
UCLA
Papers

Title
Towards a Debugging System for Sensor Networks

Permalink
https://escholarship.org/uc/item/20j234gg

Authors
Ramanathan, Nithya
Kohler, Eddie
Estrin, D

Publication Date
2005-05-05

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/20j234gg
https://escholarship.org
http://www.cdlib.org/

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102

Copyright © 2005 John Wiley & Sons, Ltd.

Towards a debugging system for sensor networks

By Nithya Ramanathan*,†, Eddie Kohler and Deborah Estrin

Due to their resource constraints and tight physical coupling, sensor
networks afford limited visibility into an application’s behavior. As a
result it is often difficult to debug issues that arise during development
and deployment. Existing techniques for fault management focus on fault
tolerance or detection; before we can detect anomalous behavior in sensor
networks, we need first to identify what simple metrics can be used to
infer system health and correct behavior. We propose metrics and events
that enable system health inferences, and present a preliminary design of
Sympathy, a debugging tool for pre- and post-deployment sensor
networks. Sympathy will contain mechanisms for collecting system
performance metrics with minimal memory overhead; mechanisms for
recognizing application-defined events based on these metrics; and a
system for collecting events in their spatiotemporal context. The
Sympathy system will help programmers draw correlations between
seemingly unrelated, distributed events, and produce graphs that highlight
those correlations. As an example, we describe how we used a preliminary
version of Sympathy to help debug a complex application, Tiny Diffusion.
Copyright © 2005 John Wiley & Sons, Ltd.

Nithya Ramanathan ��

Eddie Kohler ��

Deborah Estrin ��

Department of Computer Science, UCLA, Los Angeles, Califormia, USA

*Correspondence to: N. Ramanathan, Department of Computer Science, UCLA, Los Angeles, CA 90025, USA.
†E-mail: nithya@cs.ucla.edu

Introduction

Sensor networks—networks of small,
resource-constrained wireless devices
embedded in a dynamic physical environ-

ment—have led to new algorithms, protocols, and
operating system designs.1,2 In sensor networks,
interactions between sensor hardware, protocols,
and environmental characteristics are hard to
predict, making application design an iterative
process between debugging and deployment.3 For

example, owing to flaky or variable link connec-
tivity, post-deployment environments can present
unexpected combinations of inputs, or stimulate
untested control paths in routing and transport
code, uncovering new bugs and necessitating dif-
ferent application designs. Furthermore, because
sensor networks are at an early stage of develop-
ment, debugging needs are more fundamental
than for the Internet (e.g., rebooting a router often
solves issues seen in the Internet, but rebooting a
node rarely fixes a bug in a sensor network).

INTERNATIONAL JOURNAL OF NETWORK MANAGEMENT
Int. J. Network Mgmt 2005; 15: 000–000
Published online in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/nem.570

1

NEM570_online 4/29/05 8:28 PM Page 1

—Why Do We Need New Debugging
Tools?—

We distinguish debugging from performance
analysis and fault tolerance, and define debugging
as the process of root-causing a high-level failure. This
is an iterative process that begins by detecting a
fault, isolating it, and then root-causing it—which
often results in the identification of another fault,
starting another iteration of this debugging loop.
This process differs from traditional fault tolerance
methods that aim to provide user-level trans-
parency to system failures. Sensor network users
do not primarily need fault tolerance; it is more
important to know when and where a failure is
occurring and have tools that will enhance visibil-
ity and aid in detecting, root-causing and fixing
the fault causing the failure.

We distinguish debugging from
performance analysis and fault

tolerance, and define debugging as the
process of root-causing a high-level failure.

Sensor networks are difficult to debug primar-
ily owing to lack of visibility into the nodes and
the dearth of effective debugging tools. Nodes’
limited memory, communication, network and
power resources prevent them from freely storing
and transmitting debugging information, as this
quickly depletes energy and network lifetime.
As a result, once a sensor network is deployed,
visibility into the network drops dramatically.

Envision deploying a dynamically taskable
environmental monitoring sensor network, and
not receiving queried data at the sink. Is this data
loss caused by a mote tasking failure, failed
sensors that are not returning samples, or packet
loss along the path? Without more information,
this failure is virtually impossible to track down
and debug. With better tools and more observa-
tions, we may determine that data is not reaching
the sink due to wildly varying link qualities at an
individual or group of nodes. However, we cannot
stop here as this still does not elucidate a fix: we
must perform another iteration and determine
why the link qualities are changing. This could
lead to uncovering yet another fault which would

result in another iteration in the debugging
process. All these iterations must often take place
in the field, where visibility is lowest, since envi-
ronmental conditions may trigger bugs.

Sensor networks are not only hard to debug due
to the lack of visibility; they contain bugs charac-
teristic of both distributed, embedded and wireless
systems, which are notoriously hard to detect
and root-cause. Such bugs can be multicausal
and timing-sensitive; often they are triggered by
ephemeral events such as race conditions, asyn-
chronous changes in distributed state, and interac-
tions with the physical environment, making them
hard to reproduce. Failures can also be caused
by the interactions between nodes, regardless of
whether independent nodes and modules are func-
tioning correctly. A final hurdle in debugging is
having too much information, which can be as inef-
fective as not enough information; this is especially
true for a system that may scale to hundreds or
thousands of nodes. These issues are not solved by
removing power and memory constraints, and also
occur during pre-deployment debugging (debug-
ging that occurs during simulation and emulation).

These characteristics of sensor networks
motivate the need for a debugging tool that can
enhance visibility while preserving resources,
non-intrusively observe the network, and provide
contextual information for failures; in addition, the
tool must transition seamlessly between both pre-
and post-deployment environments. Furthermore,
the tool must extract debugging information from
a running system without introducing the probing
effect (alteration of normal behavior due to instru-
mentation). Standard debugging approaches
that only provide passive infrastructure, such as
running a debugger or continual logging, fall short
for sensor networks; this will be discussed further
under ‘Current State of the Art’.

—Debugging Goals—

An ideal debugging system may:

1. Detect a problem or unusual behavior by
monitoring simple system metrics.

2. Aid in debugging the problem by collecting
‘useful’ information to provide context.

3. Proactively verify a hypothesis by injecting
tests and go back to step 1 as needed.

4. Notify the user.

2 N. RAMANATHAN ET AL.

Copyright © 2005 John Wiley & Sons, Ltd. Int. J. Network Mgmt 2005; 15: 000–000

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102

NEM570_online 4/29/05 8:28 PM Page 2

5. Fully debug the problem.
6. Finally, attempt to repair the problem.

This paper presents a preliminary design and
evaluation of Sympathy, a debugging tool for
pre- and post-deployment sensor networks that is
designed to address the first three steps listed
above. Our goal is to identify metrics that serve as
accurate indicators of system health in order to
determine what is needed for an autonomous
system to monitor itself. Sympathy’s primary
goals are to enhance a user’s confidence in the
system and aid in debugging. Sympathy will
consist of mechanisms for collecting system per-
formance metrics with minimal memory overhead;
mechanisms for recognizing application-defined
events based on these metrics; and a system for
collecting events in their spatiotemporal context. We
define a metric as directly observable system state
based on externally visible behavior, and an event
as a notable change in state of a metric. The key,
then, is to define what a notable change is, and
thereby determine when events are important to
note. The Sympathy system will help program-
mers draw correlations by collecting distributed,
time-stamped events. Sympathy will impose
minimum storage requirements on each mote, be
non-intrusive with respect to the protocol and
timing of the application, and monitor events
within a sensor node as well as interactions
between nodes.

Our current contribution is a preliminary design
and implementation of a tool that can be used for
pre-deployment debugging, an initial analysis of
metrics useful for debugging, and the role of a
debugging tool in the entire design process. Using
Sympathy we have begun to distill the important
metrics, events, and generic correlators that indi-
cate system health and help find bugs quickly, and
to transmit this data in ways that minimize energy
consumption and probing effects. We found that
by logging specific metrics and events, a system
can perceive potential issues and enable quick
discovery of their root cause.

Using Sympathy we have begun to distill
the important metrics, events, and

generic correlators that indicate system
health and help find bugs quickly.

Sympathy’s approach of correlating seemingly
unrelated events has proven useful in detecting
and debugging failures involving interactions
between multiple nodes. To continue our previous
example, imagine our sink stops getting data only
from nodes A and B, and all data routed to the sink
passes through node X. A system that reports that
both node A and node B stopped sending data at
approximately the same time, that node C still con-
siders both nodes to be neighbors, and that link
quality to node X from the previous hop suddenly
dropped helps a user to isolate potential causes. In
this scenario, the user can speculate that nodes A
and B are probably still alive and that the dropped
data is more likely due to the link to node X. All
of these conclusions can be drawn simply by iden-
tifying correlated events based on nodes’ neighbor
lists. However, log files containing megabytes of
unrelated data make it difficult to find and corre-
late events, especially those that are seemingly
unrelated at first glance.

It is important to note that Sympathy entails
user participation; it is not meant to be a generic
bug-finder or ‘black-box’ technique. During pre-
deployment, Sympathy is most effective once
initial bugs have been fixed, and the harder-to-find
coding and algorithmic bugs remain. Sympathy
employs both traditional network management
metrics and indicators of system health (e.g., route
flapping and packet loss) in conjunction with
sensor network-specific metrics and events (e.g.,
neighbor-list changes and next-hop selections),
chosen as a result of sensor networks’ unpre-
dictable and highly varying links.

The Sympathy tool is new—we have used it so
far only in simulation and emulation. Neverthe-
less, our experiences have been positive enough to
validate the approach. Eventually, Sympathy will
be part of a system that can aid in debugging
sensor networks both pre- and post-deployment.
Below we present a useful case study that demon-
strates our current contributions by showing how
Sympathy was used to debug a failure in Tiny
Diffusion.4

Current State of the Art
Standard debugging and fault detection

approaches are often based on the assumption that
all nodes: (1) are accessible, either by a human
system administrator or another node with reli-

A DEBUGGING SYSTEM FOR SENSOR NETWORKS 3

Copyright © 2005 John Wiley & Sons, Ltd. Int. J. Network Mgmt 2005; 15: 000–000

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102

NEM570_online 4/29/05 8:28 PM Page 3

able connectivity; (2) have unlimited power; and
(3) fail due to local causes, as opposed to interac-
tions between several nodes. Furthermore, these
techniques assume there is minimal cost associ-
ated with continually transmitting debug infor-
mation to a centralized server. Such techniques fall
short for sensor networks, which contain bugs
characteristic of distributed, embedded, and wire-
less systems, and which need algorithms that
minimize power, processing, and memory usage.

While some sensor network faults, such as node
failures and bad route selections, are similar to
those seen in common distributed architectures
such as the Internet, the approaches to detecting
these failures are necessarily different owing to
the embedded, wireless, and resource-constrained
platform. Moreover, common sensor network fail-
ures, such as data not arriving at the sink, nodes
not receiving tasking or query packets from a sink,
or even performance-based issues such as nodes
consuming too much power, are not as prominent
in Internet debugging; and Internet debugging

may focus more on user latency, high availability,
and application-level failures—issues not neces-
sarily pertinent for sensor networks.

Current techniques for distributed systems can
fall into the debugging infrastructure/passive moni-
toring and fault detection categories.

—Infrastructure/Passive Monitoring—

Current debugging infrastructure and tech-
niques include the use of passive monitoring,
tracing programs, simulation, visualization tools,
and debug log files. While simulations are useful,
clearly they are not a replacement for debugging
on the actual hardware; it is impossible to simu-
late real-time network dynamics, dynamic
environments, and numerous timing, MAC, and
hardware-related details.

Visualization tools are helpful for real-time
debugging when running on actual hardware.
Figure 1 is a screen capture of Emview, a visual-

4 N. RAMANATHAN ET AL.

Copyright © 2005 John Wiley & Sons, Ltd. Int. J. Network Mgmt 2005; 15: 000–000

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102

Figure 1. Screen capture of Emview, the visualizer available with Emstar.3 This screen shows nodes,
neighbor-list connectivity and link qualities associated with each link. The image changes in real time

with changes in the network, capturing no historical context and performing no data analysis

NEM570_online 4/29/05 8:28 PM Page 4

izer tool designed for debugging distributed
embedded applications. However, visualizers
often don’t highlight events that may indicate a
failure, nor are they meant to capture historical
context. For example, Emview-like visualizers
show either link quality or neighbor-level connec-
tivity; conflicts in these properties—a node that
has no neighbors despite relatively high-quality
links, for example—are difficult to see.

While log files can capture historical perspective
and context, they contain excessive and unfiltered
data that can obfuscate important events.

Tracing tools such as the Gnu Debugger (GDB)
are highly utilized in order to understand real-
time code dynamics, but such tools ignore the
platform constraints of sensor network nodes,
assuming that users can access a node through
some sort of shell in order to launch and run the
tool.

While traditional network management does
not specifically address characteristics specific to
sensor networks, such as low power and commu-
nication needs, there are many insights that we can
apply.

The simple network management protocol
(SNMP) implements a protocol to manage the
exchange of network statistics between a central-
ized server, the network management system
(NMS), and the agent nodes that record and trans-
mit the metrics. The NMS queries agents and
receives network statistics as well as asynchronous
events from agents and can set variables within
agents. Agents receive and store management
data, and can asynchronously signal events to the
NMS. SNMP focuses all processing at the NMS,
expecting nodes to continually transmit all metrics
back to this centralized server. This places an
undue load on sensor network nodes that must
minimize transmission in order to extend network
lifetime.

Management by delegation5 begins to address this
issue of centralized processing of network statis-
tics by moving some of the responsibilities of
network management from a centralized server to
distributed nodes. This responsibility transfer is
done using mobile code: i.e., downloading scripts
that can perform management tasks or even
dynamic tasking to nodes. These scripts, or delega-
tion agents, empower individual nodes to take
action based on observed behavior, instead of con-
suming network bandwidth to convey metrics and

commands between the centralized server and the
nodes. The node is then able to monitor its own
behavior, detect any problems, diagnose these
issues, and even repair the problems.

Debugging tools designed for sensor networks
are in their nascent stages. Although no common
practices exist yet, Zhao et al.6,7 make several rec-
ommendations for post-deployment debugging.
Zhao et al.6 present an algorithm to continually
compute aggregates (sum, average, and count) of
loss rates, energy levels, and packet counts to aid
in debugging. Zhao et al.7 argue that, while it is
important to continuously gather node state in
order to monitor the health of the network, it is not
feasible to do so for each node due to energy lim-
itations. The authors propose an energy-efficient
algorithm based on in-network aggregation. The
authors focused solely on the process of efficiently
transmitting collected metrics and do not specify
what metrics should be collected or how to process
this data.

There are several TinyOS-based tools that
support debugging. For example, SNMS is an
infrastructure to enable system monitoring and
fault detection.8 This tool allows programmers to
export counters and statistics and record applica-
tion metrics. We have focused instead on deter-
mining the right metrics to export. With minimal
modification, we could leverage the infrastructure
provided by SNMS and replace Sympathy’s
logging mechanism and application interface.

While debugging tools such as SNMP, SNMS,
and management by delegation provide monitor-
ing infrastructure, we could find no work that
examined or proposed specific metrics and data
analysis techniques specifically applicable for
sensor networks. Furthermore, Sympathy distin-
guishes itself from such passive data logging
approaches by proactively collecting only poten-
tially relevant events and their context, in order to
highlight failures and aid in isolating their causes.
In addition, Sympathy specifies generic low-level
metrics and events that specifically examine
inter-node dynamics in addition to internal node
metrics.

—Fault Detection—

Another group of work related to Sympathy is
those tools that utilize models for fault detection.

A DEBUGGING SYSTEM FOR SENSOR NETWORKS 5

Copyright © 2005 John Wiley & Sons, Ltd. Int. J. Network Mgmt 2005; 15: 000–000

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102

NEM570_online 4/29/05 8:28 PM Page 5

These systems use models to infer internal state
based on externally visible statistics. Szewczyk
et al.9 identify nodes that report sensor data
exceeding a static threshold as being close to
failure. This work utilizes a simple model to
specify expected values and infer the node health
when returned data does not match the model.

Model-based calibration techniques for sensor
networks are similar to, though more refined
than, the simple thresholding techniques used by
Szewczyk et al. Feng et al. define calibration as ‘the
process of mapping raw sensor readings into
corrected values’.10 While calibration takes the
process of fault detection one step further by
attempting to fix the values, Feng et al. use their
error model to interpret the sensor data and deter-
mine which sensors may be faulty.

Kiciman et al. collect low-level network metrics
and use statistical analysis in order to identify
application-level anomalous behavior.11 This
approach solely focuses on identifying faults, and
is based on their stated assumption that identi-
fying a fault consumes a majority of the time
involved in handling a failure for Internet service
providers. The authors postulate that once a fault
has been detected, the fix involves simple tech-
niques such as rebooting a node. Rebooting can
work well for occasional transient faults on an
essentially solid infrastructure. It can help for
sensor networks as well (on networks that support
remote reboot), but most sensor network infra-
structure—network protocols, node operating
systems, and so forth—is still under active devel-
opment, and far from Internet-level stability and
robustness.

Fox et al. extend this idea to suggest using sta-
tistical learning techniques to identify anomalous
behavior.12 Their first step in this process is to:
‘Ensure the system is in a state in which it is mostly
doing the right thing most of the time, according
to simple and well-understood external indica-
tors.’ However, these ‘simple and well-understood
external indicators’ do not exist for sensor net-
works. Before we can move on to apply increas-
ingly complex tools to monitoring sensor network
behavior, we must first identify such indicators.

Tools that analyze effects of configuration
changes and predict anomalous behavior come
close to the needs of sensor networks, but do not
often take into account interactions between
nodes, node constraints, and the unpredictable

communication of wireless radios. These tools
often assume perfect knowledge, expecting that
nodes can reliably and continuously transmit
system metrics to a server. This non-determinism
in the environment is a key difference, even
between pre-deployment and post-deployment
debugging of sensor networks, as will be
discussed below under ‘Post-Deployment
Architecture’.

Ruan and Pai’s DeBox system13 motivated the
initial design of Sympathy and may be the most
similar to it. DeBox suggests that exposing
minimal internal state in real time to applications
affords better performance analysis and tuning
than passive profilers that provide information
post facto. This transparency allows applications
to get immediate feedback on the impacts of their
actions on kernel performance and behavior.
While Sympathy is not as concerned with perfor-
mance, and focuses on fault detection and debug-
ging, this approach of enhancing system visibility
and transparency by exposing minimal internal
state forms the basis of our work.

Architecture
We propose a generalizable architecture, called

Sympathy, which continually monitors a network
while an application is running, enhances visibil-
ity by identifying and collecting generic, low-level
system metrics and events used to infer system
health, and highlights unexpected correlations
between these events in order to detect and help
debug failures. The second-tier goal is to inform
applications of events in case they can modify
their behavior. The design of Sympathy should be
considered preliminary; as we move to post-
deployment debugging, architectural details may
change.

Sympathy logs metrics as they change. These
metrics are directly collected from the application,
not independently calculated by Sympathy. We
aim to define a minimal set of metrics sufficient for
inferring system health and postulate that the list
in Table 1 fulfills this criterion.

The metrics are then analyzed to detect events,
which are essentially notable changes in the metric
state. Once the network has established initial
neighbor lists and routing configurations, any
occurrence of the events listed in Table 2 are con-
sidered notable.

6 N. RAMANATHAN ET AL.

Copyright © 2005 John Wiley & Sons, Ltd. Int. J. Network Mgmt 2005; 15: 000–000

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102

NEM570_online 4/29/05 8:28 PM Page 6

Sympathy consists of two types of nodes: a Sym-
pathy-sink and a Sympathy-node, shown in Figure 2.
In general, the Sympathy-sink performs most of
the event processing, and receives updated metrics
from Sympathy-node processes using the IPC
framework provided by Emstar. The Sympathy-
sink contains components to record metric data

from any node, identify events by analyzing
metrics, and record event context.

Once an event has been detected, the Sympathy-
sink updates its data structures and notifies clients
interested in the specific event. These clients are
passed event-specific data structures. A current
client application exists that uses this information

A DEBUGGING SYSTEM FOR SENSOR NETWORKS 7

Copyright © 2005 John Wiley & Sons, Ltd. Int. J. Network Mgmt 2005; 15: 000–000

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102

Metric name Metric description

Neighbor lists List of neighbors. Neighbors are identified by ID.

Link ingress/egress Link quality from and to each neighbor. Link quality is calculated
as a delivery rates between 0 (100% loss) and 100 (100%
delivery).

Byte counts The number of bytes transmitted and received by this node.

Next hop (Routing table) The next hop chosen by this node.

Path loss (Routing table) Whole-path loss rates calculated over an entire path from a
node to the sink, using pair-wise link qualities at each hop.
Each node calculates a separate path loss for each (next
hop, sink) pair in its routing table, then chooses the next hop
with the lowest path loss. Path loss is the inverse of link quality:
lower values mean lower packet loss and thus provide better
quality of delivery.

Table 1. Metrics gathered at each time step

Event name Description Metrics used to recognize event

Missing node No node reports a node n as a All neighbor lists
neighbor. Logsn

Isolated node Node n has no neighbors. Logsn n’s neighbor list

Route change n’s next hop changes at least once. n’s routing table information
Logs the previous and current next
hop, the associated path loss for the
top two choices for next hop, and the
number of gradient messages received
in this round

Neighbor list Node n2 joins or is dropped from n1’s n1’s neighbor list
change neighbor list. Logsn1, n2, and current

and previous link qualities

Link quality Node n2’s link quality to n1 drops n1’s neighbor list
change below a statically defined threshold.

Logsn1, n2, and current and previous
link qualities

Table 2. Events that are detected based on the gathered metrics, and the metrics needed to
discern them

NEM570_online 4/29/05 8:28 PM Page 7

to determine the frequency of next-hop changes
for each node.

—Implementation—

During application development the pre-
deployment Sympathy implementation runs in
emulation mode on the ceiling array as shown in
Figure 2.

The ceiling array is a test-bed of mica2 motes
connected over an Ethernet back channel to a
Linux server running Emstar.3,4 Emstar is an
event-based application framework that facilitates
heterogeneous networks of TinyOS-based motes
and Linux-based micro-servers. Each node is run
as a separate process, communicating using the
IPC mechanisms provided by Emstar. Simulation
is used in the traditional sense; nesC code is
simulated using the EmTos14 component of Emstar.

The ceiling array is employed for emulation
mode which uses real mote radios for communi-
cation, but handles all processing on a centralized
server running Emstar. The server communicates
with each mote over the back channel in order to

get and receive packets from the network.
However, because all node processing occurs on
the same server, state and debugging information
between nodes is communicated using Emstar’s
IPC.

The Sympathy-sink is virtual and omniscient,
using Emstar’s IPC to continuously and reliably
receive metrics from all Sympathy-nodes without
impacting timing or performance, as shown in
Figure 2. Interestingly, for identification of most
events collected by Sympathy, nodes only need
transmit their metrics to a local one-hop neighbor;
a centralized node with global knowledge is only
needed in order to identify the missing-node event.
While the Sympathy-sink leverages the Emstar
infrastructure to collect metrics from each node,
Sympathy has no implicit dependence on Emstar
and can be implemented independently.

Sympathy has no implicit dependence on
Emstar and can be implemented

independently.

8 N. RAMANATHAN ET AL.

Copyright © 2005 John Wiley & Sons, Ltd. Int. J. Network Mgmt 2005; 15: 000–000

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102

Ring Buffer

Request State
&

Metric Recorder

Ring BufferRing BufferRing BufferRing BufferRing Buffer

Event Analysis Sympathy-
NodeSink Application

Sympathy-
Sink

Update metrics using
Emstar IPC

…Node 1
process

Node 3
process

Node 3
process

Node n
process

E T H E R N E T B A C K C H A N N E L

Figure 2. General architecture of a simulated system running with Sympathy. The Sympathy-sink
receives updated metrics from Sympathy-node processes using the IPC framework provided by

Emstar. The Sympathy-sink contains components to record metric data from any node, process metrics
to identify events, and record event context

NEM570_online 4/29/05 8:28 PM Page 8

The Sympathy-sink analyzes the metrics trans-
mitted from all Sympathy-nodes, and triggers on
events. Upon triggering, the Sympathy-sink:

• provides temporal context by storing all
metrics it has collected from the past 200 time
units for the node causing the trigger;

• provides spatial context by storing all metrics
it has collected from the past 200 time units
for the nodes neighboring the node where the
event was detected;

• aids in correlating seemingly unrelated
events by printing event and context infor-
mation to a log file; and calls applications
interested in the event.

For example, route-flapping (frequent changes
in the routing table, used to detect badly config-
ured routers or system instability) can be identi-
fied by examining the next-hop metric collected at
each node. Currently a route-flapping event is
defined as a change in next hop. Once this event
is identified, Sympathy logs the event and its spa-
tiotemporal context. This information is logged to
the same file so that temporally and spatially cor-
related events are easily discernible.

Post-Deployment Architecture
The post-deployment implementation of Sym-

pathy would differ from the pre-deployment
architecture in that nodes must consume valuable
network bandwidth and power in order to
transmit information to a Sympathy-sink. In
post-deployment, no IPC is available to convey
debugging information between nodes, and code
is run directly on the motes, so the implementation
must also curtail memory usage in order to
conform to the mote platform. Since the metric col-
lection and initial processing occur directly on a
Sympathy-node, and metrics cannot be continu-
ally transmitted to the Sympathy-sink, only
limited events and recent metric values would be
stored at each Sympathy-node.

Owing to the sparser resources available during
post-deployment, the Sympathy-sink will have
incomplete knowledge about the state of each
node due to flaky links and heavy transmission
costs. As a result, post-deployment debugging
relies more on inferences of system state based on
externally observable metrics, and will not be as

precise as the pre-deployment techniques dis-
cussed here.

Because of the power limitations that necessitate
minimal communication, nodes must decide
which events are most important to transmit to the
Sympathy-sink. In addition, precisely defining
which events and metrics are important, and when
they should be transmitted, becomes even more
critical.

The Sympathy-sink would have to run on a non-
resource-constrained node—such as a Linux-
based stargate—which can accommodate the
additional storage and processing requirements
required at the sink. Periodically, the Sympathy-
sink could flood a request for nodes to send their
event data and current metric state in order to
ensure the health of the system.

Evaluation
To demonstrate Sympathy’s potential as a debug-
ging tool, we ran it with a nesC implementation of
Tiny Diffusion,4 a routing algorithm based on
directed diffusion.15 In Tiny Diffusion nodes peri-
odically flood neighbor beacons (to calculate link
quality), neighbor lists and associated link quali-
ties (to identify asymmetric links), and gradients
which carry a node’s next hop and projected path
loss (to determine a node’s next hop). We ran Sym-
pathy with Tiny Diffusion in simulation, using a
14-node network. Each simulation ran for 2h at a
time. Our goal was to determine why Tiny Diffu-
sion had been experiencing loss rates an order of
magnitude higher than expected in data delivery
to the sink.

After the first run, using the events triggered in
Sympathy, we saw nodes change their next-hop
selection approximately every 170s. Sympathy
aided us over traditional debugging techniques by
highlighting the frequent changes in next-hop
selection and providing spatial correlation, which
revealed that during each period on average 39%
of nodes changed their next hop. While we would
expect some churn in next-hop selection, the con-
tinuous flux appeared suspicious.

We then investigated the temporal context pro-
vided for each event by Sympathy: that is, the
metrics and events that occurred close in time to
the unusual changes in next hop. Surprisingly, we
found that most nodes that changed their next hop

A DEBUGGING SYSTEM FOR SENSOR NETWORKS 9

Copyright © 2005 John Wiley & Sons, Ltd. Int. J. Network Mgmt 2005; 15: 000–000

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102

NEM570_online 4/29/05 8:28 PM Page 9

did so because they had received only one gradient
message and thus had only one choice for a next
hop. Clearly, this was the cause for the frequent
changes in next-hop selection. Furthermore, there
was a high probability that nodes frequently
selected high-loss paths, as they were given only
one choice for next hop: had they received more
than one gradient message, nodes could have
chosen a better next hop with lower path loss. This
in turn was a probable cause for the high loss rates
observed at the sink.

To quantify our findings, we graphed the ratio
of gradients received vs. number of neighbors.
Figure 3 presents the results in a histogram: the
vast majority of next-hop changes took place when
the node received gradients from 10% or less of its
neighbors. This is particularly strange because
neighbor lists are recalculated each period
from neighbor beacons that are flooded out imme-
diately before the gradient messages. So, on an
ideal, minimally varying, 0-loss link, a node

should receive 100% of the gradient messages sent
by the nodes on its neighbor list. Yet an order of
magnitude fewer gradient messages than neigh-
bor beacons were received.

We theorize that many nodes received such a
small percentage of their intended gradient mes-
sages owing to collisions caused by synchroniza-
tion of nodes’ gradient floods. Code examination
corroborated this theory, revealing that while jitter
was added to the transmission of neighbor
beacons, no jitter had been added to the transmis-
sion of gradient floods.

Sympathy’s strength lies in its support for
highlighting events and correlating them with
metrics in their spatiotemporal context. This is an
improvement over traditional debugging tech-
niques in three ways: it facilitates discovery of
correlations by associating context with a specific
event; it provides event tracking, which involves
maintaining state; and it determines which events
are important to track (only a finite number of

10 N. RAMANATHAN ET AL.

Copyright © 2005 John Wiley & Sons, Ltd. Int. J. Network Mgmt 2005; 15: 000–000

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102

Figure 3. Histogram of number of gradients received by a node that changed its next hop, as a
percentage of the number of neighbors in that node’s neighbor list. Each node should receive roughly
as many gradients as it has neighbors, but the graph shows that most nodes received gradients from
only 10% of their neighbors (a minority of nodes may send multiple gradients, resulting in greater
than 100%). The final bar represents nodes who heard at least one gradient, but had 0 neighbors

recorded

NEM570_online 4/29/05 8:28 PM Page 10

events can be tracked). In addition to highlighting
correlations, Sympathy avoids several iterations of
debugging and rerunning that would otherwise be
needed to capture and analyze metrics in order to
find events.

However, Sympathy cannot be used in a
vacuum, nor can it be used to find bugs automat-
ically. We used our knowledge of Tiny Diffusion to
dismiss extraneous correlations, and to add the
second-best gradient to the final list of metrics
collected. While the metrics currently collected by
Sympathy are not application specific, ongoing
work will include a comprehensive analysis of
generic metrics, events, and correlators.

Future Work
Our goal is to identify generic metrics that are

useful to collect for a broad class of applications in
order to make inferences about system health and
highlight other interesting configuration and
performance-related properties. Currently we
have identified several metrics that have proven
useful for debugging Tiny Diffusion. While we
began with a TinyOS and Emstar-based imple-
mentation running with Tiny Diffusion, Sympathy
is by no means limited to this environment. Instead
we are using this as a starting platform with which
to develop our ideas. In the near future, we hope
to generalize our initial metrics, develop better
methods for identifying correlations, and include
combining sensor data with system metrics and
results from self-tests and injected probes in order
to ensure expected behavior.

Once we determine metrics that can serve as
accurate indicators of system health for a broad
class of applications, nodes can also send back
periodic maintenance reports in order to increase
users’ confidence in the system health. In addition,
these metrics can be used to provide insight
into performance and system characteristics as
well as understanding—in real time—how a
configuration change impacts functionality and
performance.

We also plan to task motes and inject probes
based on observed metrics. Ideally this can be
done even at individual nodes; however, we will
begin by implementing a centralized node (e.g. a
Sympathy-sink) which receives metrics and based
on its analysis decides it needs further information
from a certain region. At this point, it could either

inject probes or command nodes to perform
self-tests.

We could also deploy third-party snoopers
running on a non-resource-constrained, Linux-
based micro-server. Strategically placed snoopers
could shift power-heavy debugging, logging,
and transmission operations off the low-power
sensor nodes and lengthen overall network
lifetime. Snoopers also do not interfere with timing
and protocol issues, making them attractively
modular.

Conclusion
Standard debugging methods, applications, and

infrastructure do not directly apply to sensor net-
works, as most sensor nodes have extremely
limited storage and energy capabilities. It is not a
question of simply porting debugging tools like
GDB over to a mote: debugging strategies and best
practices must be reformulated to accommodate
sensor networks’ limited visibility and inter-nodal
dynamics. A debugging solution that can seam-
lessly move between development and post-
deployment debugging can also facilitate the
natural sensor network design process.

In this paper we presented the preliminary
design of Sympathy, a tool that enables the debug-
ging of sensor networks during the development
phase. It is based on a triggering system that iden-
tifies a priori events, provides spatiotemporal
context to aid in isolating the source, and calls
applications interested in an event. Using this
tool, we demonstrate that it is possible to draw
interesting conclusions based on collecting
metrics, detecting seemingly unrelated events, and
drawing even very simple correlations between
them. Without Sympathy or a similar tool, it
would have been difficult to quickly determine
that Tiny Diffusion nodes were switching their
next hops, and realize the periodicity of this
behavior. Furthermore, it is not necessarily
obvious that this behavior could have been corre-
lated with the number of gradient messages
received by each node. While Sympathy cannot
yet be used for post-deployment debugging, it is
already a useful stepping stone for analysis of
event correlation methods, and for determining
what metrics are most useful for health monitor-
ing and fault detection in deployed systems.

A DEBUGGING SYSTEM FOR SENSOR NETWORKS 11

Copyright © 2005 John Wiley & Sons, Ltd. Int. J. Network Mgmt 2005; 15: 000–000

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102

NEM570_online 4/29/05 8:28 PM Page 11

Acknowledgements
The authors thank Lewis Girod for his valuable
input through the design and debugging process.
They are also indebted to Thanassis Boulis and
Sanjay Jha for their guidance and suggestions,
which greatly improved the paper.

References
1. Szewczyk R, Polastre J, Mainwaring A. Lessons

from a sensor network expedition. In First European
Workshop on Wireless Sensor Networks, Berlin,
Germany, January 2004.

2. Cerpa A, Elson J, Estrin D, Girod L, Hamilton M,
Zhao J. Habitat monitoring: application driver for
wireless communications technology. In ACM
SIGCOMM, April 2001.

3. Girod L, Elson J, Cerpa A, Stathopoulos T,
Ramanathan N, Estrin D. EmStar: a software envi-
ronment for developing and deploying wireless
sensor networks. In Proceedings of the 2004 USENIX
Technical Conference, Boston, MA, 2004 (to appear).

4. Heidemann J, Silva F, Estrin D. Matching data dis-
semination algorithms to application requirements.
In Sensys, Los Angeles, 2003.

5. Goldszmidt G, Yemini Y. Distributed management
by delegating mobile agents. In 15th International
Conference on Distributed Computing Systems, June
1995.

6. Zhao J, Govindan R, Estrin D. Computing aggre-
gates for monitoring wireless sensor networks. In
Proceedings of the IEEE ICC Workshop on Sensor
Network Protocols and Applications, Anchorage, AK,
2003.

7. Zhao J, Govindan R, Estrin D. Residual energy scans
for monitoring wireless sensor networks. In Pro-
ceedings of the IEEE Wireless Communications and
Networking Conference, Florida, 2002.

8. Tolle G, Culler D. Snms: application-cooperative
management for wireless sensor networks. In Pro-
ceedings of the Second ACM Conference on Embedded
Networked Sensor Systems, ACM, 2004.

9. Szewczyk R, Polastre J, Mainwaring A, Culler D.
Lessons from a sensor network expedition. In 1st
European Workshop on Wireless Sensor Networks,
January 2004.

10. Feng J, Megerian S, Potkonjak M. Model-based cal-
ibration for sensor networks. In IEEE International
Conference on Sensors, October 2003.

11. Kiciman E, Fox A. Detecting application-level fail-
ures in component-based internet services. In IEEE
Transactions on Neural Networks 2005; Spring.

12. Fox A, Kiciman E, Patterson D, Jordan M, Katz R.
Combining statistical monitoring and predictable
recovery for self-management. In Proceedings of
Workshop on Self-Managed Systems, October 2004.

13. Ruan Y, Pai V. Making the ‘box’ transparent: system
call performance as a first-class result. In Proceedings
of the 2004 USENIX Technical Conference, Boston, MA,
2004 (to appear).

14. Girod L, Stathopoulos T, Ramanathan T, Estrin D.
Tools for deployment and simulation of heteroge-
neous sensor networks. Tech. Rep., CENS-TR-37,
April 2004.

15. Intanagonwiwat C, Govindan R, Estrin D. Directed
diffusion: a scalable and robust communication par-
adigm for sensor networks. In Proceedings of the Sixth
Annual International Conference on Mobile Computing
and Networking, Boston, MA. ACM Press, August
2000; 56–67. �

12 N. RAMANATHAN ET AL.

Copyright © 2005 John Wiley & Sons, Ltd. Int. J. Network Mgmt 2005; 15: 000–000

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102

If you wish to order reprints for this or any
other articles in the International Journal of
Network Management, please see the Special
Reprint instructions inside the front cover.

2

3

4

NEM570_online 4/29/05 8:28 PM Page 12

AUTHOR QUERY FORM

Dear Author,

During the preparation of your manuscript for publication, the questions listed below have arisen.
Please attend to these matters and return this form with your proof.

Many thanks for your assistance.

Query Query Remarks
References

1. Author Please provide brief biographies for each author.

2. Author Published yet?

3 Author Page numbers?

4 Author Published yet?

NEM570

Author Query Form (NEM570) 4/29/05 7:48 PM Page 1

