, KT(t), as follows:

Differentiating this last equation with respect to time we obtain that

But K(t)PK(v,t) = n(v=t)R(t,t)I(t) is the economy's gross investment at time t, IT(t), and

since dK(v)/dt = 0, equation (32) becomes

In turn, if we differentiate equation (20) with respect to time we find that

] 1 + 
b

na    [ 
)  (1

F = L
1 
α
α

αβ
α

dv K(v) t)(v,P  = dv I(v) t)R(v, n(v)  = (t)K K

t

tT

t

tT

T ∫∫

dv t)(v,P K(v)  + dv t)(v,P (v)K  + t)(t,P K(t) = (t)K K

t

tT

K

t

tT

KT &&& ∫∫

dv t)(v,P K(v)  + (t)I = (t)K K

t

tT

TT && ∫
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which implies that dPK(v,t)/dt = rPK(v,t) - ?K(v,t). Substituting this expression in equation

(33) we have that

Equation (35) can be rewritten as follows

This last equation states that gross investment, IT(t), minus net investment,

dKT(t)/dt, is equal to gross quasi-rents,  ∫t-T t K(v)?K(v, t) dv, minus net profits, rKT(t). Both

terms of equation (36) can be identified as "true depreciation." Since we are ignoring

physical depreciation, as in Solow, Tobin, von Weizsacker and Yaari (1966), only

"obsolescence" of the machines account for "true depreciation." Knowing that, the

economy's GDP, from the income side, must be equal to wages plus capitalists' gross

income, which in turn must be equal to net profits plus "true depreciation", that is,

capitalists' income is equal to rKT(t) + IT(t) - dKT(t)/dt. This implies, using equation (36), that

GDP from the income side, QT(t), is given by

r = 
t)(v,P
t)(v,P + 

t)(v,P
t)(v,

K

K

K

K &ρ

dv t)(v, K(v)   (t)Kr  + (t)I = (t)K K

t

tT

TTT ρ∫&

(t)Kr   dv t)(v, K(v)  = (t)K  (t)I TK

t

tT
TT ρ∫&
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where, as was mentioned before, L is the amount of labor available in the economy.  Then,

substituting equations (9) and (27) in (37), and then using (24), after integrating, the

following equation is obtained

In turn, total investment at time t, IT(t) = n(v=t)R(t,t)I(t). But n(v=t)I(t) = X(t), and from

equations (14) and  (24) we know that R(t,t) = w(t)/aß(S(t)) and X(t) = a ß(S(t)) F /(1 - a)T,

which implies that  IT = w(t)F/(1-a)T. Replacing equation (15) in this last expression, we

obtain that

And, finally, replacing equations (38) and (39) in equation (25), after some

algebraic manipulations, we get that

dv t)(v, K(v)   +  L  w(t)= (t)Q K

t

tT
T ρ∫

e nF
1

a   ]e  [1 ena  +  w(t)L= (t)Q (tT)1Tt1
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The economy can be described by a system of three equations ((29), (30) and (40))

with three unknowns: the number of differentiated capital goods of a given vintage, n, the

rate of interest, r, and the economic life of the machines, T. Combining those three

equations, the following expression can be obtained, through which the economic life of

the machines, T, is determined

Equation (41) can be solved graphically in a plane in which the left and right hand

side of that equation are measured along the vertical axis, and T is measured along the

horizontal axis. As shown in figure 1, in that plane the LHS schedule is represented by an

horizontal line. In turn, the RHS schedule tends to infinity as T approaches zero, and tends

to - aßL/[eßaF/(1-a) - 1 - aßF/(1-a)] as T tends to infinity. Therefore, in figure 1, the RHS can

be represented by a downward sloping curve, which intersects the horizontal axis as T =

F/[(1-a)sL]. The economic life of the machines, T, is determined at the intersection point

of both schedules, point E. As the labor force, L, increases, the LHS curve would shift

upwards, to LHS', whereas the RHS curve would shift downwards, to RHS1. Therefore, in

the new equilibrium point, point E1, the economic life of the machines,T, is smaller.

Recalling that w(t) = be?(t-T), from equation (38) it is easy to see that the growth rate

of income, QT(t) is equal to ? = ßaF/(1-a)T. Therefore, this vintage capital model predicts

that as the labor force, L, increases, the economic life of the machines,T, decreases and

the rate of growth of the economy rises. This growth effect of a larger labor force is similar

to the size or scale effect noted in the new growth literature.
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Figure 2 illustrates the impact of an increase of the saving rate on T. In that figure,

as the saving rate, s, increases, the LHS curve would remain unchanged, but the RHS

schedule would shift downwards, to RHS1. Thus, in this case, also in the new intersection

point, E1, the economic life of the machines is smaller and consequently the growth rate

of income increases. Again, this growth-promoting effect of higher saving rates is similar

to that obtained in the new growth models.

While both of these results are comparable to those obtained in other growth

models, in this vintage capital model both the size effect of a larger labor force and higher

savings rates reduce the time of profitable operability of machines, and thus modernizes

the economy's stock of capital sooner, whereby the productivity of the economy grows

faster.

III THE TWO-SECTOR EXTENSION

In this section we are going to analyze how trade policies, by influencing the

relative price of goods, can affect the economic life of the machines and thus the long-run

rate of growth of the economy.

To this end, let us now consider an economy in which two final goods are produced:

good Y and good Z. For simplification, good Z is produced using only labor, whereas good

Y is produced using labor and capital goods of different vintages. The production function

used to produce good Y is the same as in section II, and is given by equation (1). Thus,

equations (1) to (21) of the previous section remain unaltered and describe the production

side of the capital intensive sector. In this two-sector economy, the price of good Y is taken

as the numeraire. On the other hand, output in sector Z, the labor intensive one, is
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produced using labor as the only variable factor of production , which is given by

where Z(t) is output of good Z, LZ(t) is labor employed in the production of good Z, A(t) is

a productivity parameter, and N is the fixed amount of land available in the economy.

With this production function, profit maximization in sector Z implies that

where PZ(t) is the relative price of good Z at time t. Since it is assumed that labor market

is competitive, equations (15) and (43) imply that

In turn, labor market equilibrium requires that the supply of labor, L, be equal to the

sum of labor used to produce both final goods and capital goods, that is,

1 <                        N (t)L A(t) = Z(t) 1
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where LY (t) and LZ(t) stand for labor employed in the production of final goods Y and Z,

respectively, and as was explained in section II, ∫t-T t n(v)Li(v) dv is labor used to produce

capital goods, and F is labor devoted to R & D.

Following the same procedure as in the previous section (see equation (23), (24)

and from (26) to (29)), equation (45) becomes

Then, let us assume that it is the case of a two-sector small open economy in which

both final goods can be traded internationally. In the absence of barriers to trade, and

under the assumption that the economy is small, the "law of one price" applies, and

consequently the relative price of the labor intensive good (Z) is determined in the world

economy and is taken as given by the small open economy. From equation (44), this

implies that  PZ(t) is given by

(t)L + F  + dv (v)L n(v)   + (t)L = L Zi
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To close the model we need to specify the equilibrium in the final good sectors. Let

us assume that consumers spend a constant fraction of their income on the consumption

of the two final goods, that is,

where c1 and c2 are the fractions of income that are spent on the consumption of good Y

and good Z, respectively, and as before QT(t) is the economy's income (or total output).

In this case also the economy's income, QT(t), is obtained adding labor income and

capitalists' income, as was done in section II, and is given by equation (38).

Also in this small open economy, at any time t, each household devotes its income

to consume the homogeneous final goods or to save. Therefore, the equilibrium in the

product markets requires that total income be equal to total expenditure, that is,

where, IT(t) is total investment at time t. Implicitly, in equation (50) it is assumed that trade

is balanced, so that  NXT(t) = 0, where NXT stand for net exports. This implies that

(t)Q c = (t)C T1Y

(t)Q c = (t)C (t)P T2ZZ

(t)Q = (t)I + (t)C (t)P + (t) C TTZZY
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where NXY(t) and NXZ(t) stand for net exports of good Y and good Z, at time t, respectively.

 Substituting equations (48) and (49) in (50)  we have that

where s is the saving rate, and IT(t) = n(v=t)R(t,t)I(t) is gross total investment at time t,

which is given by equation (39). Replacing equations (38) and (39) in equation (52), after

some algebraic manipulations, we get that

Since it is the case of a small open economy, in sector Z total consumption of good

Z plus net exports of that good must equal total output, that is, CZ(t) + NXZ(t) = Z(t) = A(t)

LZ(t)? N1-?.  From equation (49) we know that PZ(t)CZ(t) = c2QT(t), which implies that c2QT(t)

+ PZ(t)NXZ(t) = PZ(t)Z(t) =  PZ(t)A(t) LZ(t)?N1-?. But from equation (44) we know that w(t) =

?PZ(t) Z(t)/LZ(t).  Using these expressions, we obtain that

0 = (t)NX (t)P + (t)NX = (t)NX ZZYT
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Using equation (38), and since w(t) = be?(t-T), where ?= ßaF/(1-a)T, labor employed

in the production of final good Z can be rewritten as follows

 If in steady-state technical progress in sector Z grows at the same rate as that of

in sector Y, that is, if A(t) = A0e?t, where A0 is a constant, from equations (29), (46), (47),

(53) and (55), the following relationship can be obtained, through which the economic life

of capital is determined

w(t)
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As shown in figure 3, equation (56) can be solved graphically, in a plane in which

the left and right hand side of that equation are measured along the vertical axis, and the

economic life of the machines, T, is measured along the horizontal axis. In that plane, the

LHS schedule can be represented by an horizontal line. In turn, the RHS schedule tends

to infinity as T approaches zero, and tends to - aßL/[eßaF/(1-a) - 1 - aßF/(1-a)] as T tends to

infinity. Therefore, in figure 3, the RHS can be represented by a downward sloping curve,

which intersects the horizontal axis as T = F/[(1-a)sL]. The economic life of the machines,

T, is determined at the intersection point of both schedules. As the labor force, L,

increases, the LHS curve shifts upwards, whereas the RHS curve shifts downwards.

Therefore, in the new equilibrium point, E1, the economic life of the machines is smaller.

In this case, as in the one-sector model, the economy's income is given by equation (38),

whereby the growth rate of income (and income per-capita) is equal to ? = ßaF/(1-a)T.

Thus, this two-sector extension of the model predicts also that as the size of the labor

force increases, T falls, and income grows faster.

Figure 4 depicts the case of an increase of the saving rate. As in the previous

section, in this case if the saving rate, s, increases, the LHS curve would remain the same,

but the RHS schedule would shift downwards. Thus, at the new intersection point, E1, the

economic life of the machines would be smaller and consequently the growth rate of

income would increase.

Finally, in this open economy, if the relative price of good Z, PZ, decreases, perhaps

due to the adoption of trade policy aimed at protecting the more capital intensive industry
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(sector Y), the LHS curve shifts upwards, whereas the RHS curve remains unaltered. In

that case, as shown in figure 5, in the new equilibrium point, E1, the economic life of the

machines, T,  decreases and consequently the growth rate of the economy ? = ßaF/(1-a)T

increases.

IV CONCLUSIONS

In this paper we have tried to add an extra dimension to the standard endogenous

growth story. This is provided by the endogenously determined economic life of capital,

T, when machines embodying the different technology of their different dates of

construction coexist as is usual in the old vintage capital models. But unlike in the latter

models, T will now have an effect on the long-run growth rate of the economy. Policies that

affect T will thus change this growth rate. For example, we show in section III that an

increase in the savings rate will lower T and raise the growth rate. Similarly, in the

two-sector version of the basic model presented in section IV, we show that if the two final

goods are tradeable, protection of the capital-intensive good may increase the growth rate

by reducing T.

We should add that the purpose of this paper is to illustrate a richer variety of

questions that may open up in the endogenous growth theory literature if we borrow some

aspects of the vintage capital models, but our answers to them should not be interpreted

as conclusive. This is particularly because some of those answers may be model-specific,

as is not uncommon in much of the endogenous growth literature. For example, there is

a whole slew of assumptions to fit the model into the strait-jacket of the steady state. Those

who have dabbled in the old vintage models are aware that these models can become very

cumbersome once we are off the steady state. Yet this area of transitional dynamics is an



31

obvious area that needs to be explored; important beginnings have been made by

Benhabib and Rustichini (1993) and Boucekkine, Germain and Licandro (1997).  The

former paper has a vintage-capital version of an optimal growth model to study the volatile

behavior of investment and growth.  The latter paper provides a study of replacement

dynamics in a model of optimal growth with endogenous scrapping.  Our full-employment

model also ignores the importance of vintage capital for issues like the link between growth

and unemployment, as discussed in Aghion and Howitt (1998, chapter 4).  We have also

ignored structural problems arising from vintage human capital, as analyzed, for example,

in Chari and Hopenhayn (1991).

We have also made a number of other assumptions to keep our analysis tractable,

for example about the fixed-coefficients production function with each vintage of machines,

no machines used in producing one of the final goods in the two-sector version, similarity

of rates of technical progress in final goods and in capital goods production, about the

particular approximate measure of the stock of knowledge capital, and so on. The

fixed-coefficients production function assumption makes our model akin to what used to

be known as a "clay-clay" model in the vintage capital literature, the best example of which

is that of Solow, Tobin, von Weizsacker, and Yaari (1966). It is well-known in the vintage

literature -- see, for example, Bardhan (1969) -- how introducing some elasticity of

substitution between capital and labor ex ante (i.e., prior to the installation of the

machinery), but not ex post (or what used to be called a "putty-clay" model), can have a

significant effect on the comparative-dynamic results with respect to T, the economic life

of capital.

Another assumption that needs to be relaxed is that of tradeability only of final

goods, but not of the capital goods, in our two-sector version where we discuss the impact

of trade policy on the growth rate. This may have a particular bearing on the discussion

relating to East Asian growth where trade allowing for imports of machines from abroad

embodying the latest technology is supposed to have played a very important role.
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