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The Core and the Hedonic Core:
Equivalence and Comparative Statics

Abstract

For cooperative games in which players are identified with their attributes, we
introduce the notion of the "hedonic core™ there is a linear function on attributes that
describes the payoff of each player or group of players. We show that for a class of large
games with transferable utility, the hedonic core approximates the core. Equivalence of the
core and the hedonic core has two implications: (i) Nontrivial groups of players whose
attributes are close will have core payoffs that are close. (ii) The payoff received by a
nontrivial group of players with given attributes must be similar in any two utility vectors
in the core. Using the notion that a game "exhausts blocking opportunities”, we show that
if this condition is satisfied in each of two finite games drawn according to distributions of
attributes that weight a particular attribute differently, the hedonic payoff to that attribute
is larger (no smaller) in the game that gives it less weight.

Greg Engl
Department of Mathematics, U.C., Berkeley

Suzanne Scotchmer
Graduate Schoo! of Public Policy, U.C., Berkeley




1 Introduction

When the productivity of a coalition depends only on the characteristics or attributes
of its members, we might naturally conjecture that core payoffs must depend on the
attributes in a systematic way. We prove this conjecture for large cooperative games with
transferable utility. Our main assumptions are that players’ attributes or endowments are
drawn independently from a distribution with bounded support, and that the payoff of a
coalition depends only on the total attributes of the coalition’s members. We show that if
the number of players is large, then players’ payoffs in the core are closely approximated
by a linear function of their attributes which we call a "hedonic payoff.”

We represent feasible payoffs with a characteristic function that describes the total
utility available to a coalition as a function of its total attributes. If this characteristic
function is not homogeneous, the core might be empty. Our approximation result is
therefore for the epsilon-core, and applies also to the core. We show that a linear function
on attributes approximates payoffs in the epsilon core except possibly for coalitions that
represent a small fraction of the player set. This fraction can be arbitrarily small for a
sufficiently large game. For a survey of similar results for games derived from exchange
economies, see Anderson (1991).

The equivalence of the core and the hedonic core has several consequences. First,
while cére payoffs are not unique, they are almost unique in the sense that with high
probability any two core payoffs are close. Second, nontrivial groups of agents with similar
attributes receive similar payoffs in the core. These conclusions are immediate in the
continuum framework of Aumann and Shapley (1974), who assume that there are no scale
effects in feasible payoffs. Our approximation theorem verifies that for purposes of

characterizing the core, large finite games are similar to continuum games, and for this the




homogeneity assumption is unnecessary.

Since the core and hedonic core are equivalent for large games, it is of interest to
ask how the payoff to an attribute varies with how heavily it is represented in the player set.
We show that scarcity leads to high payoffs: If an attr_ibute is represented more heavily in
one game than another, the hedonic payoff to that attribute is lower. This result requires
that each game "exhausts blocking opportunities” in a sense we define below.!

In Section 2 we define the hedonic core and epsilon hedomnic core, and describe an
example showing that the core and hedonic core might not coincide for small player sets.
In Section 3 we discuss the approximation of the core by the hedonic core. In Section 4 we .
discuss comparative statics of the hedonic core. Section 5 comments more generally on the

idea of hedonic prices and discusses economic applications of this model.

2. Core Payoffs and Hedonic Core Payoffs

A player set will be represented by a set of indices, N = {1,..,n}. A coalition, say
S, is a nonempty subset of N. A player i will be described his or her vector of attributes
AleRT\{0}. The attributes represent characteristics like work skills or resource endowments
and Al, represents the amount of the t-th attributf; that player i possesses. The attributes

of a coalition S are simply the sum of members attributes, AS =z, ¢ Al It will be useful

! Notions of exhaustion go back at least as far as Buchanan (1965), writing on club economics, and these
continue in the subsequent literature. Most notions of exhaustion apply to the optimal sizes of groups: after a
group tcaches some minimal size, the average return increases very slowly or declines. Such definitions apply
to the "technology” for producing utility or to the characteristic function. For Wooders’ account of her own
contributions on this subject, see Wooders (1992). For our equivalence proposition we usc a uniform
convergence assumption on the characteristic function. This condition is satisfied by many assumptions of
previous authors, but is broader. For the comparative static result we require "exhaustion of blocking
opportunities”, which is a condition on the game as well as the technology. (Under our condition on the
characteristic function, blocking opportunities can be exhausted in large finite games, as discussed below.) The
definition follows Scotchmer (1992), but see also "exhaustion of gains to scale" defined in Scotchmer and
Wooders (1988).
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to refer to the composition of a player’s or coalition’s attributes, a® = AS/|AS|, where |+|
is the norm defined by |A®| = £A° A composition is in the simplex A = {aeRT | 5, a,
= 1}

Our premise is that the utilities achievable by a coalition depend only on the
coalition’s attributes, and not otherwise on the number or identities of its members. Thus,
we assume that feasible utilities are described by a function V: RT\{0} -~ R where V(A)
is the total consumption or profit available to a coalition or individual with attribu_tes A
We assume that V is superadditive: V(AS+A%) > V(AS) + V(AY).

A game is an ordered pair, (N,V), where N is the player set and V is a function as
above. We define the core in the usual way: A payoff is a vector U=(U,,...,U,) in R® such
that £,y U' < V(AY). A payoff UeR" is in the core of a game (N, V) if no coalition ScN |
could block U. A coalition ScN can block U if z, U' < V(AS). Since the core may be
empty, we will also discuss ¢-cores. Payoffs UeR" are in the g-core if no coalition ScN
could e-block. A coalition ScN can g-block if =, U < V(AS) - £|A%]2 We will let
C.(N,V) denote the ¢-core of a game (N,V), for £20, so that C(N,V) represents the core.

A hedonic payoff for the game (N,V) is a vector weR" such that weA" < V(AN),
where AN represents the attributes of the coalition of the whole, N. The vector w is called
a hedonic payoff because it represents payoffs to attributes rather than to players. The
paydff to player i in the hedonic core is weAl, A coalition ScN can block a hedonic payoff

w if weAS < V(AS), and can g-block if weAS < V(AS) - £|AS|. The g-hedonic core of a

game (N,V), for £20, denoted by CY(N,V), is the set of all hedonic payoffs that cannot be

% The usual definition of the epsilon core is that no coalition can increase its utility by more than epsilon
per capita. We have defined it differently for convenience, but under our assumptions the two definitions are
equivalent.
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¢-blocked by any coalition SCN. We refer to Cj(N,V) as the hedonic core.

It is easy to verify that for £>0, and for a sufficiently large game that depends on ¢,
the ¢-hedonic core is nonempty. (See the appendix, Proposition A.1.) It is also easy to
verify that if w is in the ¢-hedonic core, then the payoffs (w+Al,..,w+ A") are in the ¢-core,
which is consequently nonempty.> The proposition in Section 3 addresses the converse:
whether every payoff in the e-core corresponds to a payoff in the e-hedonic core.

Figure 1 shows an example of a game with three players and two attributes. The
simplex A is the line above which the concave function V is drawn. For pﬁrposes of
representing our arguments in diagrams such as Figure 1, it is convenient to define, for fixed
payoffs (U,,...,U,), the total payoff of a coalition §, US = 3, U, and its payoff normalized
by its attributes, u® = US/|AS|. Throughout the paper we use the notation p° = (a%u’) and
p'=(a',u’), where u’ or u' are derived from a payoff U in the core or £-core.

In Figure 1 the compositions of the three players’ attributes are labeled a' = A'/|All,
i=123. The composition of the game is a~ = (A'+A2+A%)/|A'+A?+A%|, and it is a
convex combination of al, a%, and a®. We assume for this example that V is homogeneous,
and together with superadditivity, this implies that V is concave as drawn. On the simplex
the function V represents feasible payoffs per unit attribute that a coalition possesses; €.g.,
singleton coalitions can achieve V(A)/[A!| = V(a), i=1,23. Similarly a two~pefson
coalition {2,3} can achieve a total of V(a!**!) per unit attribute they possess. The linear
fﬁnction w represents a payoff in the hedonic core, and player i’s payoff in the hedonic core,
normalized by the size of his attributes, is the point on the line above his composition al,

namely wea',

*In general it is harder to prove nonemptiness of the epsilon core than under our assumptions; see, €.g,
Wooders and Zame (1984).
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Figure 1 also shows payoffs in the core, normalized by attributes. The points p'are
(au) = (Al/]Al] JUY/|A']), i=1,2,3. The height of the point p' above the simplex is u"
These core payoffs are not hedonic payoffs, since they do not lie on a line. They are,
however, in the core. No singleton coalition could block because each point p' lies strictly
above v. The coalition of the whole cannot block because their total payoff u'?* =
wea(l23 is no smaller than V(a{'**}). By Lemma 1 below, the coalition {1,3} could block
only if the line that connects p' with p* is below V(a!**) at the composition at™*}. As

drawn, no combination of two players could block.

3. Equivalence of the Epsilon Core and Epsilon Hedonic Core

The following example shows that in general we cannot approximate the epsilon core
uniformly (for all players) by a linear function. This example shows that the failure to
converge uniformly is due to the weak blocking condition of the epsilon core, and not due
to the fact that V may not be homogeneous.

Example: Suppose there are n (a positive integer) players. n1d the aggregate payoff
to a coalition depends only on the number of members. There is only one attribute, and
every player possess it in the same amount, say Al = 1. The attributes of a coalition S are
the number of players in S, which we will denote by n. A payoff U is in the g-corg if for
all ScN, =, U' > V(nS)-nc. Assume that payoffs can be described by a function
V: R,\{0}~R,that satisfies lim_[V(n)/n] = sup,,[V(n)/n] = v < «. Two such V
functions are given in Figure 2, which depicts the standard example from "club theory", and
Figure 3, where V is homogeneous. We will index a sequence of games by n, the number
of players. The nth game is (N°,V). Given ¢ >0, for each n sufficiently large, the following

payoffs are in the e-core:




FIGURE 2

V(n) = vn

FIGURE 3




U! = (¢/2)(n-1), U' = [V(n) - (0-1)e/2)}/[n-1], i=2,...n

The payoffs are feasible because U' + %,,U' = V(n). To see that no coalition can e-
block, first consider coalitions not containing agent 1. Blocking by such a coalition would
require V(n%) > g, U + n’e = (0%/(n-1)) [V(n) - ((n-1)£/2)] + n’€, which implies that
V(n%)/n® > V(n)/(n-1) + £/2, and therefore that v 2 V(n®)/n® > [V(n)/n] [n/(n-1)] + /2.
But since [V(n)/n] [n/(n-1)] - v as n becomes large, S cannot block. A coalition of size n®
containing player 1 also cannot block (when n is large) because the total payoff of the
coalition is even larger when S contains player 1, which makes it even harder to improve by
more than .

Since a hedonic payoff would treat the players equally, and since Ul as no, while
U'sv-¢ /2 for all other players, the ¢-core payoffs do not converge uniformly to hedonic core
payoffs. [J

Because this example shows that in general we cannot get uniform convergence for
the epsilon core, the next proposition shows "almost” uniform convergence: alinear function
of attributes closely approximates payoffs in the e-core for all coalitions except ones that
are a small fraction of the player set. The fraction can be arbitrarily small provided the
player set is large enough. In the example, the fraction of the player set represented by
ﬁ)layer 11is not fixed. It becomes small as the player set becomes large. For the case that
V is homogeneous so that the core is nonempty, similar methods show that under an
additional condition convergence of the core to the hedonic core is uniform.

We will form a large game by drawing players independently according to a




S

distribution F on RT. * Let af = E Al/]EAl|, where E-Al is the mean of a random draw
from F. We assume that F is nondegenerate in the sense that af is in the interior of RY.
We will assume that there are bounds A < A such that 0 < A < |A'| < A for all players i
whose attributes are drawn from F, but we need no other restrictions on the sizes of these
bounds or on F. For example, F could have full support on {AeRT | A < |A| < A} or we
could have a "types” game in which all the measure is on a finite set of points.

It will be convenient to define a function v: A~R that represents the supremum of
average payoffs as the total amount of a coalition’s attributes varies, holding the composition
aeA fixed:

v(a) = sup,,, V(ra)/r, aeA

We assume that v is finite. Since V is superadditive, v is concave (see the appendix).
From v it is convenient to define the concave, homogeneous function V:RT\{0}-R as
V(A) = |A] v(A/]|A]). If V is homogeneous, then V=V. Since V is differentiable except
on a set of Lebesgue measure zero, it will have a unique supporting hyperplane at each aeA
except on a set of measure zero. A supporting hyperplane to V at aV is also a supporting
hyperplane at AN, and the coefficients of the linear function that describe the hyperplane,
say wV, also describe hedonic core payoffs if V(AM)=V(AY). However, even if V is
homogeneous of degree one, so that V=V and the hedonic coré is nonempty, a payoff in
the hedonic core need not correspond to a supporting hyperplane. The linear function
described by the hedonic core payoffs can lie below V at A¢RT or at aeA provided the

game does not have a coalition with that composition.

4 Hildenbrand introduced the idea of studying a sequence of economies in which the characteristics of
players are drawn independently according to a distribution or a sequence of distributions, e.g., see his 1974
book. Anderson (1985) uses this notion to study core convergence. Wooders and Zame (1984) use it to study
nonemptiness of approximate cores.
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FIGURE 4
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The following Lemma, illustrated by Figure 4, is useful in proving the propositions
and in illustrating them. It can easily be verified.
Lemma 1: Let U be a payoff. (i) If §'u & = S, the point p% = (a®u®) is a convex
combination of the points pSt = (a%,u%) and p% = (a%,u%). More precisely, p° =
(|ASY]/1AS])) pSt + (|AS?]/|AS)) p%. (i) In particular, if A = [AMS| /| AN, then

a¥ = (1-0)a% + Aa™S and u¥ = (108 + ™S,

Proposition 1: Let ae(0,1}, § >0 be given. Suppose

(HV =0,
(2) V(ra)/r converges uniformly to v(a) on 4, and

(3) V is differentiable at a’.

Then there exist o, 1, £, > 0 such that if |[N| > n, |a™-aF| <r, ce[0,g,] and |S| 2a|N]|,
then

U e CN,V), weCH(N,V) implies |weAS-US| < §|AS|.

The following corollary observes fhat the condition ||a™-af] < r will hold with high
probability for a sufficiently large game, and therefore we can avoid assuming it by stating
the Proposition probabilistically.

Corollary 1: Let ae(0,1], 6,8 > 0. If (1)-(3) in Proposition 1 hold, then there exist
n, £,>0 such that if |[N|2n, ¢ € [0,¢5], and |{S| 2 a|N]|, then with probability at least 8,

UeC,(N,V), weCH(N,V) implies |wsAS-US| < 6]AS).

3 For all >0, 31 such that if r>r, then for all a in the simplex, v(a) - fV(ra)/1} < 9.
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Corollary 2: Under the hypotheses of Proposition 1, if U,U’ € C(N,V), U is “close"

to U" in the sense that if |S| = |N/, then |US-U'S| < 28| AS).

The appendix contains the proof. Here we give the idea of the proof.

The functions V and v are concave, hence differentiable almost everywhere on their
domains, and Proposition 1 uses the assumption that V is differentiable at a’ with
supporting hyperplane w. We show that every utility vector U in the e-core is close to
hedonic payoffs (w" oAl . wFeA"). We give the intuition for this result below. For payoffs
w in the e-hedonic core, (weAl,..,weA™) is in the ¢-core and therefore close to w' and to -

U. The proposition follows.

Part It whea®-u® < 6.

Suppose not. In Figure 5 we have drawn the case that u® < wFea® - 6. If a° were
close to aF, we would have uS < v(a®), and for a large enough player set, which implies that
V(AS)/|AS]| is close to v(a%), coalition S could e-block. Thus we only need to argue for
the case that a° is bounded away from af as in Figure 5. If a¥ is close to a', a° is also
bounded away from a”. Since |A®] is a nontrivial fraction of the player set |A"], it follows
that a™ is also bounded away from af and a", as in Figure 5.

We will construct a blocking coalition, N\S,. From N we will remove a coalition of
-~ players, $,cN\S, who are receiving high utility. We need the high-utility excluded coalition
S, to have the properties that a% is close to @™, that ™' ¢ D, where D is shown in
Figure 5, and that us > u™S. If these properties hold, then u™*' will lie below the dark line
in Figure S in the domain D. (If u¥'=u™® and a%'=a™5, then u™S" will lie exactly on the

dark line, according to Lemma 1.) If ™! ies strictly below the dark line in the region D,
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FIGURE 5

FIGURE &
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then it lies strictly below v. We can then choose ¢ and ¢ small enough so that u™*! lies
strictly below v(a™M$1)-g-p, Then for a large enough game, the coalition N\S, can ¢-block,
as follows. By uniform convergence of V, a large enough coalition with composition a™Mst
can achieve utility greater than v(a)-¢ per unit attribute. Since the utility per unit attribute
that N\S, achieves, namely u™, is less than v(a"™*')-e-p, N\, can improve its utility by
more than £¢]AMS!| and can therefore £-block.

To find a suitable coalition S,, we prove Lemma A.2 in the appendix. Assuming that
|AMS| (or, equivalently, |N\S|) is large, as when |A"| is large and |AMS|/TAN] is
bounded below (as it must be if a’ is bounded away from a“~a"), Lemma A.2 implies that,
given an integer k and r>0, then N\S can be partitioned into k subcoalitions such that (i)
all subcoalitions have & or £ +1 players, where ke +q is the number of players in N\S, and
0<q<k, and (ii) the composition of each subcoalition is close to a™$, in particular, if S, is
one of the subcoalitions, a%' € B(a™Sr), where B(a™Sr) is the ball around a™* in the
simplex defined by {a’'eA | [[a™%-a"|| < r}.

By Lemma A.2, a™ can be assumed close to a™°. Removing the coalition S, from
N will move the composition a™' away from a™ toward a® as in Figure 5. But if
|AS!|/|AMS| were large - e.g., if S; comprised the entire coalition N\S - then the
composition a™' would be too close to a® and outside the region D. To ensure that
| AS'| /] AMS| is not too large, the integer k cannot be too small. To find a sufficiently large
k,rin the proof we consider the "worst case scenario”, that a™ (hence a%) is as close as
possible to a¥, but still bounded away as explained above (due to the fact that 1AS] >
a| AN)).

We do not need to worry that k might be too large. For any fixed k, | A%} /] AN] will

be bounded beiow, and so |a¥%1-a%| < }a™-a%|; in fact |aV¥1-a°| < g|a-a®| for some B<1.
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If |N| is large, af~a¥. Thus by choosing |N] large we can assure that a“*' is bounded
away from a". Then choosing the left boundary of D close to af will ensure a™%'eD. As -
explained above, the set D must satisfy the property that for aeD, v(a)-£-p lies above the
dark line, but this can be ensured because we are free to chose ¢ and &.
To ensure that u%! > u™S, we only need to observe that not all subcoalitions chosen
by Lemma A2 could have utility smaller than average. We can choose for S, the

subcoalition with the highest average utility.

Part II: v’ - whea’ < 6.

Suppose not. Then u® is as shown in Figure 6. Since u" < v(a") < w'ea", hedonic
payoffs strictly larger than wf are infeasible for the players on average. Members of S in
Figure 6 are receiving significantly more payoff to their attributes than w' on average, and
therefore members of N\S are receiving less than w* on éverage. Since coalition S is a
significant fraction of the player set, each member of N\S is providing a significant "subsidy”
to S; for some w>0, wFea™S - u™S > . But then we can apply Part I, using N\S in place

of S, to argue that such utilities cannot be in C,(N,V).

4, Comparative Statics

The most intuitive notion in economics is that scarcity leads to high rents. Scarcity
is usually interpreted to mean scarcity of a commodity; e.g., economists often use partial
equilibrium models in which a reduction in the supply of a commodity increases its own
price. This result is harder to obtain in general equilibrium where all prices change in
response to the supply reduction, but there are known conditions under which it is true

(Arrow and Hahn (1971)). Scarcity can also mean scarcity of agents. In the context of one-
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to-one or many-to-many matching models, Crawford (1991) shows that a larger number of
players on one side of the match will reduce their equilibrium payoffs.® Scotchmer and
Wooders (1988) gave conditions under which an increase in the number of agents of one
type will lead to a decrease in the utility received by each player of that type in the core.’
The comparative statics below are on attributes: If we draw our player sets from two
distributions that weight a particular attribute differently, the hedonic core will reward that
attribute more in the game where it is scarce.

The comparative static result follows if the games we compare are large enough to
exhaust blocking opportunities in a sense we now define (but still finite). We first notice
that w in the hedonic core or e-hedonic core need not correspond to a supporting

hyperplane: there might be points in RT where V lies above the linear function w. But our

5 Crawford also reviews the literature. In matching models the set of equilibria or stable payoffs can be
large, and therefore the comparison is on "extreme” payoffs: those that favor one side of the market rather than
the other. Proposition 1, our approximation result, is proved for the case that V is differentiable at a¥, which
forces uniqueness of payoffs in the hedonic core in the limit game as the size of the game becomes large.
However, the hypotheses in our comparative statics theorems may be satisfied even when the hedonic core is
not unique, and therefore the comparative statics do not require uniqueness.

7 Scotchmer and Wooders (SW, 1988) discuss games with "types” of players, and show in their
Proposition 2 that if w and w’ are in the equal-treatment cores of (N,V) and (N’,V) respectively, then, under
their conditions, (w—w’)c(AN-AN "y <0, where AN=N and AN =N, which implies the monotonicity result
we have just mentioned. In Proposition 7, SW (1989) draw attention to games with concave, homogeneous V,
such as those derived from exchange economies, and show monotonicity for large, finite games. Proposition 2
below generalizes that result to differences in attributes. In Propositions 4.1 and 4.2, Wooders (1992) restates
the comparative static result for games with concave homogeneous V, but gives a weaker version of it. Instead
of comparing all equal treatment payoffs in the cores of large finite games as in SW Proposition 7 and in
Proposition 2 below, Wooders restricts attention to payoffs in C(f) which is the set of bounding hyperplanes to
(in our notation) V at f. For finite games, a core payoff need not be a bounding hyperplane (see our Figure 7),
and therefore C(f) is only a selection from the set of equal-treatment core payoffs for a finite game with players
feZ¥ .. SW (1988) described comparative statics of the limit game in their Figure 5.

Without homogeneity of V, the core may be empty. Our main contribution in Proposition 3 is to extend
the monotonicity result to approximate cores, showing that the "fudge factor” in the monotonicity result can be
arbitrarily small. Contemporaneously with this paper, Wooders (1992, Proposition 4.3) gives a monotonicity
result for the weak epsilon core that is much weaker than ours in that it does not imply that the "fudge factor”
can be small. In Proposition 4.4 Wooders restates Proposition 5 of SW, which gave a monotonicity resuit for
the strong epsilon core. However we caution the reader that the original argument of SW contained an error
which has not been corrected, and Wooders does not give a proof.
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concept of exhaustion ensures that, if w is in the hedonic core or £-hedonic core, the set of
compositions a€A where V lies above w is small.

The comparative statics are particularly simple when V is homogeneous, so that the
core and hedonic core are nonempty. For simplicity, we discuss that case first, and then
modify the arguments for the approximate core, which is relevant when V may not be
homogeneous.

For each weRT we define A, = {achA | v(a) > wea }, and say that the game (N,V)
§-exhausts blocking opportunities if diam(4,) > § implies that there exists a coalition SCN
with aSeA,. Then, assuming that V is homogeneous, S can block because v(a%) =
V(AS)/|AS| > wea® Intuitively exhaustion means that the compositions of feasible
coalitions fill in the simplex. In Figure 7, w could not represent payoffs in the hedonic core
if the game §-exhausts blocking opportunities, since there would then be a coalition such
as S that could block.

The following proposition compares hedonic core payoffs in two games that exhaust
blocking opportunities. If one attribute is more heavily represented in one player set than
in the other, and if the representation of all the other attributes is proportionately smaller,
then the payoff to the more prevalent attribute in the hedonic core must be smaller. This
can be seen in Figure 8, in which we assume that V is homogeneous so that any coalition
with composition a5 can achieve payoff v(a®). The directional derivative of the linear
function A-weA in the direction from (0,1) to (1,0) is (w;-w,)//2, and similarly for the
linear function A-»w'eA. The game (N',V) has a higher fraction of attribute 1 than (N,V)
and a smaller fraction of attribute 2. (With T attributes, there must be proportionately less
of each other attribute.) In Figure 8, it could not be the case that one linear function lies

entirely below the other between a™ and aV', because then, since the games §-exhaust




FIGURE 7

FIGURE 8
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blocking opportunities, some coalition could block w or w'. The slopes of the linear
functions in Figure 8 imply that w,-w, > w;-w,. Since one cannot lie entirely below the
other, we cannot have w << w' (or w << w); hence w; > w; and w, < w,. The
generalization of this diagram, stated in Proposition 2, is that w; 2 w;, but with more than

two attributes we cannot say in general whether w, is greater or smaller than w, for t#l.

Proposition 2: Suppose (i) that V is homogeneous, (i) that weCI(N,V) and
w' eCH(N',V), (iii) that (N,V) and (N',V) é-exhaust blocking opportunities, (iv)
that [a-aN'] > 6, and (v) for g>0, that aY = k aY , t#, and a]’ = a} + B.

Then w; 2 wj

Proof: First, from §-exhaustion of blocking opportunities, we show that (i) w ealV'

< wea™', and (ii) weaV < w'ea®. Suppose (i) did not hold. Then wea™ < w'ea™ =

V(@V), so a¥'eA, . Since weaN=V(a"), (1-3)aV+xa" e A, for Ae(0,1], as V is concave.
Therefore diam(A,) > &, which implies there exists SCN which can block w, and this is a
contradiction. The same argument applies for (ii). Multiply the second inequality by k and
subtract from the first inequality to get w; ((l-k)'apfﬂs) < w, ((1-k)a§ +B). Since #>0, and
a™ €A, ke[0,1), and the result follows. O

This simple argument needs to be developed in three directions. First, if we choose
thé players in the games (N,V) and (N',V) independently according to distributions F and
F’, hypothesis (v) of Proposition 2 is unlikely to be satisfied. We therefore need to show
a similar comparative static result when the players are chosen independently from
distributions F and F’, and when we apply the hypotheses directly to a” and a™ rather than

to a¥ and aV'. Second, the core will typically be empty when V is not homogeneous.
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Therefore we need to show that the comparative static result holds for the epsilon hedonic
core developed above. Third, we need to define our exhaustion hypothesis in a way that
guarantees blocking opportunities are exhausted for finite games. V might have the
property that there is a sequence of sets A," with diameter at least § for which the sequence
of their measures converges to zero. In that case we cannot guarantee that a finite game
will satisfy the definition with high probability. To avoid this problem, we redefine
exhaustion in a way that makes the proof of the comparative static result less elegant, but
can be satisfied with high prébability in a large enough (finite) game.

We accomplish these tasks in the following order. First we modify the definition of
exhaustion such that the definition is satisfied for large finite games and so as to
accommodate the case that V may not be homogeneous. Second, we present Proposition
3, which reports the comparative static result for the approximate core with hypotheses
directly on af and af".

The idea behind exhaustion is that enlarging the game cannot introduce a coalition
S for which hedonic payments w are feasible, in the sense that we A’ < V(AS), if the hedonic
payments w were not feasible for some coalition in the game before it was enlarged. This
would be guaranteed if for every value v(a), aed, there were a coalition § for which
AS/|AS] = a and V(AS)/|AS| = v(a). Then the total payoff v(a) and the hedonic
payments represented by the supporting hyperplane at v(a) would already be feasible for
some coalition in the game. This condition is, of course, too strong, since it cannot be
satisfied by a finite game. Therefore in our notion of exhaustion we only require that each
v(a) or each supporting hyperplane is "almost” achievable by some coalition in the game,
"Almost" has two aspects. The first aspect, which is captured in the above definition of

exhaustion, says that the compositions of feasible coalitions are distributed throughout the
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simplex. Thus for every aed, there is a coalition with composition a® close to the
composition a. Therefore, when V is homogeneous, the feasible payoff V(AS)/|AS| =
v(a%) is close to v(a) and therefore close to w'sa=v(a). When V is not homogeneous,
"almost” has a second aspect. Not only must the compositions of feasible coalitions be
distributed throughout the simplex, but in addition such coalitions must be large enough so
that their feasible payoffs V(AS)/|AS| are "close” to v(a®). The modification that follows
incorporates the latter asped.

We will say that the game (N,V) §-exhausts e-blocking opportunities if for every aeA,

there exists a coalition S for which (i) a%eB(a,8/2), where B(a,6/2) is a ball in the simplex

(as defined above) of diameter § around a, and (i) V(AS)/|AS| > v(a%)-¢,

Remarks on_the definition of exhaustion: (1) Given a probability 7>0, a large

enough finite game will satisfy our notion of exhaustion with at least probability = provided
the vertices of A are in the supports of F and F' and V(ra)/r converges uniformly to v(a).
(2) Inclusion of the vertices is a stronger condition than required for Proposition 3, which
only requires that conditions (i) and (ii) of the definition hold for some subset of A including
af and af'. (3) If weCH(N,V) then the set A(w,£) = {aed | v(a)-wea > 2¢} does not
contain a ball of diameter 6. (If it did, there would exist a coalition S that could £-block
the hedonic payoffs w, since V(AS)/|AS| - ¢ > v(a%) - 2¢ > wea®) This weaker condition
is all that is needed for Lemma 2 (boundedness).

Proposition 3 requires that payoffs in the approximate hedonic core are bounded, and
we therefore precede Proposition 3 with Lemma 2. Lemma 2 uses the notion of distance
from a point in A to the boundary of A, defined as dA = {aeA|a,=0, some t}. Using |||

to denote Euclidean distance, distance to the boundary is defined as d(a,dd) =




22

rrﬁna.eaAHa—a'l[, and in fact d(a,34) = min, a, (T/(T-1))°.

Lemma 2: (Appendix) Let ¢, &, r > 0 and suppose d(a¥d4) > r > §. Let ¥ be the set of
feasible hedonic payoffs w such that A(w,e) contains no open ball in A of diameter

§. Then ¥ is bounded and the bound is independent of aN,

Proposition 3; Suppose af,a™ e int(A) and satisfy, for >0, a* = k af, t#j, and a] = a]
+ B. Given y>0, there exist r>0, §>0, £,> 0 such that if (i) [a™-2"], |a¥-a™'|

<1, (ii) 0 < £ < g, (iii) 3 M>0 such that |w], Jw'] < M for weC¥(N,V) and -
w' eCH(N',V), and (iv) (N,V), (N',V) §-exhaust e-blocking opportunities,

then weC¥(N,V), w' eC¥(N",V) imply that w; < w;+7.

Remarks on Proposition 3: (1) It is easy to see that ke(0,1). (2) Condition (i) will
hold with high probability if |N| and {N'| are large. (3) Lemma 2 gives a condition under

which (iii) holds.

Proof: Let 6>0 satisfy d(a¥,a4), d(a®,34) > 9, [Ja™-aF'| > 4.

Let r=min { (v/8) [6((T-1)/T)*(1-k)+8]/2M, 8/3 }
-0) / (Ja-a"|+26).

g = [7/4(1+K)] [0((T-1)/T)(1-k)+8] (Ja™a™]
P = [y /2(1+k)] [6 ((T-1)/T)°(1-k) + BI.
Then if e<e,

2 .t
laf-aF || +26

< 1

(1)
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It follows that $-2¢,>0. Let m be a Lipschitz constant for v on K={aeA | d(a,04)2(8/3)}.

Let §>0 satisfy § < min { 2(¥-2¢,)/(M+m), 26/3 }. We have chosen é and K so as to
ensure that if |a¥'-a™'] < r, B(a“',s/2)cK. This condition is used in the following

lemma.

Lemma 3;: If (N,V) and (N',V) §-exhaust e-blocking opportunities, and if weCY(N,V),

w' eCH(N',V), then w'ea™' < wea' + p and wea® < w'ea + .

Proof: We will prove only the first of these inequalities. Suppose, on the contrary,
that w'ea - ¥ > wea®'. We show that the set A(w,e) then contains a §-ball, namely
B(a™’',5/2), and thus, by exhaustion, there exists a coalition that can e-block. We have
v(aV) -y 2 weaV' -y > wea" or v(aV') - wea™ > ¥. Let v: K~R be defined by v(a)
= v(a) -wea. Then (M+m) is a Lipschitz constant for v. As noted above, if aeB(a',§/2),
aeK. Hence, |v(a) - v(@¥)| < M+m) [a-a¥'[ < (M+m) §/2 < ¥-2¢, Since »(a")
>y, v(a) > 2¢, > 2¢ for aeB(a'',6/2). Thus, B(a™',6/2) ¢ A(w,¢), and by exhaustion,
B(a"',5/2) contains the composition of a coalition that could e-block w. O

I

We can now complete the proof that w;

< Wty The completion follows the
fechnique in Proposition 2; that is, we multiply the second inequality of Lemma 3 by k, and
then subtract it from the first inequality. But since our hypotheses are on aF and a¥' rather
than on a™ and aV', the resulting inequality will involve "nuisance terms", and we must show
that these "nuisance terms” are small.

Let ejeR'f be the jth unit vector (all zeros except for a one in the jth place). We can

write 2V = ka¥ + (a] + 8 - ka})e; + d for an appropriate vector d. The first inequality
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in Lemma 3 can therefore be written

woel[kaV + (af + g-kal) e +d] £ we[ka¥+ () + B-ka)) ey +d]+
Multiplying the second inequality by k and subtracting, we get

woel@l+e-kal)e +d-kp < wel@@l+p8-ka)e+dl+v
- (w'-w) ¢ (a) + B -kal) e < (w-w')ed + Kk +9¥ -
(2) (W-w)eg < (w-w‘).d/ @ + B-ka)) + (kp+y) / (a + B - kal)

If the righthand side of (2) were equal to zero, we would have the result, as in
Proposition 2, that w; < w;. The righthand side is not zero, but it is smaller tﬁan ¥. To

show this, we show that each of the two terms in the righthand side of (2) is smaller than

/2.
Our hypotheses imply that a™ = ka® + (af + g - kaf)e,. Since we have assumed

that a¥ is close to aF and aV' is close to aF, it follows that the vector d must be small. In

fact,
Claim: [d| < 4r.
Proof of Claim: Let bY = ka¥ + (af + B - ka))e;.
Ja”-0N] = [k(@™a") + [(@f-a) k(-2 ¢ || < kla"™a"] + [(af-af)k(a]-a})] el

< o] + Jalal] + Kl < 3 Y] < 3
ldf = %6 < Ja¥-a"] + Ja7b <4 O
Claim: (w-w')sd / (a] + 8 -ka}) <v/2
Proof: First, d(@¥aa)24 = a} > 6 ((T-1)/T)°.
ldll < 4r < (v/2) [ 8((T-1)/T)°(1-k) + B1/2M < (v/2) [a}(1-k)+ 8]/ 2M.
(ww')ed / (af + B -kaf) < [w-w]slld] / [2](2-K)+£]
< 2M |ld} / [aY(1-ky+8] < v/2 O.

Claim: [ky+¥] / (a{;" + 8- ka?) < /2.
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Proof: ¥ = [1/@U+KN] [B(T-D/D(0) +6] < [1/@A+0)] [af(1k)+4]
- (p+p)/@) + B-kal) = (L+R¥/E)(10+8] < /2 O

This completes the proof of Proposition 3.

5. Concluding Remarks

There is a large literature on hedonic pricing of land and of jobs. The literature on
land begins with the observation that land prices capitalize the amenities available by living
on the land; e.g.,, police protection, good schools or environmental quality. Although
empirical estimates of the hedonic price relationship often assume linearity, this assumption
has no theoretical foundation. Similarly, there is large empirical literature that seeks to
explain equilibrium wages as a function of the attributes of jobs. For example, jobs that
expose workers to environmental risks should pay higher wages in equilibrium in order to
compensate. As in the literature on land prices, there is no theoretical reason to believe
this relationship should be linear. In contrast, we have shown that when the hedonic prices
are on the attributes of workers (in contrast to the attributes of jobs), there is a linear
hedonic price function in equilibrium, provided the economy is large.

Our approximation theorem can be interpreted as a "core-convergence” theorem in
the sense that core payoffs converge to competitive payoffs, since we can interpret hedonic
core payoffs as market prices.® If peRT are the market prices of attributes, the condition

that no firm could make positive profit is V(A)-p+A < 0 for all A. All firms in equilibrium

8 Subsequent to circulation of this paper, Wooders has also circulated papers discussing core convergence
and hedonic pricing; sce her 1991 working paper, and her seminar paper "Equivalence of Effective Small Groups
and Competition” circulated at Berkeley in April 1992. Wooders conjectures that by approaching core
convergence through an equivalence between games and markets, one can inherit for games the core convergence
results known for markets. Perhaps our convergence result can be simplified through this approach, but as yet
this has not been done. (Wooders discusses the case of homogeneous V.)
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- make zero profit only if V(AN)-p- AN=0. But these two conditions define a hedonic core
payoff w=p. A zero-profit price-taking equilibrium may not exist when V is not
homogeneous. Payoffs in the e-hedonic core would then be equilibrium prices if we defined
equilibrium such that profit could not be increased by more than | AS| for any set of
workers S.

Three natural applications of our model are as follows:

Coalition Production: A coalition of players with attributes AS produces profit in
amount V(A®) and sells a vector of outputs at fixed prices. The average payoff to coalitions
might vary with size, e.g., as described by Figure 2 where V is not homogeneous. The
comparative static results in Section 4 can be interpreted to mean that a worker with good
management skills will be rewarded less in equilibrium if the proportional representation-
of management skills in the population grows. The hedonic price for management skills will
fall. For a broader discussion of coalition production in which players cooperate in forming
firms and then sell their output at fixed prices established in a market, see Ichiishi (1991).

Exchange Economies with Transferable Utility: Player i’s utility can be represented
as f(y) = v, + g(¥5-yy)» where yeR¥, is a vector of private goods. Suppose the support
of F is on T points, each on a coordinate axis, so that each point represents a "type" of
player. The vector AS represents the numbers of players of each type, and V(A®) is the sum
of their utilities, where the private goods have been distributed so as to maximize the sum
of utilities. In this example, V is homogeneous of degree one and the core is nonempty.
The comparative static result implies that if the proportion of one type of player increases,
their payoff in the core will decrease. To link this result with comparative statics on
commodities, we might want to think of a "type" as the group of people endowed with 2

particular commodity, If that type of player becomes more abundant, the aggregate supply
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of the commodity increases. However aggregate demand also changes since players demand
commodities as well as supply them.

Club Economies: The basic point of the club model is that groups of players confer
externalities on each other, and that "optimal" groups of each composition are multiples of
a particular optimal finite size, as depicted, for example, in Figure 2. The earliest type of
externality considered was that agents could pool private resources to produce public goods,
and noncontributors could be excluded from using the public goods. A more general type
of externality is simply that agents want to be in groups with other agents who possess
different skills or talents. (For an early treatment of such games see Dréze and Greenberg
(1980), and for a summary see Scotchmer (1992).) Such a modet is formally identical to the
coalition production model, where agents pool their skills to produce output efficiently, and
the efficient pooling of skills may require complementarities rather than homogeneity in
abilities. In the coalition production example, the output is real-valued profit, whereas in

the club example, output is utility, which is real-valued if there is a quasilinear good.
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APPENDIX

A The ¢-Hedonic Core
See Canl
Proposition A.1 If AY € intRY and ¢ > Aw(a™) — V(AN)/|AN]] then CE(N, V) # 0.

Proof: Let wy be a supporting hyperplane to V at AV ie. wy € R and
1. wo - AN = V(AN)
2. wg-A> V(A) for every A € R{

By 2,

/(4)

Wo @ = Wy - m——Z— v(a) for every a € A.

Al =4l

V(AN) — V(4"
| AN

Let
1

w = g —
where 1 =(1,1,...,1) € RT,
Claim: w e CH(N,V)

1. (feasibility) )
w- AV =g - AY — (V(AN) - V(4AN)) = v(4Y)

2. (no coalition can improve by more than & per ‘capita.’)
Suppose there exists a coalition S such that

s A8 o 148 s 1A3| N s
V(AT) > w A% + el 4% = wo - 45— o [V(4AY) = V(4Y)] + |45,
This implies
V(A%) 1o N
v(a®) > PR as—m[V(AN) v (AY)]
> vla”) - i [V(4") - viaY)]
3 v(aY)
— U(as) - |: (aN)_ W:l + £.
But this implies that y
v(a™) — %% > g,

which contradicts the choice of <.




Corollary Given £ > 0, if V(ra)/r converges uniformly to v(a) on the simplez, then there
caists m such that if |N| > @ and a” € intR. then CA(N, V) # D.

Lemma A.1 v s concave.!

« Proof: Suppose a = Aja' + Aa?, A, A >0, Ay + Ay = 1. w(a) = sup,,, V(ra)/r, so
choose ny,ny € N such that

V{(ni\)a' : .
—(—%/\—i)ﬂ >v{a')—e/2);, i=1,2
Let n = nyn,, then

na = n{Aa! + Ma?) = na(nid)at + ny(nghg)a®

so by superadditivity,
Vi{na) = naV{(ni1A)a') + n1V({n2Az)a?)

709 > Ly (moat) + %V((nzAz)az)

V((Zli\\l)al) +/\2V((7:2§22)‘12)
> /\1(’0(&1) - 5/2/\1) -+ AQ(’U(dz) - 5/2/\2)

= Apla') + Av(a?) — ¢

v(a)

Vv

= A

but ¢ was arbitrary, so v{a) > Av{a!) + Av{a?).

Corollary V s concave.

Proof: Let A1, 4; € RL\ {0} and A € [0,1] be given. Let a; = A;/|Ail and let 4 =

V(1= M)A+ Ady) = V(4) = |Ajv(4/|A])
(1— M)A,  AA,
= |Alv ( + )

4] Al

_ (1 — M)Ay Al Az
= |A1v( A ay + 4] 02)

m(ln/\)lAllv a —~Zlu(a
A (a1) + |A] A (a2)

= (1= NiA1|v(ar) + MAzlv(ag) = (1 — MV (A1) + AV(A4,)

4 Alda|

!We include this lemma for completeness. Aumann has previously remarked on the concavity of v—
along with everything else true and interesting in game theory. The proof given here follows the methods in
Scotchmer and Wooders {1988).




Lemma A.2 Let {4'} be o sequence in BRI with0 < A< A* <A for alli. Let k € N and
r > 0 be given, then there ezists an n such that if ny,...,nx € N with ny,...,nx > n and
S C N with |S] = E;‘ n; then there exist Sy,..., 5 C S such that U]f S5; =35, {5 = n; and
a® € B(a®,r).

Proof: The proof is by induction on k.

k = 2 Suppose not, then there exists r > 0 such that for every n there exist ny,ny > n
and 5 C N with |5| = n1 + n; such that there do not exist §,,5; C § with 5,JS; = S,
{S;| = n; and a¥ e B(ss,r).

Idea: Choose 51,5, C § with 5, S, = 5, |Si| = n; and with ||a®* —a®?|| minimal. Consider
the hyperplane through a*' perpendicular to p = ™ ~ a2, g% is a convex combination of

o

the points a’, : € Sy so there must be an i, € S; such that ¢”* € Hy, the closed half space to
the left of a®1. Similarly, there is an i; € S; such that a® € H,, the closed half space to the
right of a%2. We trade 4, for i, to get coalitions S}, S, with compositions a5, 4%, In going
from o to i we move away from the hyperplane through a5 toward a2, If n is large,
lla% — a5 is small and so ||a*! — a%|| < ||a® — a%*{| which is a contradiction.

Figure 1: Trading Places

Choose n such that %f - 2—{;-‘?5% < 0 and let ny,ny > n and S be as above, then

given §,,58, C § with $;{J S5, = S, and |S;| = n; we have {|a”* - ¢%7}| > r otherwise
e%1,a% € B(a®,r). Choose 51,5, C § with 5,152 = 5, (5| = n; and with ||a® —a®]|
minimal. Let p = a®* — a7 and let

B, = {z|p-z>p o)
Hy, = {e|(-p)-z>(-p)-a*}
Choose iz € S; such that a"* € H, and choose i; € S, such that ¢'s € H,. Let
S1 = (Si\ {ta}) U{ia}, 55 = (52\ {2 U{i:}
|45 = AT 4| 4% = 145 ~ AR + | 4P|

3




a

51
s _ A

7] AS

1_Ai1+Af: 1

Claim:

lla®

Similazly, |la®* — a3}

=T
llaSi — a%i]] < 27‘{‘? where n; = | S| = |5]|.

7 - ¥ ‘431 S
AT T e

1o i

Claim: p-(a%1 —a%) < —A_’rz/nlf

S;_ . as;)

|Aft e’ 4 |47 |a’?]

o = ey [14%1a% - 14710 + 41a”]
— el = A - 6+ A7 - 0]
< Hﬂ;; [4%lla™ = a%| + | 4%|ja® — o]l
< g [401VE 4 141VE)
VA4 4140 2EVE
- | A5 nlé
< 2 O

p(o = » W, (14%1(a% = @) + 4@ - a%)]
- EAsr [[4%|(p- @ - p-a") +|47|(p- & - p-a™)]
1
< TA%| 0+]4%(p-a® —p-a™))
_ A% Ar?
- ‘AS' |“P“ nlz D
By symmetry, (—p) - (%2 — a%) < —Ar?/ny A
Claim: {|a% — (a% + a%2)/2| < ||p/2]|
la®t = (a™ +a®)/2f? 2% = a® + (™ - a®)/2||* = [0 - & + p/2}?
= [as; -a% +p/2] . {asl ~a% +p/2]
= [ja®t = a®|* +p- (a1 = ™) + HP/?II2
' . ( —a’1)
= a5 — a5 {fla% - o] + 2 5T = a5 +llp/2}
13 ] 1 AT2
< g _ 45 31 A5 = 2 2
N R R aa”} +lp/2)
’ r AT
< S _ a5 R o | 9 2
< a7 = e [lla” — o™ T C} + llp/2||
. (242 A)2r?
< asi as’- —_ — — + 2 2 < 2 ?
< Jat et | - S| 12 < e

as n; > n and a®

1 £ g% by the previous Claim.

4
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Similarly, [[a% — (a® + a2)/2|| < |ip/2]|. Therefore,

la® —a%|| < Ha% - (a® +a%)/2)| + |[(a® + a%)/2 — 0¥
< /2t + llp/2ll = lipll = fla®™ - a™|]

and this is a contradiction.

Induction Hypothesis Now suppose for k = 1,2,...,m that for every r > 0 there egists
n(k,r) such that if ny,ne,...,ne > n{k,r) and § C N with |S| = S5 n; then there exist
Si,..., 5 C 8 such that \J¥ S; = S5, |5;| = n; and a5 € B(a5, 7).

Let n(m + 1,7) = max{n(m,r/2),n(2,7/2)} and suppose ny,na,...,Rm41 = n{m +1,7)
and § C N with |§| = £ n;, then since the result is true for k = 2, there exist 5, Sma1 C
S with S'USms1 = S, 19 = ™ ni, |Sme1] = Ry and a¥, a5+ € B(a®,r/2). By
the induction hypothesis there exist Sy, S2,...,8m C S’ with UT'S; = 5, [Si| = n; and
a5 € B(a%,r/2) for i =1,2,...,m. For i < m,

la% - a®|| < [a% — % | + la¥ —a®| <r/2+r/2=7
therefore a% € B{a®,r) fori=1,2,...,m+ L. B

Lemma A.3 Suppose V{(ra)/r converges uniformly to v(a). Given ¢ > 0 there exisis ro
such that for any € > 0 if U € BN and S is a coalition with

1. !Asl 2 To
2. US < (v(a®) — ¢ —¢)jA5|
then V(AS) > U¥ + £ 45| so that U € C.(N,V).

Proof: V(ra)/r converges uniformly to v(a) so there exists ro such that r > ro = V(ra) >
(v(a) — ¢)r. Thus conditions 1 and 2 give

V{(|A%1a%) — US > (v(a®) — 9)|A%] — (v(a®) — ¢ — )| A°| = €] A%, E

Corollary Suppose V(ra)/r converges uniformly to v(a). Given ¢,a > 0 there exists no
such that for any £ > 0 of

1. [Nl Zno
2. 15| > o|N]
3. U e CAN,V)

then w5 > v(aS) — ¢ — <.




Proof: Let rg be as in the Lemma. Take ng = rg/cA, then
1A > |S|A > a|N|A > angA = ry
but U € C.(N,V) so by the Lemma,

u® = U5 )|A% > v(a®) — ¢ — -

B

Lemma A.4

1. |A5] 2 a|A¥| = |5] > o| N|4/A

2. || 2 o|N| = [4%] > o[4V]4/A
Proof:

1o < e < BB = 19 > o| V|47

AF 5l4 a|N[4A __
2 17 2 R 2GR = ed/4 ]

Proposition A.2 Let a € (0,1],8 > 0 be given. Suppose
1.V>0
2. V(ra)/r converges uniformly to v{a)
8V is differentiable at a”

Then there exist n,r,cq > 0 such that of |[N| > n,|la” —af|| <r, ¢ € (0,20} and 15| < a|N|
then

UeCoweCl = luw.4% - US| < §A5).

Corollary Leta € (0,1],6 > 0,6 € (0,1) be given. Under the conditions in the Proposition
there exist n,€0 > 0 such that if [N| > n and ¢ € [0, 0] then with probability at least 1 — 8,

UeC,we CH = |w. AS - US] < §|45].

Proof: Let DV (af) = w¥. We first show that there exist n, 7, > 0 such that if |N| > n,
la¥ —af|| < r, e €10,e0) and U € C.(N, V) then |w” - A5 — US| < §|45|. For this it suffices
to show |wf - a% — uS| < §. 1 |S| > |N| then by Lemma A .4,

|4%] 2 7|AY| (1)

where v = a4/A. Note that
v €10,1) (2)
as A< A and « € (0,1].




Part I: We show u® = US/|45| > wF -0 - §

Suppose to the contrary that u¥ < w -a° — 4.

We first show that it suffices to consider a® outside a small neighborhood of .

Idea: V is homogeneous of degree 1 and DV (aFf) = wf so v(AF) = ViaF) = wF - of by
Euler’s theorem for homogeneous functions. v is continuous at af so if a¥ is close to of
(which we denote by a® ~ aF) then v(a®) ~ v(af) = wf . af ~ wF e Hu’ <wF.a%—§
and ¢, are small, then

u$ w0~ §~ (%) - 6 < v(a®) - p—e.

But then U ¢ C, by the Corollary to Lemma A.3 (assuming |N| is large and |5 > alNJ).

Claim 1 It suffices to consider a® such that [|a® — aF|| > ro for some ry > 0.

By the Corollary to Lemma A.3, there exists ng such that if |V] > no then u® >
v(a®) — §/4 — e. v is concave and therefore continuous on the interior of its domain
(Roberts and Varberg page 93) so

a® ~af = v(a®) ~ v(eF) = wF - af ~ wF . a5,
Heec{0,6/4)thend/44+e<6/2< b and
w¥ > v(e’)=6/4—e>v(a’) -6~ wF.a% -6

Therefore there exists 7o > 0 such that if [N} > no and ||@® — af|] < ro then w% >
wF - a¥ — 6. M

We can assume 7, is so small that

1 22

l"‘"}' To

(3)

Overview Comment We will construct a region D, in the simplex, which will contain the
composition of a blocking coalition. Let pf = (aF,v(a)). Let a € A = {a € A | a; =
0 for some t} be given and let p® = (a,w” - @ — §). Let L(p”, p° A) be the height of the line
through p¥ and p® at the point af + A(a — o). Further, let

f(pFa phA) = ”(aF + Me — af)) — L(p", ", A).

Because V is differentiable at o, w¥ is a supporting hyperplane for V at af (Roberts and

Varberg page 115), i.e. w¥ -af = V(aF) and w" - A > V(A) for every A € RY\ {0}. On the
simplex this gives w - af = v(af) and w¥ - @ > v(a) for every a € A. Therefore for every
a € DA there exists A\, € (0,1) such that f(p”, % Xs) > 0. Since v is concave, f is concave
in A and continuous for A € [0,1). Therefore for every a € A there is a neighborhood of
A, on which f(pF, p?,-) is positive. We show that there is such a neighborhood, [Ag, \] say,
that 1s independent of a. We will use the fact that f positive on this interval to show the
existence of a coalition which can e-block. From this interval we also construct the region
D={af + Ma—-a") | A€ [N, \],a € A}




aF'
Figure 2: Clearly f(pF,p%, 0) =0.

Construction of the Function f
Let a € A, & € A\ 8A be distinct. Consider all points of the form & + A(a — &) for

AeR.
&+ AMa—a)], =a + Aar— &)

so the t*F coordinate of @+ A(a— @) is a linear function of A which is positive for A = 0.
Therefore there exists a unique Ay > 1 such that @+ Ay(e —a) € A. Note that A, =1
if @ € 8A. (Further,

0<A< A= a+Mama)€A\A
A> A= d+Ma—a)gA)
Let a® = @ + Ay{a — @) and let
Ha,a)={AeR}a+Nd’"-a)e A}

I(d,a)is a closed interval with right endpoint 1 and 0 € intI(@,a) as @ € A\ JA. Let
p=1{(a,h), p=1{a,h)where h,h € R. Let L(5,p, ) : I{G,a) — R be the height of the
line through 5 and p above the simplex at the point & + A(a® — &) L.e.

L{p,p, A) = B+ AN(h = B) = (1 = AN)R + Adh.
Let f(ﬁ,Ps ') : I(&7a) — R bV

flp.p. Ny =v(@+ Ma® —a)y— L{5, 0, N).

@ =a+ Nla—ad) = a=a+(1/)a’ —a)
we want: L(5,p.01 = h, L(5,p,1/As) =k so m(slope) = Xs(h — h)




Since v is concave, f is conecave in A and continuous for A € [0,1) (A concave function
is continuous on the interior of its domain, Roberts and Varberg, page 93.) Let pf =
(aF,v(aF)) (Note that a¥ € A\ A.) and given a € A, let p* = (a,w” - a ~ §) then

(o5, 0% 0) = v(af +Xa—-a")) - L(p", 0% A)

v(af + Ma - a")) - [v(a®) + Mw® - a -6 - v(af)))
= »{(1-Neaf +Xa) = [(1 - Mw(a™) + Mw -a - 8.

Choice of the Interval [Ao, \;] and Construction of the Region D

Claim: For every a € OA there ezists A, € (0,1) such that f{pF,p“,/\a) > 0,
Fix a € A and let V, : I{aF,a) — R by

V(X)) = V(af + Ma — D)) = v(a” + A(a — ™).
V, is concave and

DV,(0) = DV(aF) - (a— af) = wF - (a — a¥).

Let L:I{a”,a) — R by
L()\) = Vo(0) + ADV,(0) = v(a”) + Aw® - (a — a).
L is the tangent line to V, at A = 0. Let m, be the slope of the line L(pF, p%, ).
L(sF, 6%,0) = o(a”) = L(0)
and
Lipt N =wa—b<wf-a=va®)+w" (a-af)=L(1)

as wf - af = v(aF). Therefore DV,(0) > m,. Let M € (0,1),let @’ = a¥ + A'{a — a)
and let p" = {a’,v(a")). L{(p¥,p',") is a secant line for V, so if X’ is close to 0 then o’ is
close to af and m', the slope of L(p%, ¢, "), is close to DV,(0). Therefore there exists
@’ such that m’ > m,. Suppose @’ = af + A, (a — &) then L(p, 0", A) > L(pF, p%, A)
for A > 0. In particular, for A = A, we get v(af + A.(a — o)) = v(a') > L(pF, p°, As)
s0 £(p7,p% Aa) > 0. (]

Given a € 8A, let
g(a) = sup{X € [0,1]] f(p",p" A) 2 0}
Claim 2 f(pf,p% A) > 0 for A € (0,g(a)).
Since f(p7, 0", M) > 0, Ay < g(a) and by convexity, £(p%, 6%, A) > 0 for A € (0, A]-
Let A, T g{a) with A, > A, and f(p%, 0% As) > 0. Then by convexity, f(pF,p% A) > 0
for A € [Aa, Aa) and therefore f(p©, p% A) > 0 for A € [A4, g(a)). ]

Claim 3 A =inf{g{a)|a € A} >0




f(oF,p% As) > 0and A, € (0,1) so g(a}) > 0. Suppose there exists a sequence, a,, such
that g{a,) — 0. Assume without loss of generality that a, — a € 8A. For n large,
g{aa) < Aa = f(p%,p%,As) < 0 which implies that f(p¥,p%, A} /— f(p7, 0% AJ).
But this is a contradiction as f is continuous in @ {as A, < 1 and v is continuous on

A\ 8A). ]

We now choose [Ao, A;] and the region D = {af + Ma — af) | A € {Ao, A1}, a2 € A}, We also
choose g, ¥1 such that if v < ||a? — aF|} < 1 then a” € D.

Choose r; > 0 such that r; < inf{|ja — af|| : a € A} and let
ao = sup{ila—a’l| 1 a € 04, o’ — o™ < 7/}

oy = inf{lla — a'l| 1 a € 34, |je’ - aF|| < /).

Note that
|la® - aF|| <r;=a’ g€0A (4)

so that a; > 0. Choose A, € (0,A*) and let v; = Moy. Let f : {0,1] x [1/(1 —
7),2v2/ro] — R by f(z,y) = (1=2)/(y—=2). (Recall 7 & (0,1) by (2) and 1/(1—7) <
2v/2/ry by (3).) f is continuous and therefore uniformly continuous so there exists
1 > 0 such that

z <= |flz,y) - FO, )] < n/2v2. (3)
of (y-z)(-1)-(1-2z)(-1) =z-y+l-2 1-y <0
oz (y — ) T (y-2)? T (y—z)?

therefore f is decreasing in z. Choose k& € N such that
24/kA < min{y,1} (6}
and let 1
L=min 10,9 -  (F500)] >0
Choose Ag € (0, A;) and let v = Agap. Assume Ag is so small that

Yo < LT‘O/S- (7)

Claim 4 There exists M > 0 such that f(p¥,p° A} > M for A € [Ao, A1],a € 8A.

As a function of @ and A, f is continuous on 8A X [Ag, Ay] as v is continuous on A\ A
and A; < A* < 1. Thus it suffices to show f(p¥,p% A) > 0 for @ € 8A, X € [Ag, A1l
And since f is concave in X, it suffices to show f(pf,p% A;) > Ofori = 0,1and a € JA.
Suppose there exist a, € 8A such that f(pf,p%, A;) — 0. Assume without loss of
generality that a, — a, then f(p%,p% A;) = 0. But this contradicts Claims 2 and 3.

L
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Next we partition V\ S by Lemma A.2 into subcoalitions Sy, ..., Si such that v < ||aN\5‘ -
a®|| < v1. The second inequality holds because we chose % in Lemma A.2 sufficiently large.
Since k is large @™\ ~ 4V and since |N| is large e ~ af 50 oVt ~ aF. But no matter
how large k is, removing S; from NV moves the mean, o, at least some distance away from
a¥ ~ af to a™\%. This is because &% ~ a™¥\% is bounded away from oV ~ oFf as of
is bounded away from a and S is a significant portion of the population (|S| > o|N]).

Therefore a¥\%t + af and the first inequality holds because we chose 7, sufficiently small.

Claim: D = {af + Ma = aF) | A € [No, \i], 2 € FA} is compact.

Let f : [Ao; A1) X A — A by f(A,¢) = a¥ + Aa — o) then f is continuous and
D = f({Ao, A1} X 8A). O

Since V is concave, it is Lipschitz on the compact set D C A\ 8A, which is in the
interior of Ri \ {0} (Roberts and Varberg page 93). Let C > 0 be a Lipschitz constant.
Choose r > 0 such that

) Lrg ro M r
r<an {37556 ®
Assume further that r is so small that
2rljwfl| < §/2 (9)
and, since » is continuous at a¥, that
6% = ol < 7 = To(a) = o(a”)] < min {3, 5. (10)
Assume {la™ — aF|| < r. To complete the proof we derive a contradiction.
Claim 5 @° is bounded away from a™: ||a® —a™|| > 1o = 7
le® —a"]| = [|(a® = a") + (a” - a")]
> |la® = af|| ~|la” = || 2 70— 7
By Claim 1. M

by (8) ro — 1T 2> 10/2 > 050 a’ # a”, which implies aV\S # aS.

Claim: |AN\%| ig neither trivially small nor very large: 71-2-(7'0 - < L"%\\,?—l <1-—+7.

By (1) |A%]/|AN| > v, which implies |AMVSI/IAN| <1 —~.

‘4..‘:'! EAN\Sl ) EAN\SI
N _ 5 _ s N\§ _ S5 _ NS _ s
CEENT T Ay )
Therefore
ANSE e =g’ fla¥ - e _ro—7
|AN] e -aSi T 2 T V2 ]

11




Let [N\ S| = kg+1 where ¢,1 € Zand 0 <! < k. By Lemma A4, | V\S| > %5 |N|4/A
so that | V| large implies that ¢ is large. Choose n, such that if | V| > n; then Lemma
A.2 applies with k and r as above and n; = g or ¢ + 1. Let Sy,..., 5, be the partition

of N\ § from Lemma A.2 and assume v > v fori=1,...,k.
Claim 6 a™\% i3 not too far away from of: [|a™V5' —~aF|| < v, — 2r
By (8)
1o 14Y V2 V2 22
1—y T JAMS| “po—r T 1o —T9/2 1o
And

A g4 g4 |45 (g+ 1A _(g+1)4A _ 24 _
= < — < — < < <= < .1
%A~ Fg+ A " IN\S[A ~JAMS] S IN\S[A~  ked ~EA™ min{, 1}

by (6). Let § = |AM\S|/|AN|, @ = |ANMSUS)|/IANS:| then

INES 1AY]
B-— 1AN| = f (0,}AN\S§)

and

- |AN\(SUSI)i B lAN\Sl — 145 _ 1 - lA}A ;15;1 _; |Asli | AN
TUTAMS]T T AN - A T - ek T AN AN

So by (5), |8 — 3| < 71/2\/5. Further, since f is decreasing in z,

7 -8i=5-5 zmin [0 £ (50)] = = (1)

Note that
@V = (1-B)a® + 8a™5, @™ = (1— §)aS + Blat\u),
Let oY = (1 — 3)a° + 3'a™\® (new weights, old points) then

NS G < M = Y|+ Y - @V + o - 7]

la <
B)|aM\Eu30 — @M 4187 — B[|a™ ~ 6®]] +[la¥ - |

Il

< ||a\EUSY) _ M)y |5 - BV2+r
ge! RSP 1
5 —-9 2L =4+ = by (8
<r2\/§\/—+r ’ 2_4+2 v (8)

v
’h—'Zl'S‘h—??‘

i

4
Claim 7 a™\% is not too close to a¥: |[a™\5 — af|| > Lro/4
A I e R el
> [l - o%| - iV — ™| = fla” - a7
_ irﬁu _ ,-;‘3’”(1.‘“‘5 _ GS” _ ﬁf”aN\S — aN\(SUS;)” — ”aN _ CLF”
> |8 - 8llla® —a¥|| - la"™\¥ — aMEI) - fla¥ - af|
> L{rg—r)—r=-r by (11)and Claim 5




To complete the proof we show that N \ 5y can e-block. By Claim 4 we know that
F(OF, 0%, A) = M for A € [Ag, M]ya € OA. If a™V = aF + A(a —oF) for some A € [Ag, M1 a €
A and if $,c are small then f{p¥,p°,A) — ¢ —2 > 0,ie. v(aFf + Ma—af)) - -2 >
L(p%, p% A). To show that N\ S; can block, by the Corollary to Lemma A.3, it suffices to
show u™\S1 < L(pF, %, A). We do this only approximately: in the previous discussion we
replace pf by a point p?, close to pf. This will suffice.

pS — (aS,uS)’ pN\S = (aN\S’uN\S)’ pN = (GN’UN) and by Lemma 1, pN — (I—ﬁ)ps-i—ﬁpN\S
where 8 = |AMS|/|AVN]. Let p = (&,4) = (@™ M55} yM\S) and let
ol = (af,uf) = (1 - 8)p° + 85 (12)

5 ~ p™\¥ by Lemma A.2 and so p! ~ p" as both are the same convex combination of
points that are close. We show that p™ ~ pf and therefore p! ~ p¥. Then by continnity
flp!, p®, ) > M/2 for A € [Ao, \1],a € OA. Hence if ¢ and ¢ are small then f(p7, 0% A) —
$—¢e>0for A& Ao, M],a € A, This will yield a contradiction to the Corollary to Lemma
Al

Claim 8 {|af — of|| < 2r
a’ - (1 _ ﬁ)as + ﬁaN\(SUS:)’ a¥ = (1 _ ﬂ)as —i-,BaN\S.

lla’ = a™|| + [la¥ - aF|| = §]|aM\ W) — M| 4 ||a" - oF

g™\ BV _ g\ 6 — || < r 47 =2r ]

il

IA

fa’ —a

[P

Let ¢ = £o = min{é/8, M/16} and assume ¢ € [0, o], then
§ M :
e<min{—,—7.
oecmn s 2} w
By the Corollary to Lemma A.3, there exists n, such that
[N{>ng,|S| > alN,UEC, = v’ >v(a’) - d—c. (14)
Assume |N! > max{ng, 71, n2}.

Claim 9 |v(a”) — v"| < min{6/2, M/4}

Ue C(N,V)so U is feasible i.e. UN = ¥;.x U* < V(AY) which implies that u” <
V(AN)/1AV] < v(a®). By (14), u™¥ > v(a®™) — ¢ — . Therefore v(a™) —p —c < v <
v(a™). Further, {|a® — af|| < r so by (10), |v(a") — v(aF)} < min{§/4, M /8}. Thus

[p(a®) = u™ < [o(a®) = (@) + |v(a”) — uV]

< mi {i £}+¢>+e
min § 7, 3

. [é6 M L [6 M
mln{z,-g'}'}'mln{z,—é—} by (13)
L [6 M
= Imn{g,-z D
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Claim 10 f{p?,p% ) > M/2 for A € [Ao, A1],a € BA.

1F(T, 0% M) = F(oF, 0% M) = |v(al + Ala - a®)) = L(p’, p° A) — v(af + A(a = a©))
+L(p", p%, A
< Jo((1 = Naf + Aa) — v((1 = N)a + Ma)|

+|L(:0F$ pa, ’\) - L(pf’ pa’ "\)i

< C(r=Alla’ = afj +1(1 = Av(a) + MwT -2 - 8)
— (1 =Mu + Mw® - a-8)]]
< Clla® —af|| + (1 = Vw(ef) — o]
= Clld’ - af|| + (1 - N)|o(a"y — ™| by (12)
M M M M
9 EeE L2 2 i
< C-r+4§4+4 5 by Claim 9 and (8)
So by Claim 4, f(p, 0%, A) > M/2 for A € [As, A],6 € BA. O

Therefore f(p!,p®, A) = ¢ —c > M/2— M/8 > 0 for A € [A, AI-],a. € 0A by (13).

We now show that a™"\% can e-block.
pY\SUS) — (gNASUS) o N\(SUS)  pN\S: = (¢M\S1 yM\S1)| Recall B = |ANMSUSOL /I ANAS: |,
We have

PNV = (1 )55 4 SN (15)
Let

o = (P uP) = (1 - B)p° + &5 (16)
Note that a? = o™\% and 8 > 3 by {11). Extend the line segment from & to a® until it

R
©
r
%
-0
by

P ;ﬂ\S‘;

o bl —— -
K= QMNGUs)  aoaf A e as BT
Figure 3: Who lives where.
meets @A in a point b and choose Ap such that a™V% = aP = (1 — Ap)al + Apb!. We show
P

Ap € [Xo, A1) and so, by the remark after (12), f(p?, pr, Ap) — ¢ —¢ > 0. By the application
of Lemma A.2, N\ S = U¥S;. We assume that vt > u% for ¢ = 1,2,...,k. Therefore

14




uNABUS) < yN\S and so pVMSUS) Yies below 5 and hence pV'5t lies below pP. We show
L(p?, p*',-) lies above p° and hence above pP, i.e. L{p!, p*', Ap) > uP > wV\St. But then

0 < f(pfvpr”\D)_gb_"E
= v(a®) — L(p", 0", Ap) — ¢ —¢
< U(O:N\Sl) A ¢ —e.

This contradicts the Corollary to Lemma A.3 and thus completes the proof.

Claim: 7, < {le? - af|| < vy

la® =o'l < Jla” - i +la® - a¥|| + [|a” - o’
< 9= 2r + 74 F)|a™\F — MVSYIYY by Claim 6
< m-THT=ET
Ha? —afl| > laP — af| - |laF —d]| > ||a™\5 — oF|| — 2r by Claim 8
LT‘O LTO L?‘o LT‘O .

Claim 11 There ezists b' € 8A, Ap € [Ag, M| such that a® = (1 = Ap)af + Apb and
f(PIan 1/\D)—¢_E > 0.
By Claim 8, |la’ — af|} < 2r and by (8), 2r < r;. Therefore ||af — af|| < r; and

al g OA by (4). Choose t > 0 such that b7 = af + #{a® —~ af) € A (n.b. aP # af as
la® — af|| > 7o > 0) then a® = (1 = 1/t)a’ + (1/8)b! so let Ap = 1/t.

Yo = Aot < HGD - GI” = /\DllbI - GI” <m=Aa

This implies Ap € [Ag, A1] by definition of ag,@;. By the remark after Claim 10,
I
f(php*  Ap)—p—<>0. O
By (12) we know that
a! = (1~ B3)a’ + Fa. {17

And by (16) we know that

' a? = (1-8%° + ga. (18)
Subtracting (17) from (18) we get, a® — o’ = (3 ~ 5)(@ — %) and substituting into
(17) we get

B

a’ = af +3(a® - &) = af + m(aﬂ' - al). (19)

By the definition of Ap (see the proof of Claim 11), /(8 — 8') € 1/Ap which implies
that Ap3/(B —3') < 1. Let As = ApB/(B-F) (s 2 0as 3> 7).

Claim 12 ¢% = (1 - Ag)a’ + Asb!

15




3

¥ = o + 5o ﬁ,(aD —-a’) by (19)
= o' + 3 _ﬁﬁ, (1= Ap)al + ApbT — a]
= a + ﬁfﬁ’ Ap(d —ah)] = a! + X5(d" — a¥)

= (1 — )\3)(1! + /\sb!

Claim: v¥ =uw/ > wf - al -4

luf —wF - a?] < Y — o) + |wF - of —wF . af| as v(af) = w’  oF
< Ju =@ + [t e - o
5 . 5 6
2 2% <L et =6
< 2-i-]|w Hr__2+2

by Claims 9 and 8, and (9).

Claim 13 L(p’, p*', Ag) > u°

L{p", 0" As) = (1=2As)u! + As(wF - bF = 6)
(1 - As)(w’ -al = 8) + As(w® - bf ~ )
w® - [(1— As)al + Ash] - 6

= w’ .4 -§>u® by Claim 12 and by assumption

v

B > 3 sotake My =1 - 3/3 then

Claim: p? = (1 - Ap)p! + App°

(1- f\b)_p[ +App° = -Epf+ (1 — %) ?°
B s, as AW
= 3 [(1-8)p° +35) + (1 ﬁ>p by (12)

= (1-8w° +85=p" by(16)

Therefore
wP = (1= M)l + MNpu® = (1 = M) + A’

as u! = u". Further
a? = (1-Xy)al + Mpa®
(1- )\b)a" + /\’D[(l - ,\S)GL‘r 4 /\sbf] by Claim 12
= (1—AbAs)aI+/\b/\5bI

16
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Therefore MpAs = Ap by Claim 11 (as af # b since o’ ¢ A by the proof of Claim

11). |
wP = (1= X + Mpu® < (1= Mp)u¥ + M, L(pT, ', As) by Claim 13
= (1= 2p)u™ + X5 {(1 = As)u™ + As(w™ - bf - §))]
= (1= Moase)u + NpAs(wF b - 8)
= L(p", 0" ApAs) = L(p", ", Ap)
i.e. L{p?, p*', ) is above u? at a®. We have chosen S; so that v > u¥ fori=1,...,k
50,

'U.N\Sl - ﬂf)us_i_ﬁfui\r\(SUS‘[) by (15)
(1 §Yu° + 84\ = u® by (16)
L(pftpbrs)‘ﬂ)'

AN

Further, by Claim 11,

0 < f(pltpbra’\D)-qb—‘s
= o((1 - Ap)af + Apb") = L(p", 0", Ap) -
< v(a? = o™ -V L p e

Thus V51 < »(@¥V51) — ¢ — £. This contradicts (14), which applies as §, C N\ § =
N\S$: D S=|N\5|2|5[2alN]|

Part IT: v = US/|AS| < wF - a5 +6
Suppose u°¥ > w¥ .2’ + 6. Asin Part I, let 3 = |AV\S|/|AY| then by (1) we get 1 — 3 > v,
which implies that 3 <1 —~.
Let f(z) = (1 — z)/z then f/(z) = [-z — (1 — 7)]/2? = —1/2? < 0. Therefore f is
decreasing and so
l—ﬁ>1—(1—7); y _:>_1—B<_ v
8 T 11— 1—x g7 1-n

w¥ is a supporting hyperplane for V so w¥ -a > v(a) for every a € A\ 9A. Y || —af|| < r

as in Part I, then o’ & 8A by (4) and so

w' - a¥ > v(a™) > u = (1= B’ + BuN > (1= B -0+ 8) + BuNS.
This implies :
BtV < W aV — (1 - Byt e~ (1-8)8

(1= B S+ﬁaN\Sl (1 -8y’ a’ - (1-8)6
= [)’wF- N\S_(1— 3)s.

1

Hence 1_4
uNS < LN 2T < g NN s,
- 3 1—=
(n.b. 8 # 0 otherwise § = N = u® = v¥ < w¥ .a"¥ = wf - o which would contradict
our hypothesis.}) Now if there is a lower bound for 5, then the argument in Part I, with
v6/(1 — ~) in place of §, will apply to NV \ S to produce a contradiction.
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Claim: [[pV —p™\¥|| < (/2 + ([lwF|| + <)

U € CAN,V) = US > V(A% — ¢|45] for any coalition S ¢ N. Therefore uv° >
V(AS)/|AS| ~ 2 > —e. This is where V > 0 is used {any lower bound would do).

u < w(a) Swf - d¥ < luf e <

W\ < g™V TL—é < wf @™ < Jlwf|
-7

This implies —¢ < u™, u™\¥ < {lwf|| and therefore [u — uw¥\5| < ||wF| +e. Thus

g = ™M) =l — &V + N — MV < 2 4 ()| + )2 O

Claim: |p* - p¥|| 2 &/||(w", ~1)]|
u® > w¥ . a5 + § by hypothesis and p° = (a°, 1) so,
(wh,-1) . p° =wf .05 —u’¥ < -4,
wf . a¥ > v(@™) > "V and pV = (o™, 1) so,
(w¥, =1} pV =w" -V~ >0,
Therefore,

§ < J(wF,=1)-p° ~ (", -1) - PV} = |(0", -1) - (p° — p™)| < (", =DIIP® - P

Claim: 8= [[p" —p5||/[[p"\® - p°||
By Lemma 1, p = (1 — 8)p° + 3p™\5. Thus p™ — p° = 8(p™\¥ —~ %) and so 3 = |IpV -
/IS = 25| (5 # P as 48 2 wF - a5 + 6 and u™S < wF g —48)(1— 7). []

5o I =2l o/lwF, 1)
P =21 = ot (Jwr] + o)

Therefore 3 is bounded below.

This shows that there exist n,r, ey such that if [N} > n, [la" — af|| < r and ¢ € [0, 50
then

§
wh - 4% —U% < 5[AS|.
Ifwe CH then (w- Al,... ,w- AV € C, so that

)

[w-AS—US[_<_[w-ASHwF-AS|+}wF-ASmU5|<§|A5I+5

'z'iASI =45l4°. B

18




B Boundedness of Hedonic Payoffs

Proof of Lemma 2 (in text): If T=1, then & = {1}, so a¥=1. Further, a feasible hedonic

payoff is just a number weR such that weAN <V(AN), which implies that w = wea" <
V(AN)/]AY] <v(a™) = v(1). This shows that if T=1 the set of feasible hedonic payoffs is

bounded, so assume T22. Given we¥, let

w,

(1/T) (=w,) 1 (where 1is a vector of ones of length T)

W.

s = W W,

Claim: wyew, = 0

wyew, = (W-W Jew, = (1/T) (zw)>T (Y Tew)? =0 O
Let X = {aeA | d(a,84) 2(1/2)(r-6)}. K is a compact set in int(A) containing a™. v is
Lipschitz on K. (Although v isn’t defined on all of RY, V is, and one can extend K to a
compact set in the interior of RT to get the Lipschitz constant.) So let C be a Lipschitz
constant. Assume pr“ > 0 and let

a® = aV - aw,/ I[wpﬂ .

Claim: a® € K for |a} < d(a™,8K).
K = {aeh | d(adh) 2(1/2) (r-6) } = { aeh| min, a, (T/(T-1))* = (1/2)(c-6) }
= {ach | & 2 (1/2) (-8) (T-1/T)* ¥t }.
min, a) (T/(T-1))° = d(a"84) > r
> aY > r ((T-1)/T)° > (1/2) (r-6) (T-1)/T)° vt.
Therefore a” is in the interior of K.
soa® =z a - (af|wl) = w - W) = 1= (@/wpl) (3w, - Zw] =
Thus a® starts off in K and stays in K as |«| increases until it hits the boundary 8K,
when |a| = [a%a"] = d(a"9K). O

Claim: d(a™dK) > s.
d(a™0K) = d(a¥,ah) - (1/2) (-6) 2 1- (1/2) (1-8) = (r+6)/2> 6. U
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Let o' = d(aV,8K) - §/2. Then a®* ek
Given 2¢B(a®,6/2), let @ = (a™-a)ew,/|w,} .

Claim: wea = wea”.

w.aa =W e [aN - ((aN-a)O(Wp/Ile")) Wp/“wp“ ]
= wea" - (a%a) o w,
= wea - (a¥-a) e W = wea

as w_ea is constant on A. O

Claim: |a-a'| < 6/2, thus @ > d(a",8K)-s.
(a-a%) o(a¥'-a%) = (a-a%) o (a-a") w/[w,] = [(a-a")/[w,[] [(a-a")ew] = 0.
Thus [la-a®? = [la-a"|* + a®a" .
la-a’ |2 = Ja%a®|* = Ja-a® | - a-2%[* < (8/2)* - [la-a®[* < (6/2)".
Thus |e-a'] < (6/2) = « > a'<(6/2) = d@N9K)-s. O

Claim: B(a¥,5/2) ¢ K.
Suppose a € B(a*,6/2).
[a¥-al| <Ja™-a?| + [[a*-a| < o' +(6/2) = d(a"3K). O
Claim: Jw,| < [C d(a",aK)+2¢] / [d(a"0K)-8] < [CV2 + 2e]/[(1/2)(r-6)] .
Let 2eB(a®,§/2). Then aeK so |v(a")-v(a)| < Clla%-a] < C d(a™,9K),
which implies v(a) > v(a™) - C d(a™ 3K).
wea = wea® = wea" - a Wew,, / pr“ < (VIAY/|AN]) - « [(wp-i-wé_)-wp]/][wp"
< v(@™) - afwy| < v(@") - [d@%3K)-8] |w,] .
Suppose |Jw,|| = [C d(a"8K)+2¢] / [d(a",0K)-6] .
Then [d(a",9K)-8]{w,}| 2 C d(a™,0K)+2¢ and -C d(a",3K)-2¢ 2 -[d(a™,0K)-6] [w,}l.
wea < v(aV) - [d(a",9K)-s]]lw || < v(@") - C d(a"9K) - 2¢ < v(a)-2¢.
Therefore B(a®',6/2) ¢ {acA | wea < v(a)-2¢ } (Contradiction) O
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This shows that Ilwpﬂ is bounded. To complete the proof it suffices to show that Hw‘]l is

bounded, since [wl* = |w,+w|? Iw,|* + llw,|> w,ea is constant on A and
(1/T)led, so woea = w, o(I/T1 = (/w1 « (I/IH1 = (1/T)zw, . lw | =
(woew)S = [(/DEw) 1o (1/Dzw) 11 = (/) |2w VT = (AT [5w] = VT
|w,ea]. Thus it suffices to show that w,«a is bounded.

Claim: w,ea is bounded above.
woea = woeaV = wea - wea¥ < v(a%) + {w,ea"| < max,gv(a) + (AN

But prll is bounded above. O

Claim; w,ea is bounded below.
Let m = min {v(a)-2¢|aeK}, and ﬂw?ﬂsM Ywel. Suppose w,»a < m-M < m-uwpﬂ.
|wea-w sa]| = |wyea] S“wpn < M. Thus, wea s<w,ea + M < m < v(a)-2¢ VaekK
Thus Kc{aeh|wea<v(a)-2¢}, but a"eK, so B(a",d(a",3K)) c {aeh|wea<v(a)-2¢}.
This implies that § > 2d(a",8K) > 2[r-(r-§)/2] = r+é > §. (Contradiction) O

Corollary: Let ¢,6,r 2 0. Suppose d(a™ap) 2t > 6 and (N,V) §-exhausts £-blocking
opportunities. Then C{(N,V) is bounded.

Corollary: Let £,,6,5,r 20. Suppose (N,V), (N',V) é§-exhaust £-blocking opportunities
and that d(a™38) > r > &, d(aV,38) 2 1/ >6. Then 3 M>0 such that if e<e,,
M for weCE(N, V), w' e CY(N", V).

w-w'] <
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