Skip to main content
eScholarship
Open Access Publications from the University of California

UCSF

UC San Francisco Previously Published Works bannerUCSF

Gs G protein–coupled receptor signaling in osteoblasts elicits age‐dependent effects on bone formation

Published Web Location

https://doi.org/10.1002/jbmr.3
No data is associated with this publication.
Abstract

Age-dependent changes in skeletal growth are important for regulating skeletal expansion and determining peak bone mass. However, how G protein-coupled receptors (GPCRs) regulate these changes is poorly understood. Previously, we described a mouse model expressing Rs1, an engineered receptor with high basal G(s) activity. Rs1 expression in osteoblasts induced a dramatic age-dependent increase in trabecular bone with features resembling fibrous dysplasia. To further investigate how activation of the G(s)-GPCR pathway affects bone formation at different ages, we used the tetracycline-inducible system in the ColI(2.3)(+)/Rs1(+) mouse model to control the timing of Rs1 expression. We found that the Rs1 phenotype developed rapidly between postnatal days 4 and 6, that delayed Rs1 expression resulted in attenuation of the Rs1 phenotype, and that the Rs1-induced bone growth and deformities were markedly reversed when Rs1 expression was suppressed in adult mice. These findings suggest a distinct window of increased osteoblast responsiveness to G(s) signaling during the early postnatal period. In addition, adult bones encode information about their normal shape and structure independently from mechanisms regulating bone expansion. Finally, our model provides a powerful tool for investigating the effects of continuous G(s)-GPCR signaling on dynamic bone growth and remodeling.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content

This item is under embargo until December 31, 2999.