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DYWMIC HEDGIKG \WITH UkCERTAIK PROUUCTIO"., 

The possibility of hedging provides an opportunity for producers to reduce 

the risk associated with price and production uncertainty. kKinnon 1171 was 

one of the first to study the problem, assuming normal distributions for price 

and harvest, and the objective of minimizing the variance of income. Anderson 

and Danthine [3]  considered the problem where production was certain and pro- 

ducers had a mean-variance criterion; their later papers, [l] and 121, gener - 
alized this to include stochastic production. The papers by Rolfo [201 and 

Hildreth ill] study optimal hedging with production uncertainty using utility 

functions other than mean-variance. Most of these papers view the decision 

problem as static; the exception is Anderson and Danthine [I] kio treat a two 

period problem. Other papers on optimal hedging include those by Emthine 

[71; Feder, Just, and Schmitz Is]; Holthausen [12] and Batlin [4 ] .  A recent 

paper by lvbrcus and Modest I161 studies dynamic hedging by a public firm with 

stochastic production. Their results are not applicable to privately held 

firms biicb are unable to make their total return free of all systematic 

risk. The decision-maker in this paper is taken to be the owner of a private 

f inn. 

The general abstraction from the dynamic nature of the hedging problem 

misrepresents the producer's situation. At the beginning of the production 

period (planting), the farmer chooses inputs and his position in the futures 

market. The knowledge that he will be able to revise his hedge in subsequent 

stages may affect both his initial production and hedging decisions. This 



the solution to the dynamic problem. 

Choice of the constant absolute rlsk aversion ICrUL4) utility iunction per- 

mits a closed-form solution to the dynamic problem. ?his gives the hedge at 

any point in time as a function of the current futures price and the 

parameters of the harvest forecast and price equation. One result is that, i t  

the current futures price is an unbiased predictor of the cash price at har- 

vest, the optimal initial hedge is myopic; that is, the same solution is 05- 

tained from the corresponding static problem. 'Illis does not hold when the 

expectation at t of cash price at harvest differs from the futures price at t. 

A second result is that an expected increase or decrease in the amount hedged, 

over the production period, is consistent with the current futures price being 

either an upwardly or downwardly biased estimator of cash price at harvest. 

The sign of the expected change in the hedge depends on the magnitude of the 

bias relative to the degree of risk aversion. 

These results hold in the limiting case where there is no basis risk (de- 

fined below) and the interest rate is 0. A small increase in basis risk leads 

to an increase in the optimal level of futures sales provided that the 

absolute level of risk aversion is small. A sinall increase in the interest 

rate reduces the level of sales if the futures price is expected to decline; 

otherwise, an increase in the interest rate increases the level of futures 

sales. These results hold for small levels of absolute risk aversion. 

It is helpful to bear in mind the relationship between the hedging and 

standard portfolio problems. If production were nonstochastic, the farmer 

could sell the entire crop at the current futures price at planting and regard 

the proceeds as his initial wealth. Hedging either more or less than his 



known production is equivalent to investing in the risky asset in portfolio 

theory. Thus, in the case of nonstochastic production, the farmer's dynamic 

hedging problem can be treated as a special case of the class of problems dis- 

cussed by iLfossin [191. With the WU utility function, the solution to that 

problein requires "limited foresight": the investor distributes his assets 

between the risky and safe investment in order to maximize the expected 

utility of next period's wealth, compounded at the rate of the safe asset, 

over the remaining horizon. The myopic hedging result alluded to above is 

clearly related to this result from portfolio theory. When production is 

stochastic, the hedging problem is analogous to a portfolio problem in t~iiicli 

initial wealth is unknown. For a more general discussion of myopia in dynamic 

problems see Tesfatsion [22, 231. 

2. PROBLFX FOWIULATIOK AKB SOLUTIOX 

The following formulation is a dynamic generalization of a static problem 

used by Bray [ S ] .  To derive the model of continuous trading, suppose first 

that there are n + 1 trading dates which, for notational convenience, occur at 

regular intervals of E .  Futures are first traded at time 0; at n E = 7' 

the farmer's futures position is closed and he sells his crop on the cash mar- 

ket. At each trading date the farmer decides the number of futures contracts 

to hold, based on his current information about prices and his (future) 

harvest. 

It is tl~ically the case that the time of harvest, T, does not coinciae 

with the time of maturity of the futures contract. This is referred to as ail 

imperfect time hedge. It can be modeled by allowing the basis, defined as the 

difference between the futures price and cash price, to be a random variable. 



Futures contracts are marked to market. That is, the purchase or sale ot 

a contract involves no exchange of assets; any price change is debited or 

credited from the agents' account (Cox, Ingersoll, and Ross [ 6 ] ) .  If the in- 

stantaneous interest rate is r, then the discount rate for a period of E 

units of time is ~(c) = eqrE. Define p as the futures price, b as the basis, 

f as sales of futures contracts (f > 0 implies that the farmer takes a short 

position), and hT as the harvest; recall n E = T. The farmer's profits, dis- 

counted to time 0. are 

Define fliE = f(i-l)E the number of contracts held in the previous period. De- 

fine u. E = f. - f ( i - l ~ c  so u. has the dimensions of a rate. If r = 0 so 
1 E 1 E 1E 

that 6 = 1, uiE E is the number of additional contracts sold at the beginning 

of the - ith period. Equation (1) can be rewritten as 

Define h. as the farmer's forecast at time i~ of his harvest at 
1E 

time T. Suppose that h, p, and b obey the following stoclrastic difference 

equations 



where AiE = (al, iE, A , ,  A3,iE) ' is identically and independently distributed 

with mean 0 and E AiE A ; ~  = c E, C positive semidefinite; tic) = ea'. Systern 

(3) assumes that the disturbances are additive. This is unfortunate since it 

admits the possibility of negative prices and quantities. It is the price paid 

for a closed form solution. ?'he difficulty that arises from using multipli- 

cative disturbances, as is customary (e.g., Merton [18]) ,  is discussed briefly 

below. 

Equation (3a) is included because, at time ic, the farrner uses his cur- 

rent prediction of his harvest in deciding on his level of futures sales. 

Equation (3b) a1lorf.s the current futures price to be a biased estimator of the 

futures price in the next period. The current basis is assumed to be an un- 

biased estimator of the basis in the next period. This involves no loss of 

generality since the farmer is only interested in the basis at time T; b. 
1E 

can be reinterpreted as the forecast at i~ of the basis at T. System (3) 

can be regarded as a reduced form system. If, for example, the farmer is 

located in a major production area, the change in his harvest forecast may be 

correlated with that of the aggregate of producers and, hence, with the change 

in the futures price. The definition of fl and u imply the additional equation 

Ris completes tile discrete time model. 



The continuous trading model is obtained by taking the limit as E + 0. 

l'he result is (see ?falliaris and Brock [IS]). 

dh = dzl 

dp = a  p dt + d z 2  

db = dz3  

d f  = (rf + u) dt. 

Here, z = ( z l ,  z2, z3)' is the solution to a system of stochastic differential 

equations with 0 drift and infinitesimal variance Z .  Define x = ( f ,  h ,  p,  b)', 

and rewrite (3) as 

where 

r O O O  0 0 0  

O O a O  
0 0 0 0  0 0 1  

Choose units of h and p so that C can be written 

There are two points xorth making about this formulation. The first re- 

gards the definition of u. E. It might, perhaps, seem more natural to use the 
I!? 



alternative definition u. = f. - f T -rt 
IE IE (i-1)~ in which case j o  e pit) [-rf(t) + 

u(t)] dt replaces the integral in (2') and df = u dt replaces (3d'). .4 

closed-form solution to the control problem posed below requires solving a 

matrix Ricatti equation. This can be essily ohtained using the current forrnu- 

lation; the alternative definition of u. results in a more difficult 
1 E 

Ricatti equation. ?his is explained below when the Ricatti equation is written 

down. 

T -rt The second point concerns the interpretation of the integral jo e p(t) . 
u(t) dt. For this discussion, let r = 0 to simplify the exposition. It is 

customary in the finance literature (e.g., Harrison and Pliska [lo]) to take the 

limit of the expression after the first equality in (1) to obtain the integral 

-I: f(t) dp(t). This is an Ito stochastic integral. Many of the results in 

finance are based on arbitrage arguments, and it has proven convenient to work 

T with Ito integrals. With r = 0, the integral in (2) can be written lo p(t) . 
df(t). This is not - an Ito integral; rather, it is a linear combination of 

T Stratonivich 1211 and Ito integrals. However, jo p(t) u(t) dt is the stand- 

ard form of the integral in stochastic control problems. The integrand is a 

function of the state and control (p and u, respectively) at a point in time. 

T hote that the integral jo f(t) dp(t) does not have this property, and 

it cannot be used with standard control methods. 

The farmer's problem is to choose f as a measurable funstron of h(t), 

p(t), b(t), and t to maximize the expected utility of profits. We assinne that 

the optimal f is continuous with probability 1. This is a weak assmptlon 

since h(t), p(t), and b(t) are all continuous with probability 1. Continuity 

of f guarantees its admissibility (Fleming and Rishel [9 ] ,  p. 156). ?he 

problem of choosing f(h, p, b, t) can be replaced by the equivalent problem of 



choosing an initial value f[h(t), p(t), b, tl ltZ0 and subsequent varilit ions, 

i.e., u[h(t), p(t), b(t), t] for t 2 0. The assumption that f is contiiluous 

guarantees that the optimal u is bounded when the initial f is chosen opti- 

mally. The boundedness of u guarantees its admissibility for the control 

problem specified below; boundeaness is also important because it insures that 

there is no ambiguity in taking the expansion used to derive the dynamic 

programming equation. 

Define J(x, t) as the maximum of the expected utility of profits for 

arbitrary h(t), p(t), b(t), t given that f(t) has been chosen optimally. Let 

the farmer have constant absolute aversion to risk with parameter k > 0. 

Then, 

Problem *: 

subject to ( 4 ) ;  x(t) given [f(t) chosen optimally]. The farmer's problem is: 

Problem ** 
max exp[-k pft) f(t)I J[f(t), h(t), p(t), b(t), tI. 
f(t) 

Problem ** requires finding the optimal initial condition for problem *. 
Problem * is a variation of the Linear Exponential Gaussian (LEG) control 

problem solved by Jacobson. It differs from his problem in tigo minor re- 

spects. First, the dynamic prograinming equation is linear in the control. 



This results in a singular solution; the sufficiency condition requires con- 

sideration of both problem * and problem ** and the assumption that the op- 
timal f is continuous. Second, the integral and final payoff in the exponent 

is multiplied by kert rather than a constant as in the LEG problem. At each 

point, future profits are discounted back to the current time. It is unneces- 

sary to do this where utility is time additively separable. In tire current 

problem, however, failure to apply the discount would imply that the farmer's 

risk aversion parameter is time dependent. In that case, letting the season 

run from time tl to T + tl would lead to a different solution than when 

the season runs from time O to T .  

Assume that J(x, t) is continuously differentiable in t and twice con- 

tinuously differentiable in x. The assumption that u is bounded justifies the 

expansion that leads to the dynamic programing equation 

r 1 -J = max [-kpu J - r in(-J) J + Jx(& + Bu) + tr Jxx r C I"]. ( 5 )  
U 

Details are provided in the appendix. The assumption that the optimal u is 

bounded implies 

which defines the singular arc. Following Jacobson, try the ansatz ~ ( x ,  t) = 

-F(t) exp[-xt S(t) x/2]. Substitution into (5 )  gives 1 

- X ' S  x J x '  S x  



-10- 

Equation ( 6 )  becomes 

kp + x' SB = 0. (7) 

Equate coefficients in the dynamic programming equation and use (7) to obtain 

the system 

- 
Define A = rI/2 - A, and rewrite (8a) as 

Define Q(t) = S(t)-' and use dQ(t)/dt = -s-I S S-I together with (8a1) 
and the boundary condition to write 

The reason for the particular definition of u is now apparent. The alterna- 

tive definition would lead to a term in (8a) which is independent of S; in 

that case the solution to S(t) is no longer simply Q-'(t). 



The solution to (9) is a symmetric matrix whose upper triangular part, 

$"'t), is 

-e aT 0 -1 
-7- 

e - r ~  - 1 P12 (a-r)~ - 
r de 

~"(t) = (10) 
e-@7 - 1 

4' r - a  

r 

which uses the definitions T = t - T and 6 = r - 2a. Although Q can be 

easily inverted to obtain S,  the result is rather complex and not very 

illuminating. Therefore, attention is focused on what is hereafter referred 

to as the "simple case," obtained by setting 0 = r = c . .  = 0, i, j = 1 2, 3. 
11 

The introduction of basis risk (o  > 0) and discounting (r > 0 )  can be studied 

by looking at perturbations around the simple case. 

Recall that equations (6) and (7) result from the boundedness of the 

optimal u which is implied by the assumption that the optimal level of futures 

sales is continuous. To verify that continuity holds, consider problem **. 
The first-order condition to that problem, using J( 1 = -F exp(-x' S x/Z), 

duplicates (7). That is, given that ( 7 )  holds over (t, TI ,  (7) must also hold 

at t. Since p, h, and b are continuous with probability 1, so too is f. The 

second-order condition for problem ** evaluated on (7 )  is F(t) Sll(t) < 0, 

where subscripts indicate the element of S(t). In the simple case (r = c = 

p .  . = 01, the upper triangular part of the symmetric matrix S(t1 is 
I J  
sU(t); 



where 

D(t) is the determinant of Q in the simple case. Since D(T) > 0, a neces- 

sary and sufficient condition for the existence of S(t) over an interval 

itl, TI is that D(t) > 0 over that interval. For finite T and a, this condi- 

tion can be insured by choosing k sufficiently small. In this case Sll(t) < 0 

T for t < T. Solving (8b) gives F(t) = expf -1/2 St (SZ2 + SX3) d ~ ]  > 0. Con- 

clude that, for finite T and a and sufficiently small k, F(t) Sll(t) < 0 so 

that ( 7 )  does indeed solve the maximization problem; hereafter, it is assumed 

that k is such that ~ ( t )  > 0. For this reason, the analysis concentrates on the 

case where k is small. k t e  that a/k can be of any sign and magnitude and k 

chosen so that the second-order condition holds. 

3 .  /LhRLYSIS OF THE OPTICJtU, HEDGE 

With the control rule ( 7 )  and the inverse of Q(t), the unique elements of 

which are given by (101, it is straightforward to study the depend, ~ n c e  of the 



optimal hedge on the parameters of the problem. 111 the previous section, it 

was established for the simple case that, provided the farmer is not exces- 

sively risk averse, the optimal hedge is given by (7) for all values of a and 

T. Given the continuity of all elements of Q and, hence, S in all argu- 

ments, the second-order condition F(t) Sll(t) < 0 also holds for small 

values of n, r, and p .  .. Equation ( 7 )  and inspection of (11) lead to 
11 

the observation: 

Remark I .  In the absence of basis risk, discounting, and correlation of 

the random elements, an increase in the basis (futures - cash price) at har- 
vest increases the optimal hedge (Sll < 0 < S14). 

This also holds for small values of o (the measure of basis uncertainty) 

or as the cash price and futures price become perfectly correlated. To deter- 

mine the effect of a slight increase in basis risk, differentiate ( 7 )  with 

respect to o and rearrange: 

The first row of aS/ao, obtained using aS/ao = -S @/ao S ,  is 

where the partial derivative is evaluated at c = r = p . .  = 0. The sign of af/a~ 
11 

is ambiguous. The interesting case is when k is small since, from the previous 

section, this assures that the second-order condition holds. Using the control 

rule to solve for f and substituting into the expression for af/bo gives 



as k -t 0. Hence : 

Remark 2. If the farmer's absolute aversion to risk, k, is small, an in- 

crease in basis uncertainty leads to an increase in the optimal level of 

futures sales. This holds in some neighborhood of o = r = p . .  = 0. 
13 

The remaining analysis assumes that a = 0. The presence of a non- 

stochastic basis adds no information except that contained in Remark 1, so 

hereafter set b = 0. In places it is convenient to allow the covariance of 

harvest forecast and futures price, to be nonzero. To avoid 12' 

notational clutter, define p12 = p. Since u = 0, set oL3 = oZ3 = 0. The 

(1,l) and (1,Z) cofactors of Q differ only in sign for this case (b = r = a = 

p13 = pZ3 = 0) so the control rule can be written more concisely as 

where y is defined as h - f, the unhedged portion of expected harvest. This 

can be seen more directly by noticing that, in the absence of basis risk and 

discounting, the original problem can be reformulated in the states y, p 

rather than f, h, p. 

The easiest case to analyze is a = 0, where the current futures price is 

an unbiased estimator of cash price at harvest. Equation 7' gives 

The unhedged portion of expected harvest tends to decrease over time; but for 

c f 0, Et y(T) f 0. If the harvest forecast and futures price errors are 



inversely related, the final position in futures is less than harvest; other- 

wise it is greater. If p > 0, the sign of y may change over time: The 

farmer may begin the season with a position in futures less than expected 

production, increase futures sales over time, and finish with the hedge 

greater than harvest. The previous equation also leads to: 

Remark 3. %en the futures price is an unbiased estimator of cash price 

at harvest and in the absence of basis risk and discounting, the optimal hedge 

is myopic. 

To see this, use the solution to the static (1 period) problem (bray [ S ] )  

p [ =  ea p(O)] is the expectation at planting of cash price at harvest, p(0) 

is futures price at planting, and $" is the unhedged expected production in 

the myopic problem. Bray's solution has been normalized by setting the 

variance of the harvest and price forecast equal to one. To make the units of 

measurement in the dynamic and static problems the same, set T = 1 in the dy- 
- m 

namic problem. hhen a = 0, p = p(0); since w(0) = 6 - a, conclude y = 

y(0). The initial dynamic hedge and the myopic hedge are equal in this case; 

hence, Remark 3. 

For a 4 0, the initial dynamic hedge and the myopic hedge differ. This 

can be seen by comparing J" and the general expression for y(0) or from the 



special case p = 0 discussed below. This result is very intuitive. If 

price is a random walk, then, because there is no adjustment cost associated 

with changing the hedge and because the degree of risk aversion is independent 

of wealth, the farmer does not benefit from the recognition that he will be 

able to change his futures position at a later date. However, if the current 

futures price provides a biased estimate of cash price at harvest, it matters 

at what point the sale is made, and the dynamic problem is not vacuous. The 

question whether the current futures price provides a biased estimator of 

future cash price (abstracting from the time imperfection of the hedge) has 

not been resolved either empirically or theoretically. For exainple, Anderson 

and Danthine [l] point out the possibility of bias even in a rational expecta- 

tions equilibrium. 

It is instructive to compare the solutions to Bray's static problem and 

the problem in which the objective function is linear in the mean anu variance 

of profits (hereafter, the EW problem). The EN problem emerges if n , rather 

than its arguments, is normally distributed and the farmer maximizes the ex- 

pected value of the CARA utility function. Hence, the two problems are 

equivalent except for the different assumptions regarding the distributions of 

price and harvest; both versions permit the possibility of negative profits. 

For ease of comparison, suppose that the current futures price is an unbiased 

estimator of cash price at harvest. 

Let each problem be resolved periodically as the season progresses. Using 

the previous results, the unhedged portion with Bray's problem is y(t) = 

w(t) p(t). The uni2edged portion with the bfV problem is ybfi-(t) = -covt[p('Il h(T), 

p(T)j/vart[p(T)] (Anderson and Danthine [I] eq. 11) where the subscript t indi- 

cates that the variance and covariance are conditioned on the infonnation at t. 



In general, covt[p(T) h(T), p(T)] p 0 even if covt[p(?'), h(T)] = 0; the tho co- 

variances may have opposite signs. This means that the two problenis may pre- 

scribe qualitatively different behavior at some or all points in time: One may 

recomnend that the farmer hedge more than expected production and the other, 

that he hedge less. This lack of robustness is not particularly surprising but 

is worth keeping in mind when evaluating tlie models. 
* 

Now consider the case where a $ 0. Define y I % {lim y(t) J , tlie ex- 
t'T 

pectation at t = 0 of unhedged production at harvest, given that the dynamic 

rule is followed. Use Eo p(T) 5 j5 = ea p(0) and L'Hospital's rule with ( 7 ' )  to 

obtain y* = ea(a/k - Q) p(0). .An expected upward drift in price or a negative 

correlation between price and harvest forecast errors (a > 0 > Q) tends to dis- 

courage the farmer from finishing the season in a short position. W e n  Q = 0, 

a 5 0, unhedged expected production at t = 0 is greater in the myopic problem 

than in the dynamic problem [p > ~(011; J" may be greater or less than y*. 

For p = 0, the three quantities are: 

These expressions imply 



Equation (12) implies ym - > y(O), with equality holding only at a = 0. Qua- 

tion (131 is ambiguous; however, 1 - (I - a) ea - > 0, with equality holding only 

at a = 0. This implies that for any a = 0, there exists k* > 0 such that y* - 
ym > 0 for all k < k*; also, for any k > 0, there exists a* > 0 such that y* - 
ym < 0 for all la1 < a*. This follows from the fact that all equations are 

continuous in their parameters. From the previous analysis of the case a = 0, 

it follows that for la1 sufficiently small (and thus, for /al/k sufficiently 

small) y(0) > y*. Define fm, f(O), f* as (expected) futures sales, in cor- 

respondence with ym, y(O), y*. The conclusion can be summarized as 

Remark 4. (i) For large la//k, the dynamic futures position tends to de- 

crease;' and the myopic futures position lies between the initial and ex- 

pected final dynamic position [f(O) - > fm > f*]. (ii) For small /a//k, the 

dynamic futures sales tends to increase; and the myopic position lies below the 

initial dynamic hedge [f* > f(0) - z f J . ~  Strict inequality holds except at 

a = 0. 

A tendency for the hedge to rise or fall during the grot~ing season is con- 

sistent with either normal backwardation (a > 0) or contango (a < 0). The 

direction of the tendency is determined by the size of lal/k. The explanation 

for this result lies in the fact that the farmer considers both the expected 

gains (or losses) from his activity in the futures market over (0, T) and from 

closing his position at T. Consider the certainty equivalent paths under two 

different values of a, ai > 0 and a2 < 0; suppose /ai//k, i = 1, 2 

is large, so that f. is expected to fall over the season. [The notation 
1 * 

F. neans f(a.).] Since yl > 0, the farmer expects to end the season with 
1 1 



futures sales less than his harvest. He begins the season with a small 

(relative to the case a < 0) level of sales and then proceeds to buy back 

contracts as price increases. He expects to make a profit on the sale of 

these at T. The initial sale with the expectation of subsequent purchases may 

appear perverse, but it is simply a hedge against an unexpected drop in price. 
* 

The second case, with a = a < 0, is more obvious. Since y2 < 0 and f2(0) > 2 

f;, conclude that f2(01 > h(01: The farmer begins by hedging more than 

expected harvest. As price falls, he makes profits buying contracts. The 

situation where lal/k is small has a similar interpretation. There, the case 

a > 0 has the more obvious interpretation. 

The ratio /al/k is a measure of the opportunity for speculative profits 

relative to the degree of risk aversion. This measure depends on the magni- 

tude rather than just the sign of a/k since the potential for speculative 

> profits exists for a < 0. The myopic hedge can be regarded as an ap- 

proximation to the optimal hedge. The above analysis shows that (for small 

p )  the approximation is biased dormward. The extent of the bias is posi- 

tively related to lal/k. 4 

The next question concerns the effect of discounting on the optimal 

hedge. Use aS/ar = -S(aQ/ar) S to obtain 

where 



The partials are evaluated at o = r = 0.. = 0. Differentiation of the control 
13  

rule gives 

Recall b = 0 by assumption. Using the control rule to eliminate f results in 

a complicated expression. As argued above, the sign of the partial is chiefly 

of interest for small k. Eliminating f gives 

as k -t 0. The term outside the square brackets is positive. For a - < 0, 

both terms in the brackets are negative so W a r  < 0 .  For a > 0, the 

second term is positive and dominates the first term as k -+ 0; in that case 

af/ar > 0. This is summarized in: 

Remark 5. If the futures price is an unbiased estimator of cash price or 

in the presence of contango (a - < O), an increase in the interest rate re- 

duces the optimal hedge. Under normal backwardation, an increase in the in- 

terest rate increases the optimal hedge. This holds in a neighborhood of r = 

When the interest rate is 0, the optimal hedge can be written f = h + 

cl(t) p. Two farmers with the same absolute aversion to risk and facing the 

same price, but with different expected harvests, would have the same amount 

of unhedged expected production. For r p 0, a = c13 = plZ = 0, the 

control rule can be witten 



[Compare the (1,l) and (1,2) cofactors of Q.] This does not hold for G $ 

0 .  If two farmers with the same risk aversion have expected harvests of h 
1 

and h2, then, letting y. = h. - fi, i = 1, 2, (14) implies 
1 1 

Remark 6. W e n  there is no basis risk, given two individuals with the 

same risk aversion and different expected harvest, the farmer with the larger 

expected harvest will have a greater gap between expected harvest and futures 

sales. This difference increases with r and approaches 0 as the season ends 

(7 't 0). 

The ability, in the absence of basis risk, to write the control rule as in 

(14) is reminiscent of the limited foresight result in portfolio theory men- 

tioned in the introduction. To make the analogy clearer, let a = p = 0 so 

that the futures price is an unbiased estimator of cash price at harvest, and 

there is no correlation between expected harvest and price. Then, 

%(t) in (14) becomes CZ(t) = -erT k(l - erT)/r. Compare this to Bray's static 

problem, modified to include discounting; in that problem k should be replaced 
,. 

by k = erT k when the length of the season is - 7 .  This suggests: 

Remark 7. If the futures price is an unbiased estimator of cash price at 

harvest, there is no basis risk, and all correlations vanish, the dynamic 

strategy requires limited foresight. This means that the static rule can be 

used except that the current estimate of harvest should be replaced by the 

current estimate discounted to harvesttime, the risk aversion parameter 



A 

should be replaced by k, and the current futures price should be replaced by 

the discounted stream of expected futures price, 

There are several other minor points to be made about the model. The 

farmer can be viewed as choosing h(O), expected harvest at planting, and pos- 

sibly ol which implies the variance of harvest. Let the cost function be 

g[h(O), In the static case with no production uncertainty, it is 

well known that output is chosen so that ag/ah(O) = ~(0). This also holds if 

harvest forecast errors are additive (Uanthine [ 7 ] ,  p. 8 3 ) .  In the simple case 

(o = p .  . = r = 0 )  with the dynamic hedging model, output is chosen so that 
'I 

ag/ah = p(0) - b(0) which collapses to the previous rule when the (deterministic) 

basis is 0. The farmer sets marginal cost equal to the current cash price; he 

ignores the expected change in the cash price, p(0) (1 - eaT), but takes into 

consideration the certain difference between futures wad cash price. When a = 

o = 0 . .  = 0, r f 0, the first-order condition for h(0) is g'(h) = [p(O) - b(O)] 
1 3  - rT e which has an obvious interpretation. Such transparent rules do not 

emerge for the more general case where a, o, and r are nonzero. 

The CARA utility function implies that the degree of absolute risk aver- 

sion is independent of wealth, so it is not surprising that unhedged expected 

production, y, is independent of expected production in the absence of basis 

risk and discounting. This scale independence is not very plausible. How- 

ever, if h(0) and cl are jointly determined by the producer through his 

choice of inputs i . .  , g is not separable), then y(t) depends indirectly on 

h(t) through cl. An alternative choice of utility function, such as the 



isoelastic, would also eliminate the scale independence. Efforts to charac. 

terize the dynamic hedging problem with isoelastic (constant relative risk 

aversion) utility have not been successfu2. 

A dynamic hedging problem with production uncertainty was solved and ana- 

lyzed; the results were compared to the solution of the static analog. 

Several insights were obtained. 

It was shown that the myopic hedge provides a downwardly biased approxi- 

mation of the initial optimal dynamic hedge. The magnitude of this bias 

varies directly with the extent to which the current futures price is a biased 

estimator of cash price at harvest; it varies inversely with the degree of 

absolute risk aversion. 

A second insight concerr~ed the expected direction of change of the indi- 

vidual's position in futures. Rormal backwardation, for example, is consis- 

tent with either an expected increase or decrease in futures sales over the 

production period. A systematic decrease in the level of futures sales 

suggests a high degree of bias relative to risk aversion; it does not suggest 

whether the current futures price is an upwardly or downwardly biased esti- 

mator of cash price at harvest. 

Intuition might suggest that the myopic hedge would lie between the ini- 

tial and expected final hedges in the dynamic problem. This intuition is 

correct only if there is a large degree of bias relat~ve to risk aversion or, 

paradoxically, if the bias is 0. In the second case, the myopic hedge equals 

the initial dynamic hedge. 

The myopic problem was also compared to a related problem in which the ob- 

jective function is linear in mean and variance. The tigo models may suggest 



qualitatively different behavior. This lack of robustness is an argument for 

caution in interpreting the results of either model. 

The sensitivity of the optiinal hedge to the introduction of basis risk and 

discounting was studied. For low levels of risk aversion, introduction of 

basis risk leads to an increase in futures sales. Introduction of discounting 

leads to a decrease in the level of sales if the futures price is expected to 

fall. Under normal backwardation, discounting causes an increase in sales. 

Finally, an analogy to the limited foresight result of portfolio theory 

was obtained. 



APPENDIX: DEiiIVATION OF (5 ) 

Write problem * as 

rt t+dt e-rT J(x, t) = max -Etiexp[-k e jt p(?) U(T) d ~ l  . 
u 

Rewrite this, using the principle of optimality, as 

J(x, t) = max -E {exp[-k e rt t+dt 
t It e-rT p(~) U(T)  TI 

U 

[-J(X + dx, t + dt)le 
-rdtl. 

Fxpand this and take expectations using 

% dx = (Ax + Bu) dt 

Et dx dx' = 2 dt 

Et(dxi dx. dxn) =o(dt) 
3 

i ,  j, n = 1, 2, 3, 4. 

Simplifications result in (5) .  Karlin and Taylor [14], page 202, give ex- 

amples of similar manipulations. 



this point, it is apparent why replacing the assumption of additive 

noise with inultiplicative noise (i .e., replacing Brormian motion with geo- 

metric Brormian motion) leads to difficulties. hb ansatz of the form of an 

exponential of a polynomial of degree n will be successful since the term 

Et(dxIt Jxx(dx) will involve elements to the order of x?". 

 his does not suggest monotonicity, only that f(0) > F*. 

3~imulation was used to examine the effect of p on the path of the ex- 

pected hedge. The ratio a/k varied over 16 values and p took five values. 

For each value of p, there were numbers rl(P) < 0 < r2(p) such that expected 

futures sales rose if r l  < a/k < r2 and fell otherwise. The simulation indi- 

cates that dri/dp > 0, i = 1, 2. 

4~efine 

Since c > 0 for a ?c 0, decreasing k increases ym - y(0). Since c reaches 

its minimum at a = 0 and dc/da is continuous, conclude that sgn dc/da = sgn a 

for small a. It is easy to establish that dc/da > 0 for all a > 0 and 

that dc/da < 0 for sufficiently small a( a .c 0, jaj large), but mono- 

tonicity of c in a over all a < 0 has not been established. 
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