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Abstract 

 

We introduce a time series model that captures both long memory and conditional 

heteroskedasticity and assess their ability to describe the US inflation data. Specifically, the 

model allows for long memory in the conditional mean formulation and uses a normal mixture 

GARCH process to characterize conditional heteroskedasticity. We find that the proposed model 

yields a good description of the salient features, including skewness and heteroskedasticity, of 

the US inflation data. Further, the performance of the proposed model compares quite favorably 

with, for example, ARMA and ARFIMA models with GARCH errors characterized by normal, 

symmetric and skewed Student-t distributions. 
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1. Introduction 

In this study, we consider a time series model that features both long memory and 

conditional heteroskedasticity and assess its ability to describe the US inflation data. In the 

empirical literature, long memory in time series data is quite commonly modeled using the 

autoregressive fractionally integrated moving average (ARFIMA) specification (Granger, 1980; 

Granger and Joyeux, 1980; Hosking, 1981). Under the usual ARMA regime, data are classified 

as either, say, integrated of order 0, I(0) or integrated of 1, I(1). ARFIMA models avoid the knife-

edge choice between I(0) stationarity and I(1) unit-root persistence by allowing the order of 

integration to assume a real value. Arguably, since its introduction in the 1980s, the ARFIMA 

model offers the most popular framework for characterizing long-memory data persistence.2 

Conditional heteroskedasticity is an important attribute of economic data. The basic 

autoregressive conditional heteroskedasticity (ARCH) model was introduced in the seminal work 

of Engle (1982). Bollerslev (1986) generalizes the model to the generalized ARCH (GARCH) 

specification, which is the workhorse of analyzing time-varying (conditional) volatility. Various 

modifications of the basic GARCH model have been proposed.3 

Recently, Alexander and Lazar (2004, 2006) and Haas et al. (2002, 2004a, b) advance a 

model with a normal mixture of GARCH (NM-GARCH) processes. Essentially, the mixture 

model is designed to describe a conditional volatility process that is driven by a linear 

combination of GARCH processes. In addition to its flexibility in analyzing volatility, the use of 

the normal mixture specification allows the NM-GARCH model to describe skewness in both 

conditional and unconditional distributions. 

The model considered in this study augments a long memory model with the recently 

proposed NM-GARCH specification. We call the augmented model an ARFIMA-NM-GARCH 

model. By design, the proposed model is apt for modeling data that display both long memory 

and GARCH behaviour, and, with the normal mixture feature, it could capture both conditional 

skewness and conditional heteroskedasticity in data.  

To illustrate its empirical relevance, we apply the ARFIMA-NM-GARCH model to the 

                                                 
2  Some early applications include Cheung (1993), Cheung and Lai (1993), and Diebold and 

Rudebusch (1991). 
3  Interested readers are referred to a recent survey Bauwens et al. (2006). 
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US inflation data.4 We should point out that both ARFIMA and GARCH models have been used 

to describe the US inflation data. Thus, the ARFIMA-NM-GARCH specification is a natural 

extension for modeling the US inflation data. 

The rest of the paper is structured as follows. Section II describes the ARFIMA-NM-

GARCH model and the maximum likelihood estimation procedure. Section III presents the 

results of modeling the US inflation data. Section IV contains the summary. 

 

2. The ARFIMA-NM-GARCH model 

2.1 The Model 

Baillie et al. (1996), for example, consider models incorporating both ARFIMA and 

GARCH effects. The model we proposed here, thus, can be viewed as a follow-up of this line of 

research. Specifically, an ARFIMA(p,q)-NM(k)-GARCH(r,s) is given by 

 

(1) , 

(2) , and 

(3) . 

 

The long memory property is characterized by the fractional differencing operation 

in equation (1). The and are the standard p-th order autoregressive and q-th 

order moving-average polynomials. The process is said to display long memory when 0< d < 

0.5.5 If the two lag polynomials  and  have roots outside the unit circle, the process 

is stationary and invertable for -0.5 < d < 0.5. 

The innovation term  is assumed to follow a mixture of k normal distributions, 

conditional on an information set , with the mixing parameters , i=1,…,k and 

. The means and variances of these normal distributions are denoted by  and ; i 

                                                 
4  Arguably, inflation is an important macroeconomic variable in designing policy 
rules; see, for example, Seo and Kim (2007). 
5  Note that , where Γ(.) is the gamma function. 
The basic properties of fractionally differenced series are discussed in, for example, Granger and 
Joyeux (1980) and Hosking (1981).  
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= 1, …, k. Following the practice in literature, we set . Equation (3) gives a 

general representation of the normal mixture GARCH process for which individual conditional 

variances evolve according to a GARCH process that depends on the lags of squared residuals 

and conditional variances. Specifically, , ,  = 

; i=1,…,s; and  is a  coefficient matrix [ ]m,n=1,…,k, i = 1,…,r. 

By construction, a NM-GARCH process is a linear combination of individual GARCH 

processes. It inherits all the salient features of a GARCH process; including the ability to model 

volatility clustering and volatility persistence. In addition, the NM-GARCH process has the 

flexibility to accommodate the possibility that the data heteroskedasticity generating process is 

driven by more than one GARCH factors. The flexibility, in turn, allows the NM-GARCH 

process to capture time-varying skewness, in addition to kurtosis. It is noted that a generic 

GARCH process is symmetric and could not be used to model skewness. 

For a NM-GARCH process, its degree of skewness is zero when the means of all the 

component normal processes are zero; that is, ; see, for example, Alexander 

and Lazar (2006) and Haas et al. (2004a). Thus, the process can be symmetric or asymmetric 

depending on parameter configuration. In the following, we label the model with the restriction 

 a symmetric model and the one without the restriction an asymmetric model. 

 

2.2 Estimation and Statistical Inference 

In this subsection, we outline the maximum likelihood (ML) estimation procedure and 

briefly discuss its performance. Suppose = 0 and let =  

 where  for i = 1,2,…, k, and 

. Note that  and  can be derived from  and ;  j < k. For simplicity, 

we consider the GARCH(1,1) case while recognizing the possibility of generalizing it to a 

GARCH(r,s) process. We assume the true parameter vector  is in the interior of a 

compact set . The ML estimator  maximizes the conditional log-likelihood 

= + , where the point log likelihood is given by 
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(4)  

 

and  is the density of the j-th component of the normal mixture, j = 1,…, k.  

Under the following conditions: a)  and that all roots of  and  are 

outside the unit circle, b) , i = 1,…,k and , c)  and ; i =1,…,k, 

d) ; i=1,…,k,  and 

 and e) , it can be shown that  

(5) ; , 

 

where “ ” denotes almost sure convergence, and and  are positive matrices.6 

Under (5), there exists a MLE  such that it satisfies ,  as 

, and  as , where , and 

 and  are values of  and  at . Note that  is block diagonal and, thus, 

the parameter vectors  and  can be estimated separately without loss in asymptotic 

efficiency.  

Cheung and Chung (2007) assess the performance of the ML estimator using the Monte 

Carlo approach. An ARFIMA-NM-GARCH model with two GARCH component processes in 

the normal mixture formulation was considered. These authors documented some encouraging 

evidence on estimating an ARFIMA-NM-GARCH model. For instance, while the sampling 

uncertainty is inversely related to the sample size, the biases of parameter estimates are not 

statistically significantly even for a sample size of 100.  

Their simulation exercise found that the biases of the estimated ARCH and GARCH 

effects are affected by the mixing parameter . Specifically, the absolute values of these biases 

                                                 
6  See, for example, Ling and Li (1997) and Alexander and Lazar (2004, 2006) for the use 
of these conditions and the related results to derive a formal proof of the convergence results. 
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are in general inversely related to their associated mixing parameter values. For instance, the 

absolute values of the -biases are negatively related to the values of . Similarly, the 

intercept in the conditional variance equation also displays a bias that is in general inversely 

related to the values of the corresponding mixing parameter.   

The simulated variations of the conditional variance parameter estimates are, in general, 

larger than those of other parameter estimates. On the other hand, the fractional parameter, 

compared with other model parameters, could be quite precisely estimated. Even for the sample 

size of 100, the estimated bias is only in the order of -0.03 and it declines to 0.001 when the 

sample size is 1,000. 

 

3. The US Inflation Dynamics  

 Both ARFIMA and GARCH models have been used to describe the US inflation 

dynamics.7 Thus, in addition to results pertaining to the proposed ARFIMA-NM-GARCH 

models, we also present estimates from ARMA-GARCH and ARFIMA-GARCH models for 

comparison purposes. For these two GARCH-type models, we consider three innovation 

distributions; namely normal, Student-t and skewed Student-t.8 For completeness, we present the 

Student-t and skewed Student-t distributions in the Appendix A. Note that, similar to the normal 

distribution, the Student-t distribution is symmetric. On the other hand, the skewed Student-t 

distribution, as its name implies, is asymmetric. 

 

3.1 Preliminary Analyses 

The US inflation data were retrieved from the IMF database. The sample contains 399 

monthly observations measured as 100 times the first differences of the logarithms of the CPI 

index from January 1974 to March 2007. Figure 1 presents the data and their autocorrelation 

coefficient estimates. The data plot displays a considerable degree of volatility clustering and is 

also suggestive of skewness and kurtosis. The persistence in inflation data is quite well 

illustrated by the slowly decaying correlogram pattern revealed in Figure 1B. It is noted that, at 

                                                 
7  For more detail see Baillie et al. (1992, 1996), Hassler and Wolters (1995), 
Doornik and Ooms (2004) among others. 
8  On the use of Student-t errors, see, for example, Baillie and Bollerslev (1989), 
Bollerslev(1987), and Palm and Vlaar(1997). On the use of skewed Student-t innovations, 
see Lambert and Laurent (2001a, b).  



 6 

least for the first 70 autocorrelation coefficients, the estimates are statistically significant and 

outside the usual two-standard-error band (Bartlett, 1946). The slowly decaying autocorrelation 

pattern is typical of data experiencing fractional integration; a property that we will investigate in 

the next sub-section. 

Table 1A presents some descriptive statistics. These sample statistics affirm that inflation 

data are skewed and leptokurtic. The statistics also suggest that the inflation data do not have a 

normal distribution and display serial correlation in both their levels and squares.  

As part of the preliminary data analysis, the augmented Dickey-Fuller test, the 

Kwiatkowski, Phillips, Schmidt, and Shin (1992) test, and the Geweke and Porter-Hudak (1983) 

test are used to assess the integration property of the inflation data. The test results are presented 

in Table 1B. While the Dickey-Fuller test rejects the I(1) null hypothesis, the Kwiatkowski-

Phillips-Schmidt-Shin test rejects the stationary I(0) null.9 That is, the two tests do not agree on 

whether the inflation data follow an I(1) or an I(0) process. The Geweke-Porter-Hudak test, on 

the other hand, suggests that the data are fractionally integrated. Specifically, the test results 

indicate the differencing parameter is between zero and one. The presence of fractional 

differencing is consistent with the inclusive evidence obtained from the augmented Dickey-

Fuller and Kwiatkowski-Phillips-Schmidt-Shin tests that are designed to discriminate an I(0) 

process from an I(1) process. It is also in accordance with the slowly decaying autocorrelation 

pattern depicted in Figure 1B. 

 

3.2 Estimation Results  

Table 2 presents the results of fitting both symmetric and asymmetric ARFIMA-NM-

GARCH models to the inflation data. For comparison purposes, the results of fitting ARMA-

GARCH and ARFIMA-GARCH models to the data are also reported in the Table.10,11 The 

                                                 
9  The lag parameters are chosen to eliminate serial correlation in estimated residuals. 
Indeed, varying the lag parameter from 1 to 20 yields test results that are qualitatively 
the same as those reported. 
10  The parameters are estimated by maximizing the log-likelihood function in (4) 
using CML and MAXLIK procedures in GAUSS. 
11  Preliminary analyses indicated that data on the core CPI inflation rate also display 
ARFIMA-NM-GARCH effects. We focused on the inflation data because these are the 
data examined in most of the studies that our exercise is compared with. Thus, to 
conserve space, we did not include the core inflation data in our paper. 
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respective model specifications are determined based on information criteria. 

Note that the ARFIMA-NM-GARCH models we fitted to the inflation data have two 

components in the normal mixture GARCH formulation; that is, k = 2. Further, the off-diagonal 

elements of s are set to zeros. Alexander and Lazar (2006) and others find that substantial 

estimation biases appear when k > 2 and allowing for non-zero off-diagonal elements in s 

does not improve the empirical performance of NM-GARCH models they considered. Thus, for 

brevity, we consider the simplified version in the empirical part of our exercise. For the GARCH 

component, we focus on the GARCH(1,1) specification because it is known that the specification 

offers a very reasonable description to economic data in general. That is, (3) is simplified to 

; i = 1, 2. 

The parameter estimates of the selected ARMA-GARCH models show that the inflation 

data are quite persistent and display strong GARCH effects. The result echoes those reported in 

previous studies that use inflation data to illustrate GARCH effects. The estimates of the degree 

of freedom parameter ( ) suggest that the innovation process is not likely to be normal. Indeed, 

the degree of freedom estimates are quite small and are about 5 – a value that makes the 

underlying Student-t distribution quite far away for the normal one. There is also evidence that 

the innovation is skewed - the estimate of asymmetric parameter ( ) is positively significant – 

indicating that the distribution is positively skewed. 

It is interesting to note that modifying the distributional assumption from normal to 

Student-t or to skewed Student-t does not noticeably affect the ARMA and GARCH estimates. In 

comparing the log likelihood values, the model with normal errors delivers the worst 

performance while the one with the skewed Student-t distribution is marginally better than the 

one with the Student-t distribution. 

There is long memory in inflation data. The fractional parameter estimates are significant 

under each of the three distributional assumptions and all are less than 0.5 – implying 

considerable long-term persistence in the US inflation data. The inclusion of a fractional 

parameter makes the ARMA coefficients insignificant but does not have a large impact on the 

conditional variance equation estimates.12 Overall, the introduction of long memory improves 

                                                 
12  Both the long memory and GARCH effects are quite comparable to those reported 
in, say Baillie et al. (1996). It is noted that the incorrect exclusion of long memory 
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the model’s goodness-of-fit. The log likelihood values of the three ARFIMA specifications are 

larger than those of the corresponding ARMA specifications. 

Modifying the conditional variance specification to normal mixtures yields a noticeable 

improvement in performance. Specifically, the log likelihood values of the selected ARFIMA-

NM-GARCH models are quite large comparable with those of the selected ARMA-GARCH and 

ARFIMA-GARCH models with the normality assumption. Among the two selected ARFIMA-

NM-GARCH models, the one restricting the means of the component normal processes to be 

zero (that is, ) garners a smaller log likelihood value. The result suggests the US 

inflation data have an asymmetric distribution – a result that is in accordance with the skewed 

Student-t estimation results 

An astute observer will point out that a simple comparison of log likelihood values is not 

a vigorous way to select a specification among these different models. Because the models under 

examination are not all properly nested, there is no simple testing procedure to compare their 

degrees of goodness-of-fit. In the next sub-section, we will present a few additional model 

comparison measures. 

The estimates of the mixing parameters are consistent with the presence of two GARCH 

processes driving the conditional volatility of inflation. The component GARCH process 

associated with a smaller mixing parameter estimate has a level of persistence, measured by the 

sum of ARCH and GARCH parameter estimates, similar to those estimated from the other 

simple GARCH processes. Also, the component GARCH process with a larger mixing parameter 

estimate is less persistence. Note that the standard errors of the estimates are higher for the 

parameters of the component GARCH process that has a smaller mixing parameter estimate. 

That is, we have to interpret the persistence estimate given by the -  and - estimates 

under the normal mixture specification with caution.  

Since the mixing parameter estimates can be interpreted as the occurrence frequencies, 

we note that the process generating the US inflation data includes two distinct volatility regimes 

– one has a higher occurrence frequency and relatively lower level of persistence. Anecdotal 

evidence suggests that the US inflation has experienced some infrequent sharp movements 

induced by, say, changes in the monetary policy in the early 1980s and steep changes in 
                                                                                                                                                             
could lead to spuriously significant ARMA estimates because these estimates assume the 
serial correlation in data. 
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commodity prices in the early 1970s and the 2000s. Our result is consistent with the 

interpretation of the presence of a high volatile GARCH process that induces some spikes in the 

US inflation data. Further, without the restriction of , the asymmetric specification 

offers a sharper estimate of the mixing parameter than the symmetric version that imposes the 

restriction.  

The parameter estimates obtained from the symmetric and asymmetric ARFIMA-NM-

GARCH models are quite similar. One subtle variation is the relative magnitude of the estimates 

across the two component GARCH processes. For the asymmetric model, both the ARCH ( ) 

and GARCH ( ) estimates are smaller for the component GARCH process that has a larger 

mixing parameter estimate. For the symmetric model, the ARCH effect is inversely related to 

and the GARCH effect, on the other hand, is positively related to the mixing parameter (c.f. Haas 

et al., 2002 and 2004 a, b). 

In figure 2, we plot the conditional skewness and conditional kurtosis estimates extracted 

from the fitted asymmetric ARFIMA-NM-GARCH model. Both conditional skewness and 

conditional kurtosis estimates exhibit substantial time-variability. While the time variation in 

Kurtosis may be captured by other GARCH type models, the time-varying conditional skewness 

in the US inflation data could present some challenge for these models. 

In sum, the proposed model offers a good description of the inflation data. The results 

reported in Table 2 show that both the long memory feature and the normal mixture GARCH 

specification help improve the model performance.  

 

3.3 Model selection and some diagnostics  

In this sub-section, we offer a few measures that compare model performance. As pointed 

out earlier, the model specifications considered in Table 2 are not properly nested models. To 

further complicate the issue, the estimated standardized residuals of an ARFIMA-NM-GARCH 

model would not be identically distributed even if it is correctly specified. Thus, it is not 

appropriate to directly evaluate the distributional properties of is estimated residuals, ’s . 

In Table 3, we first present the values of AIC and BIC. The AIC ranks the ARFIMA-

GARCH with a skewed student-t distribution above the asymmetric ARFIMA-NM-GARCH 

model. The BIC, on the other hand, selects the ARFIMA-GARCH with a student-t distribution. 
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In the reminding part of the Table 3, we present some diagnostic results based on 

estimated residuals. For the standard GARCH type models, the usual methods are used to obtain 

their standardized residuals. For an ARFIMA-NM-GARCH model, we transform the estimated 

residuals such that they have a standard normal distribution under the null hypothesis of the 

model is correctly specified. Specifically, the residuals are transformed according to: 

 (6) , t=1,2,…, n, 

where k (=2) is the number of normal densities in the mixture, and  is the standard normal 

distribution function of the j-th element of the mixture. Under the null hypothesis,  will be 

independently and uniformly distributed and the inverse of the cumulative standard normal 

distribution of , given by , is distributed iid N(0,1) and does not exhibit any 

serial autocorrelation. 

Following Alexander et al. (2006), Harvey and Siddique (1999), and Newey (1985), we 

implement a cumulative test to check the following conditions: , , 

, , , , , and 

, for j = 1,2,…, 4.  

The results of the cumulative test show that none of the selected model passed all the 

moment restrictions. It should not be too alarming because it is well-known that the cumulative 

test is quite stringent for most practical applications. There is no specific rejection pattern 

revealed in the table. We do not want to over-play it – however, it is comforting to observe that 

the asymmetric ARFIMA-NM-GARCH model gives the smallest number of rejection statistics 

in the Table. At the same time, recall that it is the same model specification yields the largest log 

likelihood value. 

Next, we examine the skewness and kurtosis of the properly transformed residuals. The 

results presented in Table 3 suggest that the asymmetric ARFIMA-NM-GARCH model is the 

only model that yields insignificant skewness and kurtosis coefficient estimates. The symmetric 

ARFIMA-NM-GARCH model passes the kurtosis test but not the skewness one; indicating the 

relevance of the ability to model skewness. The estimated residual of all other models under 

consideration, including the ARFIMA-GARCH model with a skewed t-distribution, are found to 
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have some significant degrees of skewness and kurtosis. That is, these models do not adequately 

describe the skewness and kurtosis in the US inflation data. 

The transformed residuals are used to calculate the Ljung and Box (1976) Q-statistic. 

Specifically, we calculate the Q-statistics based on the first ten autocorrelation coefficient 

estimates derived from the transformed residuals and their squares and label them Q(10) and 

Q2(10) in the Table. For all the models under consideration, there is no significant temporal 

dependency in the residuals and their squares. That is, these models offer a reasonable a 

specification to describe the serial in the US inflation data and their squares.  

Last, but not the least, we assess the ability of ARFIMA-NM-GARCH models to capture 

the autocorrelations of the squared residuals. To this end, for each model, we compare its 

empirical and theoretical autocorrelation coefficients of the squared residuals.13 In Table 3, the 

row labeled “ACF” reports the mean squared prediction errors for the first 250 lags of the 

squared residual autocorrelation.14 It is evidence that the ARFIMA-NM-GARCH models yields 

the two smallest mean squared errors with the asymmetric version has the smallest error. While 

all the models under consideration offer a good description of conditional heteroskedasticity, the 

asymmetric ARFIMA-NM-GARCH model show the smallest deviation from the theoretically 

predicted conditional heteroskedasticity pattern.  

The overall evidence from Table 3 and the log likelihood values in Table 2 is in favor of 

the asymmetric ARFIMA-NM-GARCH model, which has the flexibility to describe both the 

time-varying conditional heteroskedasticity and conditional skewness.  

 

4. Summary 

In this exercise, we introduce a class of models that incorporates two interesting time 

series features; namely long memory and conditional heteroskedasticity given by a normal 

mixture GARCH specification. We label it an ARFIMA-NM-GARCH model. The long memory 

component offers a flexible means to describe data persistence including stationary long-term 

persistence. The normal mixture GARCH component extends the standard GARCH framework 

and allows the conditional volatility to be determined by more than one GARCH processes. Also, 

                                                 
13  The theoretical autocorrelation functions of the squared residuals of these models 
are given in the Appendix. 
14  The mean squared prediction errors derived from different numbers of correlation 
coefficient estimates give qualitatively similar results. 
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a desirable property of the mixture process is its ability to model time variations in higher 

conditional moments including skewness and kurtosis.  

The US inflation data are used to illustrate the empirical relevance of the proposed model. 

The evidence suggests that the inflation data exhibit long memory persistence in levels and their 

(conditional) volatility is driven by two GARCH processes. The proposed ARFIMA-NM-

GARCH model, indeed, compares quite favorably with some alternative ARFIMA and GARCH 

models used in the literature. Specifically, the asymmetric ARFIMA-NM-GARCH model is 

found to be the only model, amongst those considered, that captures the skewness and kurtosis in 

the data. The model also generated empirical correlation coefficients of the squared residuals that 

have the smallest deviation from their theoretical values. The empirical application highlights the 

potential benefits of integrating long memory and mixed normal GARCH in modeling economic 

data and the flexibility of modeling data asymmetry. 

There are several ways to extend the current study. For instance, it is of interest to 

consider time-varying mixing parameters that depend on some relevant fundamental economic 

variables. The component GARCH process can also be modified to accommodate some specific 

volatility characteristics including differential effects of large and small shocks.15 These 

extensions should be left for future studies. 

                                                 
15  Some alternative specifications of normal mixture GARCH models are considered 
in, for example, Bai et al. (2003), Ding and Granger (1996), and Vlaar and Palm (1993). 
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Appendix  

A:  Student-t and Skewed Student-t Distributions 

 The density function of a random variable  that follows a Student-t distribution (that is 

z ~ ) is given by 

(A1) , 

where  is the degree of freedom. The distribution approaches a normal distribution as  is 

approaching infinity.  

If  follows a skewed Student-t distribution (that is, ), then its 

density function is given by 

(A2) , 

where  is the density of the Student-t distributions in (A1), and  is an indicator function  

,  

, 

, 

and 

. 

 

B:  Autocorrelation functions of the squared residuals 

For the ARFIMA(0,d,0)-NM(2)-GARCH(1,1), the overall variance is 

, where  for i=1,2 and the conditional skewness and 
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kurtosis are then given by 

(B1) , 

(B2) .  

Taking expectations of the overall and individual unconditional variances gives 

 and  for i, 

j = 1, 2 respectively. Then the unconditional skewness is given by 

(B3) . 

and the unconditional kurtosis is given by  

(B4) ,  

where , where , , , 

,  for , 

, , 

, , ,  

, and . 

For the ARFIMA(0,d,0)-NM(2)-GRACH(1,1) model given by (1) to (3), the 

autocorrelation function of the squared residuals is  
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(B5) ,  

where  for  with ,  

and  for .  

The autocorrelation function of the squared residuals in other models is given by  

(B6) . 
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 Table 1: Preliminary Data Analyses 
 

A. Summary Statistics  
 Inflation 
Mean 0.3713 
Skewness 0.6304 
Kurtosis 4.0871 
Q(10) 1011.1768* 
Q2(10) 1307.9220* 
JB 45.9593* 
  
B. Persistence Tests  
ADF CNT -2.7034* (11) 
 CT -3.1345* (11) 
KPSS CNT 0.4909* (14) 
 CT 0.4626* (17) 
GPH ( =0.55) d 0.6709** 

 
Note: The Q(10) and Q2(10) give the Ljung-Box statistics that include serial correlation in the 
first ten lags of residuals and their squares, respectively. JB gives the Jarque-Bera statistics. ADF 
gives the augmented Dickey-Fuller test statistics for models with a) a constant but not a trend 
(CNT), and b) with both a constant and a trend (CT). KPSS gives the Kwiatkowski-Phillips-
Schmidt-Shin statistics for testing the null hypothesis of stationarity. GPH gives the Geweke and 
Porter-Hudak statistics for fractional integration with =0.55 and the number of periodograms 
used to general these statistics is given by . “*” indicates significance at a level of 10% or 
lower. “**” indicates the result is in favor of the alternatives of 0 < d < 1, where d is the order of 
integration. 
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Table 2: Parameter Estimates for U.S. inflation 
 
Model ARMA-GARCH Models ARFIMA-GARCH Models ARFIMA NM-GARCH 

 Normal Student-t Skewed-t Normal Student-t Skewed-t Symmetric Asymmetric 

 0.8946 
(0.1306) 

0.9504 
(0.1139) 

0.9359 
(0.1033) 

0.5629 
(0.0781) 

0.4613 
(0.0966) 

0.5331 
(0.1052) 

0.5703 
(0.0884) 

0.6118 
(0.0980) 

 0.9978 
(0.0033) 

0.9989 
(0.0031) 

0.9976 
(0.0034) 

- - - - - 

 0.7876 
(0.0326) 

0.7751 
(0.0314) 

0.7706 
(0.0321) 

- - - - - 

 - - - 0.4582 
(0.0357) 

0.4706 
(0.0378) 

0.4623 
(0.0367) 

0.4935 
(0.0380) 

0.4786 
(0.0381) 

 0.0029 
(0.0008) 

0.0024 
(0.0013) 

0.0025 
(0.0013) 

0.0028 
(0.0010) 

0.0022 
(0.0014) 

0.0028 
(0.0016) 

0.0186 
(0.0354) 

0.0101 
(0.0138) 

 0.1571 
(0.0312) 

0.1747 
(0.0583) 

0.1902 
(0.0644) 

0.1128 
(0.0280) 

0.1390 
(0.0528) 

0.1707 
(0.0644) 

0.2322 
(0.3702) 

0.1969 
(0.2107) 

 0.7992 
(0.0328) 

0.8018 
(0.0553) 

0.7900 
(0.0560) 

0.8360 
(0.0391) 

0.8279 
(0.0591) 

0.8031 
(0.0617) 

0.8005 
(0.2910) 

0.8447 
(0.1625) 

 0.9563 0.9765 0.9802 0.9488 0.9669 0.9738 1.0327 1.0416 

 - - - - - - 0.1444 
(0.0896) 

0.2210 
(0.1043) 

 - - - - - - - 0.0714 
(0.0546) 

 - 5.0451 
(1.3554) 

4.9414 
(1.3083) - 5.4006 

(1.5379) 
4.7522 

(1.2616) - - 

 - - 1.0741 
(0.0730) - - 1.1881 

(0.0810) - - 

 - - - - - - 0.0008 
(0.0008) 

0.0007 
(0.0008) 

 - - - - - - 0.0853 
(0.0348) 

0.0980 
(0.0437) 

 - - - - - - 0.8509 
(0.0579) 

0.8159 
(0.0740) 

 - - - - - - 0.9362 0.9139 

 - - - - - - 0.8556 0.7790 

 - - - - - - - -0.0203 

LLK 48.3167 64.1311 64.5567 51.5864 65.3002 67.9212 68.7334 70.1706 

 
Notes: The table present ML estimates. Standard errors are given in parentheses. The 
models’ log likelihood values are given in the row labeled “LLK.” 
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Table 3: Some diagnostic Measures 
 
Model ARMA-GARCH Models ARFIMA-GARCH Models ARFIMA NM-GARCH 

 Normal Student-t Skewed-t Normal Student-t Skewed-t Symmetric Asymmetric 

AIC -0.2126 -0.2871 -0.2842 -0.2341 -0.2980 -0.3061 -0.3002 -0.3024 
BIC -0.1525 -0.2170 -0.2041 -0.1840 -0.2379 -0.2360 -0.2100 -0.2022 

 1.2359 0.4943 1.6395 4.5018* 1.3068 4.4295* 5.5300* 3.6892 
 0.1272 283.65# 1.2296 2.9734 253.59# 10.707# 1.5839 6.7211# 

 0.7238 0.1646 0.5368 1.4032 0.2798 1.2301 11.023# 0.8022 
 11.187# 48.986# 15.154# 16.989# 73.933# 17.534# 0.4692 1.3429 
 30.335# 25.123# 24.197# 1.2359 0.7040 1.0398 0.5832 0.1804 
 7.3499# 7.8398# 8.1905# 8.9929# 10.570# 9.9119# 11.292# 11.981# 
 1.8772 2.1511 2.2299 0.0031 0.0120 0.0041 0.0406 0.0262 
 6.8101# 7.5196# 7.8123# 0.7385 1.1166 1.0152 0.8105 0.6175 
 0.0533 0.0652 0.3465 0.0031 0.1530 0.3193 0.7702 0.8267 
 0.7492 2.1409 0.4573 1.3803 2.7092 0.6323 1.8651 3.9185* 
 0.8020 0.8994 1.0999 0.2431 0.8724 0.9564 0.2684 0.5803 
 2.6644 0.0699 2.9051 2.2892 0.2323 3.5547 1.6169 1.0127 
 2.7720 2.2370 2.1273 1.1322 0.8803 0.9715 1.4143 0.7744 
 2.9799 2.9977 3.2708 3.2044 3.8336* 4.1108 7.1509# 6.9674# 
 0.7648 0.6016 0.6936 0.1932 0.1730 0.3766 0.0570 0.1582 
 8.6240# 7.4409# 7.5288# 5.5389* 5.3992* 5.5576 6.4586* 5.4998* 
 0.0289 0.4534 0.0002 0.1659 0.6721 0.0015 0.0326 0.0924 
 0.4662 1.6726 0.2439 0.6726 2.0682 0.1027 0.8976 3.7653 
 12.279# 5.2447* 13.667# 12.596# 4.2756* 14.212# 3.0450 2.7189 
 9.0653 0.8924 8.8420# 9.9091# 1.8575 11.713# 4.3614* 2.6672 

Skewness -0.2331* -0.6642# -1.6128# -0.2891* -.4647# -1.6149# -0.2103* -0.1646 
Kurtosis 5.9158# 5.9473# 5.9577# 5.3671# 5.3849# 5.3703# 3.1567 3.3528 

 0.3625 0.3894 0.3821 0.0008 0.0048 0.0015 0.0016 0.0016 

 7.2114 7.1581 7.1475 7.2291 7.1844 7.1657 6.3861 6.4962 
ACF 0.0352 0.0879 0.1185 0.0197 0.0431 0.0736 0.0190 0.0126 
 
Notes: AIC (BIC) gives the AIC (BIC) values of the models. The conditional moment tests of the selected 
models are reported under the E[.] rows. “Skewness” denotes the skewness coefficient, γ1 and “Kurtosis” 
the kurtosis coefficient, γ2. Under normality,  and  ~  asymptotically. 
The Q(10) and Q2(10) are the Ljung-Box statistics for first ten serial correlation coefficients of the residuals 
and their squares. Asterisks * and # indicate significance at the 5% and 1% levels, respectively. ACF gives 
the mean squared errors of the correlation coefficient estimates of the squared residuals.
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Figure 1: Monthly Inflation and Autocorrelation functions  
 
A. Inflation: January 1974 to March 2007 

 
 

B. Autocorrelation coefficients for the lag of 100 

 
 Note: The two-standard errors band is (-0.1, 0.1). 



 24 

Figure 2: The conditional skewness and kurtosis etsimtates of the asymmetric ARFIMA-NM-GARCH 
 
A. Conditional skewness 

 
 
B. Conditional kurtosis 

 
 




