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Abstract

There is some evidence that people have biased perceptions of risks, such
as lethal or environmental risks. Hence their behavior is based on beliefs
which may di¤er from the ’objective’ beliefs used by a regulator. The opti-
mal regulation then depends on this di¤erence in beliefs. We set up a general
framework and study this policy change. It turns out that, in many situa-
tions, the policy change depends on the absolute ’distance’ between beliefs,
and not on whether agents over-estimate or under-estimate risks. We char-
acterize the necessary and su¢cient condition for ’more distant’ beliefs to
always reduce the regulator’s decision. We apply and extend that condition
in several ways.



1 Introduction

1.1 The motivation

There is some evidence that the beliefs of people are biased. A famous ex-
ample is the bias in lethal risks perception. Individuals systematically over-
estimate the rare causes of death such as cataclysmic storms or plane crashes
and underestimate more common causes of death like cancers or automobile
accidents (Lichtenstein et al., 1978).1 Typically, individuals’ beliefs on haz-
ard risks and on environmental problems di¤er from quantitative estimates
and scienti…c evidences (Slovic, 1986, Viscusi, 1998).

This paper is interested in the implications of this observation for risk
regulatory policies: Should governments be concerned with the risks that
people perceive they face? And, if yes, how should governments’ policies
account for public misperceptions?

Existing economic theory has not really answered these sort of questions:
What weight should be accorded in social choices to individuals’ erroneous
beliefs? How will agents with di¤erent prior beliefs interact? This paper
examines the e¤ect of relaxing the common prior belief assumption within
a model of regulation with two agents, a ’benevolent’ government and an
’irrational’ individual.

1.2 Related policy debate

The following problem has been introduced by Portney (1992, p. 131). It is
called ’Trouble in Happyville’:

You are Director of Environmental Protection in Happyville (...). The
drinking water supply in Happyville is contaminated by a naturally occurring
substance that each and every resident believes may be responsible for the
above-average cancer rate observed there (...).

1The literature on public misperceptions and their causes is very well documented since
the seminal paper by Tversky and Kahneman (1974). Individuals have di¢culties with
the mathematics of probability, they use heuristics or rules of thumbs that are useful but
misleading. For instance, they are subject to ’availability heuristic’. People assess the risks
of heart attack by recalling such occurences among one’s acquaintances. They ’anchor’
their estimates to easily retrievable events in memory such as sensational stories in the
medias etc..
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You have asked the top ten risk assessors in the world to test the contam-
inant for carcinogenicity (...). These risk assessors tell you that while one
could never prove that the substance is harmless, they would each stake their
professional reputations on its being so.

You have repeatedly and skillfully communicated this to the Happyville
citizenry, but because of the deep-seated skepticism of all government o¢cials,
they remain completely unconvinced and truly frightened.

The mirror image of Happyville is Blissville (Viscusi, 2000). In Hap-
pyville, the risk is low but perceived as large. In Blissville, the risk is im-
portant but perceived as low. The question becomes: You are the Director
of Environmental Protection both in Happyville and Blissville, how do you
allocate your cleanup e¤orts? To Viscusi, the choice is clear-cut. E¤orts have
to be spent in Blissville. If e¤orts are spent in Happyville, this is a ’statistical
murder’ since lives are sacri…ced to focus instead on illusory fears. Viscusi
(2000)’s view is probably shared by most economists.

In Policy Sciences, many sholars have argued that the choice is not so
clear-cut. If e¤orts are spent in Happyville, people who were worried feel
protected, and so feel better. This contrasted view is particularly apparent
in Europe. Indeed, European regulatory choices re‡ect more the di¤erences
in policy judgments and cultural values than American regulatory policies
(Pollack, 1995). A recent report of the European Commission states for
instance ’Decision-makers have to account of the fears generated by the per-
ceptions and to put in place preventive measures to eliminate the risks ’ (CEC,
2000). Such a view is called the ’populist approach’ to risk regulation by Hird
(1994).

There are many arguments against a ’populist’ approach to risk man-
agement. Using data on American health risk programs, Viscusi (1998) has
investigated the failures of the regulatory policies based on a ’populist’ ap-
proach as opposed to a cost-bene…t or say a ’rational’ approach. The cost
has been millions of dollars for the U.S., or said di¤erently, it has been thou-
sands of American lives. This is what Breyer (1993) calls the ’vicious circle’
of risk regulation: Individuals’ misperceptions are embodied in government
regulations. There are many reasons for that. The simplest reason is be-
cause politicians are subject to the same biases in beliefs as individuals. A
complex reason is because politicians respond in some way to individuals’
preferences and biases. As Margolis (1996, p. 161) states ’If enough people
feel worried about some risk, however remote and cautiously calculated, then
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it makes sense to say the the government ought to respond to that. How to
respond is less clear’.

This moves the policy debate from a normative to a more positive ques-
tion: ’How to respond?’. In Pollack (1998, p. 379)’s words, ’How do govern-
ments regulate risks when the perceptions of the public diverge from those
of experts? (..) What role do risk analysis and cost-bene…t analysis play?’.
Pollack argues that those questions should deserve probably much more at-
tention than they have received so far.

1.3 Our approach to the debate

Let now present our very speci…c approach to this debate. An individual
faces a risk ex, and believes that the distribution of the risk is q. Given a
regulatory environment a (road safety, cigarette prices..), he makes a choice
b (driving speed, smoking...). His objective is to choose b to get the best
expected utility

EqU (ex; a; b);
which yields a decision b(a; q).

Importantly, this decision made by the individual is based on the sub-
jective probability or perceived risk q for ex, not on the objective probability
or the actual risk p. The decision b(a; q) thus maximizes perceived expected
utility EqU , not actual expected utility EpU .

Let now address the government regulatory policy. This policy is based
on the choice of a. The objective of the government is to maximize the actual
expected utility of the individual EpU , i.e. the expected utility based on the
objective risk, p. The government chooses a to get the best

EpU(ex; a; b(a; q));

which yields the decision a(p; q).2 Importantly, the government thus accounts
for the irrational individual’s response, i.e. the response based on the per-
ceived risk q. This is thus a sort of ’second best’ choice that is selected by
the government.

2We are thus making a strong assumption in terms of the choice of the welfare criterion.
However, as far as we know, social choice literature has not really addressed the question
of which criterion to choose when people have erroneous beliefs. Interestingly, there are
some papers on the e¤ect of di¤erent welfare criteria in exchange economies where people
may have di¤erent subjective probabilities (see Hammond, 1981, and Marshall, 1988).
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This framework thus captures a complex channel for why the individual’s
perception q a¤ect the e¢cacy of regulatory choices. This channel is related
to the anticipation of the irrational response of individuals, i.e. the response
based on q; not on p.3

More generally, our approach allows us to consider three polar cases. The
regulator may select:

a(p;q) : the ’second-best’ policy,
a(p;p) : the ’rationalist’ policy,
a(q; q) : the ’populist’ policy.

The ’rationalist’ approach is clearly ine¢cient because it does not antic-
ipate correctly the agent’s reactions. The ’populist’ approach is intuitively
ine¢cient because it does not make use of the regulator’s information. The
’second-best’ approach is illustrated in the following example.

1.4 An example: Regulation in Happyville

Let us come back to the choice faced by the Director of Environmental Pro-
tection in Happyville. Let

U (x; a; b) = u(b) ¡ (1¡ a)±bx ¡ c(a);

where

u(:) is the individual’s utility from drinking water,
b is water consumption,
a is cleanup e¤ort, 0 · a · 1,
± is the desutility from getting a cancer,
x is the dose-response risk of carcinogenicity,
c(:) is the cleanup cost function.

3This means that in Happyville there are complex spill-over e¤ects (Viscusi, 1998). A
good example of spill-over e¤ect is related to the in‡uence of automobile seatbelts in the
United States in the late 60s. Since seatbelts reduced the risk of injury to the driver, an
associated e¤ect has been to make drivers driving fast, o¤setting the bene…ts of the safety
regulatory policy (Peltzman, 1975). Lowering speed limit on major highways decreases the
average driving speed but increases the incentive to drive on back roads (Viscusi, 1998).
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Assume very simplistic functional forms

u(b) = ¡(1¡ b)2
2

; 0 · b · 1;

± = 1;

c(a) =
a2

2
:

Assume also that the risk is binary with an objective probability p of x = 1,
0 otherwise.4

Given these assumptions, the agent simply chooses b to maximize

EqU(a; b; ex) = ¡(1 ¡ b)2
2

¡ (1¡ a)qb¡ a2

2
;

so that we get
b(a; q) = 1¡ (1 ¡ a)q:

According to the intuition, optimal water consumption b is decreasing in
the perceived probability of getting a cancer q and increasing in the level of
cleanup e¤orts a.

The regulator chooses a to maximize

EpU(ex; a; b(a; q)) = ¡((1¡ a)q)2
2

¡ (1 ¡ a)p(1¡ (1 ¡ a)q) ¡ a2

2
; (1)

so that we get

a(p; q) =
p ¡ 2pq + q2
1 ¡ 2pq + q2 2 [0; 1]: (2)

We are now in a position to examine the e¤ect of individual beliefs on the reg-
ulator decision. This e¤ect is represented on …gure 1. This …gure represents
cleanup e¤orts as a function of individual’s misperceptions q:

Let us …rst examine the ’rationalist’ regulator decision a(p; p): This deci-
sion does not internalize individual’s misperceptions, so it is a straight line
on the …gure. The ’rationalist’ decision is insensitive to public beliefs.

Then, turn to the opposite case, the ’populist’ decision which is equal to

a(q; q) =
q

1 + q
:

4We make a slight abuse of notation here: the probability vector reduces to a scalar,
also denoted p .
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This decision is too sensitive to public beliefs. In Happyville, i.e. in the city
where the perceived risk is large, q > p; cleanup e¤orts are high. In Blissville,
where the perceived risk is low, q < p; cleanup e¤orts are low.

Finally, let us turn to the most sophisticated decision, that is the ’second
best’ decision. From equation (2), decision a(p; q) is decreasing in q then
increasing in q. Importantly, this function takes a minimum at q = p. Thus
we have a(p; q) ¸ a(p; p): This shows that the optimal decision is always
larger than the ’rationalist’ decision. Why is that?

In Happyville, individuals are pessimistic, they do not consume water
enough. Cleaning water thus will make the risk lower. Happyville population
will react to that change in risk. Hence, cleanup e¤orts gives an incentive
for the population to consume more water, which is a source of welfare in
Happyville where people overestimated the risk. In Blissville, the reason for
why cleanup e¤orts increase is di¤erent. People are optimistic and consume
too much water. Risk-exposure to cancer is thus too large in Blissville.
Hence, cleaning water simply reduces risk-exposure.5

Finally, note that the di¤erence between the ’second-best’ policy a(p; q)
and the ’rationalist’ policy a(p; p) increases as the absolute value jp¡ qj in-
creases. Moreover, they increase exactly at the same rate. Indeed replace q
by p + u in (2) to get

a(p; p+ u) =
p(1¡ p) + u2

(1 + p)(1¡ p) + u2

so that the value of a is independent of the sign of u. This means that cleanup
e¤orts are the same in Blissville and Happyville.6 Hence, an important lesson
from that example is that the di¤erence between the public and the regulator
beliefs is more important than the direction of the misperception. In other
words, it is not so much important for the regulator to know whether he is
in Blissville or Happyville. What is important is to know ’how large’ is the
misperception.

To summarize: because the population’s response is ’irrational’, regula-
tion may depart strongly from a myopic Cost-Bene…t Analysis. Yet, this

5This interpretation suggests that this result is model-dependent. We will precisely
examine this question in the paper.

6The decisions are the same in the sense that a(p; q) is symmetric around p. This
symmetry is due to the selection of the parameters. For a di¤erent set of parameters, the
symmetry is lost. The message remains though.
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example has shown that this departure displays several ’regularity’ proper-
ties. For instance, policy change depends on the absolute ’distance’ between
beliefs, not on whether agents over-estimate or under-estimate risks. This
raises the question of the e¤ect of di¤erent beliefs on regulatory policies in
general.

The next Section introduces a general framework for studying the impact
of distant beliefs. Section 3 o¤ers a simple necessary and su¢cient condition
for distant beliefs to reduce the regulatory e¤ort, and applies this condition
to the Happyville example. Section 4 derives an equivalent condition, based
only on the primitives of the model. Section 5 discusses the relationships
with other problems, in particular the question of decision-making when some
information is awaited for in the future. Section 6 concludes.

2 The framework

The simplest manner to introduce our framework is the following. A regulator
chooses a regulatory e¤ort a. An agent reacts to a and chooses a decision b.
These choices are performed under uncertainty on the true state of nature
x 2 X. The Von Neumann-Morgenstern preferences of the agent are given
by the utility function U (x; a; b). Because the regulator is only interested in
the agent’s welfare, he shares the same preferences.7

We assume that x takes a …nite number of values, and by a slight abuse of
notation we also denote this number by X; so thatX = fx1; ::; xXg. Decision
a is a real number. Decision b is a real vector of dimension N ¸ 1. Also, U
is three-times continuously di¤erentiable with respect to (a, b).

Suppose …rst that the regulator and the agent have the same beliefs p,
de…ned in the usual manner8:

8 x p(x) > 0
X

x2X
p(x) = 1:

Once a is chosen, the agent chooses b to maximize
7One could include in the regulator’s preferences a cost for a: V (x; a; b) = U(x; a; b) ¡

c(a; x), without any change.
8 In what follows we could suppose that weights belong to an open convex subset of all

possible weights. The assumption that weights are strictly positive plays a role.
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X

x2X
p(x)U (x; a; b): (3)

We assume that for any admissible p and a, this criterion is strictly quasi-
concave in b. Consequently de…ne b(a; p) as the unique decision b which
maximizes this criterion, and j(a; p) as the value of the program:

j(a; p) = max
b

X

x2X
p(x)U(x; a; b) =

X

x2X
p(x)U(x; a; b(a; p)): (4)

Hence, when both agents share the same beliefs, the best decision a must
maximize j(a; p). Notice that j(a; p) is the maximum of functions which are
linear in p. Hence j(a; p) must be convex in p.

Now suppose that the weight q used by the agent di¤ers from the weight
p used by the regulator. Acting as a Stackelberg leader, the regulator should
adjust his …rst-period decision consequently, by maximizing

X

x2X
p(x)U(x; a; b(a; q)): (5)

over a. Our …rst objective in the following is to compare (5) to (4), i.e;, to
study the impact of a change in the agent’s beliefs. To do so, we need to
introduce a measure for the di¤erence in beliefs.

We will de…ne a simple measure for that di¤erence. Let introduce two
weights p and q and two scalars r; s 2 [0; 1]. Then (1¡r)p+rq and (1¡s)p+sq
are also weights, and an increase in s makes the latter more distant from the
former if s > r, and closer otherwise. Hence the absolute value js¡ rj is an
index for the di¤erence in beliefs. De…ne the regulator’s expected payo¤ as

K(a; r; s) =
X

x2X
[(1¡ r)p(x) + rq(x)]U (x; a; b(a; (1¡ s)p + sq)): (6)

Here the regulator uses the weight (1 ¡ r)p + rq, and the agent uses the
weight (1 ¡ s)p + sq. Such a de…nition still permits to consider our three
polar cases:

² The ’second best’ case, (r, s),

² The ’rationalist’ case, (r, r),
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² The ’populist’ case, (s; s).

Notice that these linear forms for the weights appear quite naturally in
many cases. For example, suppose that initially agents share the same be-
liefs, but an experiment is performed, giving additional information on the
true state of nature. Nevertheless, there is an exogenous probability that the
experiment has failed, and in that case its results are uninformative. More-
over there is no way to tell whether the experiment has failed or not. If
the regulator and the agent do not agree on the probability of failure, their
revised beliefs take these linear forms.

In what follows, we shall make s vary in order to capture the impact of
the di¤erence in beliefs. We will say that beliefs are more distant if js ¡ rj
increases, r given. Finally, the regulation problem (r, s, p, q) is de…ned as
the problem of maximizing (6) with respect to a. We assume that solutions
to such problems always exist.

3 The impact of more distant beliefs

Our objective in this section is to investigate the e¤ect of the di¤erence
in beliefs as de…ned above. We …rst examine this e¤ect on the regulator’s
expected utility, then on the regulator’s decisions. Note that in this section p
and q are given, so that beliefs are restricted to belong to the straight interval
[p; q].

By de…nition of K and j, we have

K(a; r; r) = j(a; (1¡ r)p+ rq) = max
b

X

x

[(1¡ r)p(x) + rq(x)]U(x; a; b)

so that
8 r; s K(a; r; s) ·K(a; r; r): (7)

This result states that the regulator’s expected utility reaches its maximum
when the agent and the regulator have the same beliefs, s = r. This raises
the question of what happens when s moves progressively from r. This result
is presented in the next proposition.9

Proposition 1 The regulator’s expected utility decreases with more distant
beliefs, i.e. K(a; r; s) weakly increases with s for s < r, and weakly decreases
with s for s > r.

9The proofs are given in appendix.
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The meaning of that proposition is simple. More distant beliefs reduces
the regulator’s expected utility.

3.1 Equivalence result

Let us now turn to the e¤ect of the di¤erence in beliefs on the regulator’s
decision. Recall that the regulator maximizes the value function K(a; r; s) as
de…ned in (6). Hence the properties of the derivative Ka are essential here.

Suppose for example that we have

8 a; r; s; Ka(a; r; s) ·Ka(a; r; r): (8)

Then it is clear that the optimal regulatory e¤ort is reduced when di¤erent
beliefs are introduced. Reciprocally, if this condition does not hold, then it
is possible to build a case in which a is made higher with di¤erent beliefs.
Therefore (8) is equivalent to the fact that a di¤erence in beliefs reduces
optimal a. Again the comparison extends to more distant beliefs.

Proposition 2 The three following statements are equivalent:
i) The regulator’s decision decreases with more distant beliefs;
ii) 8 a; r; s; Ka(a; r; s) increases with s when s < r, and decreases with s

when s > r;
iii) Ka(a; 0; s) decreases with s.

This Proposition thus derives necessary and su¢cient conditions for sign-
ing the comparative statics analysis of more distant beliefs on the regulatory
policy. The simplest condition is clearly iii), which asks to verify a simple
property of the value function K. Let us now give some examples of the
usefulness of that Proposition.

3.2 Examples

Example 1 Prudence in Happyville

Let us now consider a more general Happyville population composed by
agents with a general utility function for drinking water u, increasing and
concave, and a general cleanup cost function c(a). Now b(a; s) is de…ned by

u0(b(a; s)) = (1¡ a)s;
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where s stands for the perceived probability of getting cancer. Hence, K
writes

K(a; r; s) = u(b(a; s)) ¡ (1¡ a)b(a; s)r ¡ c(a);
where r is objective risk-probability level. We then obtain

Ka(a; 0; s) = u
0(b(a; s))

@b

@a
= ¡s u

0(b(a; s))
u00(b(a; s))

¡ c0(a)

= ¡ 1

1 ¡ a
u0(b(a; s))2

u00(b(a; s))
¡ c0(a):

Since b(a; s) is decreasing with s, the question that remains is whether

u0(b)2

u00(b)
(9)

is increasing with b. Note that this property holds for

u(b) = ¡(1¡ b)2
2

;

but does not hold for a general concave u. This shows that this is the
modeling choice of a quadratic utility function that was at the root of the
result displayed in the Introduction. In fact, it can be easily shown that
(9) is increasing with b if and only if the population displays a coe¢cient of
prudence (Kimball, 1990) that is larger than twice the coe¢cient of absolute
risk-aversion. For an iso-elastic function (with constant relative risk-aversion
®), the condition amounts to ® < 1; notice that for a logarithmic function,
regulation is unaltered by di¤erent beliefs.

Example 2 Taxes in Happyville

Suppose now that there is no cleanup technology available for the reg-
ulator. Yet, suppose that the regulator may set a positive tax a on water
consumption. Preferences are given by

U(x; a; b) = u(b) ¡ ab¡ bx:

The agent’s decision b(a; s) is thus de…ned by

u0(b(a; s)) = a + s:

11



Hence
K(a; r; s) = u(b(a; s)) ¡ ab(a; s) ¡ rb(a; s)

so that
Ka(a; 0; s) = [u

0(b(a; s))¡ a] @b
@a

¡ b(a; s)

=
s

u00(b(a; s))
¡ b(a; s)

by using the …rst order condition. Let us now di¤erentiate with respect to s.
We get

Kas(a; 0; s) = ¡ su
000(b(a; s))

[u00(b(a; s))]3
;

so that more distant beliefs increases the optimal tax a if and only if con-
sumers are prudent (u000 > 0).10

4 Characterization results

The previous section has identi…ed the necessary and su¢cient condition so
that more distant beliefs leads to decrease the regulator’s decision. This
condition reduced to examining the property of the value function K(a; r; s).
Notice that K is the value of function of a Stackelberg game, i.e. the value
function of the regulator’s problem when the agent has di¤erent beliefs, s.
Analyzing the properties of K is thus quite a technical problem. We solved
two simple examples which displayed some linearity properties - U linear in
x -. This raises a more general general question: Is it possible to solve the
comparative statics analysis for any problem?

In this section, we will answer this question in two di¤erent ways. First,
we will derive the equivalent property required on the value function j(a; p);
second, we will derive the properties in terms of restrictions of the original
problem U . The next Proposition displays the easier result, that is the …rst
one.

Proposition 3 The three following statements are equivalent:
i) The regulator’s decision decreases with more distant beliefs;
ii) Ka(a; s; s) is convex in s;
iii) ja(a; p) is convex in p.

1 0When beliefs are the same, or when consumers are not prudent, optimal tax is thus
simply equal to zero.
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This proposition derives the necessary and su¢cient condition to examine
the impact of the di¤erence in beliefs on the regulator’s decision. Its main
interest is that it shows that the exploration of the ”rationalist” case - or
the ”populist” case - are su¢cient to solve the comparative statics analysis.11

This is convenient since this corresponds to the value function for the problem
when the regulator and the agent display the same beliefs, that is the simpler
dynamic problem.

However, one still may object that any restriction on j makes necessary to
solve the problem as well. This leads us now to the most complex problem,
that is deriving some restrictions on the primitives of the model. This is
important since this is the only way to guarantee that the comparative statics
analysis leads to unambiguous results in the following sense: Does it exist
some restrictions on the function U(x; a; b) for any x; a and b such that more
distant beliefs always decrease the regulator’s decision?12

First of all, let us introduce some new notations. Denote Ua the derivative
of U with respect to a; Ub the gradient of U with respect to b, and Uab its
derivative with respect to a; Ubb(x; a; b) the Hessian matrix of U with respect
to b. Finally de…ne the Hessian matrix of the objective in (4):

H(a; p) =
X

p(x)Ubb(x; a; b(a; p)):

Recall that by assumption H is negative de…nite, and thus invertible.
Finally prime (0) stands for transposition.

Proposition 4 The regulator’s decision decreases with more distant beliefs
if and only if for any a, b, there exists a N£N matrixM (a; b) and a N-vector
d(a; b) such that:

i) for any x,

Uab(x; a; b) + Ubb(x; a; b)d(a; b) =M (a; b)Ub(x; a; b):

1 1For instance, use again the example 1 above. We have Ka(a; s;s) = sb(a; s); so that
Kass(a; s; s) = s(@b=@s)2[¡u000=u00 ¡ (¡2u00=u00)], where u stands for u(b(a; s)). We thus
…nd the same necessary and su¢cient condition as before.

1 2For example, Gollier, Jullien and Treich (2000) have shown for a di¤erent problem that
the property ja(a; p) convex in p always leads to ambiguous results when the primitive
model is U(x; a; b) = u(a) + v(b ¡ x(a + b)), for any u and v increasing and concave.
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ii) For any (p, q), if b = b(a; q), then

(
X

x

p(x)Ub(x; a; b))
0(M (a; b)+db(a; b))

0[H(a; q)]¡1(
X

x

p(x)Ub(x; a; b)) · 0:

Let us comment this result. First, it asks to …nd M and d independent
from x such that i) holds, for any x (this equality would not change if one
wants the di¤erence in beliefs to increase a). Such an equality is clearly
non-generic, and requires speci…c functional forms for U .

In particular, if x represents beliefs as in the Happyville example, then
U is linear with respect to x, and so is condition i). Hence i) reduces to two
conditions specifying that both the constant and the x-factor are equal to
zero (which gives N(N +1) unknown for 2N equations).

Second, choose b = b(a; p) and sum i) over x; then one gets
X

p(x)Uab(x; a; b) +H(a; p)d(a; b) = M(a; b)[
X

p(x)Ub(x; a; b)] = 0

so that one must have

d(a; b(a; p)) =
@b

@a
(a; p):

Hence d(a; b) characterizes how b(a; p) varies with a. This also means that
this partial derivative cannot depend directly upon p. This remark may help
…nding the vector d.

Third, ii) basically expresses that a matrix is positive13 semi-de…nite (note
that db is the di¤erential of the vector d with respect to b, and is thus a
matrix). In fact, a su¢cient condition for ii) is that M + db itself be positive
semi-de…nite.

Fourth, these conditions only depend on the properties of Ub. This vin-
dicates our view that any cost function c(a; x) can be added to U , without
any change.

Finally, these conditions become simpler in the case when b is uni-dimensional,
as the following example illustrates.

Example 3 Back to Happyville

1 3Negative if one wants a to be increased by a di¤erence in beliefs.
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Let us generalize our Happyville model, by proceeding to a change in
variables. Consider the case when

U (x; a; b) = v(a; b)¡ bx¡ c(a)
where, as before, a is water quality and c(a) is the cleanup cost function.
The change is that b is now an equivalent quantity, computed from the actual
quantity consumed and water quality; a higher b indicates a higher exposure
to the risk x. v(a; b) is the surplus associated with the consumption of the
equivalent quantity b, when water quality is a. Assume that vb > 0, vbb < 0,
vab > 0; so that a better quality increases the equivalent consumption.

Let us apply Proposition 4. Note that U is linear with respect to x.
Therefore condition i) splits into two conditions:

vab + dvbb =mvb 0 = ¡mx:
Hence we must have m = 0 and d = ¡vab=vbb. Condition ii) then reduces
to db ¸ 0. In other words, @b=@a must be higher when b is higher. Since a
higher b corresponds to a lower x, one would intuitively expect the opposite
to be true; that is, an increase in water quality should have more e¤ect on
’equivalent water’ consumption when the damage x is high, compared to
when the damage x is low.

As a result, we obtain that cleanup e¤orts are always increased by a di¤er-
ence in beliefs, if and only if the sensitivity of equivalent-water consumption
to cleanup e¤orts is highest when the damage is highest.

5 Heterogeneous beliefs in the population

Until now, we have assumed that society was composed by one agent. It is
trivial that the results extend to a population of homogeneous agents. In
this section, we will prove that the results also generalized to a population
of agents with heterogeneous beliefs.

Denote qi for the beliefs of group i in the population. Assume that the
regulator now maximizes

L(a; r; s) = Ei
X

x2X
[(1¡ r)p(x) + rqi(x)]U(x; a; b(a; (1¡ s)p+ sqi));

where Ei denotes the expectation operator over group i’s beliefs. In such a
framework, we will say that the population of heterogeneous agents display
”more di¤erent beliefs” if, as before, s moves away from r.

15



The concept of ”more di¤erent beliefs” is depicted on …gure 1; There are
three states of the world and two subgroups i = 1; 2. Point r corresponds
to the distribution probability selected by the regulator. Points q1 and q2
correspond to the distributions respectively selected by subgroups 1 and 2.
When s drifts progressively away from r, beliefs are said to become ”more
di¤erent”. This concept clearly generalizes the previous de…nition of ”more
distant” beliefs to the case of heterogeneous agents.

However, notice that this concept takes the heterogeneity in beliefs in the
society i as given. Let us introduce another de…nition related to the degree
of heterogeneity in the society. Beliefs are said to be ”more heterogeneous”
in population i0 than in population i if and only if

Ei0'(qi0) ¸ Ei'(qi); for any ' convex: (10)

In other words, beliefs are ”more heterogeneous” in society i0 than in society
i when beliefs qi0 are a mean-preserving spread of beliefs qi. This leads to the
following Proposition.

Proposition 5 The three following statements are equivalent:
i) The regulator’s decision decreases with more distant beliefs;
ii) The regulator’s decision decreases with ”more di¤erent” beliefs (het-

erogeneous beliefs case);
iii) At r = s, the regulator’s decision decreases with ”less heterogeneous”

beliefs.

The meaning of the equivalence between i) and ii) is simple. Suppose that
the regulator’s decision is known to decrease with more distant beliefs. Then,
under ii), no additional condition is required for the regulator’s decision to
decrease with ”more di¤erent” beliefs. In other words, all previous qualitative
results directly extend to an heterogeneous population.

Furthermore, property iii) states that when introducing heterogeneous
beliefs another e¤ect enters into the picture. At r = s, ”more heterogeneity”
has actually an exact opposite e¤ect as ”more di¤erent”, or equivalently
”more distant” beliefs. One potential intuition relies on the presence of a
”wealth e¤ect”. Remember that more distant beliefs reduces expected utility
(Proposition 1). As a result, one could view the regulator’s decision as a
response to this reduction in welfare. Yet, ”more heterogeneity” has exactly
an opposite e¤ect on welfare. Indeed, it increases and not decreases expected
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utility.14 The regulator’s response thus would go the opposite direction since
the ”wealth e¤ect” goes precisely the opposite direction.

6 Conclusion

This paper has introduced a model of risk regulation with two agents. The
novelty has been to assume that they have di¤erent prior beliefs on the risk
they face. Although there is some empirical evidence that support that as-
sumption, this is an unusual assumption in economics that is often considered
as inconsistent (Thaler, 2000).

For economic situations where that critique applies, this paper reduces
to a mathematical object.15 This raises another question: Can this object
be useful? The answer is yes. The idea is to reinterpret the model so that
agents’ beliefs are the same but their preferences di¤er. In fact, there are
several ’classical’ models where our mathematical object could be applied.16

To understand how that could be done, a simple way is to consider the
’trendy’ economic model of self-control.

Take the following three-periods consumption model

K(a; r; s) = u(a) + ¯u(b(a; s)) + ¯2ru(w ¡ a¡ b(a; s));

where b(a; s) is de…ned by

u0(b(a; s)) = ¯su0(w ¡ a ¡ b(a; s)):

This latter equation characterizes the optimal level of consumption of self-2
while the former characterizes the value function of self-1, given self-2 deci-
sion. Note that preferences between self-1 and self-2 di¤er in that framework.
Indeed, self-1’s discount factor between period 2 and period 3 is ¯r. Self-2’s
discount factor is ¯s. Hence the marginal rate of substitution between period
2 and 3 changes depending on whether this rate is computed from self-1 or

1 4Formally, the function L(a; s; s) is convex in qi by construction. Then apply inequality
(10).

1 5For a more standard but quite exhaustive second-best approach based on externali-
ties and principal-agent relations with an informed principal, see recently Barigozzi and
Villeneuve (2002).

1 6The Rotten-Kid Theorem is one example (Bergstrom, 1989). In this situation, the
comparative statics analysis is about ’how much’ the kid is rotten. Another example is
the e¤ect of better future information on early decisions (Epstein, 1980).
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self-2’s perspectives. This introduces a problem of time-inconsistency. Self-1
cannot perfectly control self-2 consumption decision.

In such a model, the most natural measure of lack of self-control is cap-
tured by the distance jr ¡ sj. The di¤erence between the marginal rates
between period 2 and 3 increases with that distance. In this framework,
our results state that self-1 expected utility decreases with the lack of self-
control (Proposition 1), that self-1 consumption decreases or increases de-
pending on the sign of the derivative Ka(a; 0; s) in s (Proposition 2), or
depends on whether Ka(a; s; s) is convex in s (Proposition 3), and, …nally,
that this problem belongs to the set of problems that yield unambiguous
results (Proposition 4). Thus a necessary and su¢cient condition exists for
signing the comparative statics analysis of less self-control.

This exact condition17 and several extensions are presented in a compan-
ion paper (Salanié and Treich, 2002). A …rst insight from that paper is that
this condition is such that it is perfectly plausible that the lack of self-control
increases, and not decreases, self-1 savings. A more general insight is that the
qualitative e¤ect of self-control is independent of the structure of discount
rates. It is the same no matter whether preferences are present-biased r · s
or future-biased r ¸ s. In other words, self-1 does not care so much about
whether self-2 saves too much or too little from his viewpoint. He does care
about ’how much’ self-2 is di¤erent. Also, this result is qualitatively equiv-
alent to analyzing the e¤ect of uncertainty on future discount rates, but in
a model without self-control, r = s (Proposition 5). These results convey
quite di¤erent messages from the ones which are generally delivered in the
economic literature on self-control.

1 7The condition is ¡u000
u00 ¸ 2¡u00

u0 .
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Appendix

Proof of proposition 1: We want to show that Ks(a; r; s) has the sign
of (r ¡ s): For any r and s, we have

K(a; r; s) =K(a; s; s)¡ (s¡ r)Kr(a; :; s);

where Kr(a; :; s) denotes the slope of K(a; r; s) in r (by linearity, it is inde-
pendent of r). By the Envelope Theorem, i.e. Ks(a; s; s) = 0; we have

Ks(a; r; s) = Kr(a; :; s)¡Kr(a; :; s)¡ (s¡ r)Krs(a; :; s)
= (r ¡ s)Krs(a; :; s): (11)

But note that
d2K(a; s; s)

ds2
=Krs(a; :; s); (12)

which is positive sinceK(a; s; s) is a convex function in s by construction (it
is the maximum of linear functions in s).¥

Proof of Proposition 2: As shown in the text, statements i) and ii) are
equivalent. We need to show that Kas(a; r; s) has the sign of (r ¡ s) if and
only if Ka(a; 0; s) decreases with s, or equivalently that (s¡r)Kas(a; r; s) has
the sign of Kas(a; 0; s). For any r and s, we have

K(a; r; s) = K(a; 0; s) + rKr(a; :; s):

Hence

Ks(a; r; s) = Ks(a; 0; s) + rKrs(a; :; s)

= Ks(a; 0; s) +
r

r ¡ sKs(a; r; s), by equality (11)

=
s

s¡ rKs(a; 0; s):

By di¤erentiating the last equality with respect to a we get the result.¥

Proof of Proposition 3: Since Ka(a; s; s) = ja(a; sp + (1¡ s)q); it is
immediate that ja(a; p) is convex in p if and only if Ka(a; s; s) is convex in
s. From (11) and (12), we have

(r ¡ s)d
2K(a; s; s)

ds2
=Ks(a; r; s)
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By di¤erentiating this last equality with respect to a we get that Ka(a; s; s)
is convex in s if and only if (s ¡ r)Kas(a; r; s) is negative. Proposition 2
concludes.¥

Proof of Proposition 4: First recall that b(a; (1¡s)p+sq) is the unique
maximizer of X

[(1¡ s)p(x) + sq(x)]U(x; a; b)
so that it is characterized by

X
[(1¡ s)p(x) + sq(x)]Ub(x; a; b(a; (1¡ s)p + sq)) = 0: (13)

Di¤erentiating with respect to s yields

X
[q(x)¡p(x)]Ub(x; a; b(a; (1¡s)p+sq))+H(a; (1¡s)p+sq))

@

@s
b(a; (1¡s)p+sq) = 0:

(14)
Using (13) once more we get

X
[q(x)¡p(x)]Ub(x; a; b(a; (1¡s)p+sq)) = ¡1

s

X
p(x)Ub(x; a; b(a; (1¡s)p+sq)):

Therefore

Ks(a; 0; s) = [
X

p(x)Ub(x; a; b(a; (1¡ s)p+ sq))]: @
@s
b(a; (1¡ s)p+ sq)

=
1

s
[
X

p(x)Ub(x; a; b(a; (1 ¡ s)p+ sq))]0[H (a; (1¡ s)p+ sq)]¡1

[
X

p(x)Ub(x; a; b(a; (1¡ s)p+ sq))]:
Now saying that this quantity decreases with a, for any a, s, p, q, is equivalent
to saying that

f(a; p; q) ´ [
X

p(x)Ub(x; a; b(a; q))]
0[H(a; q)]¡1[

X
p(x)Ub(x; a; b(a; q))]

is decreasing with a, for any a, p, q.
Let us …rst suppose that a is reduced by a di¤erence in beliefs, so that

iii) in Proposition 2 holds, and f (a; p; q) is decreasing with a. Now suppose
that b(a; p) = b(a; q) at some (a, p, q). Then not only f(a; p; q) = 0, but
also fa(a; p; q) = 0 because all terms in the derivative vanish. Since anyway
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fa · 0 by assumption, then it must be that fa is at its maximum value, so
that faa = 0. Computing this second derivative, all terms vanish but

[
@

@a

X
p(x)Ub(x; a; b(a; q))]

0[H(a; q)]¡1[
@

@a

X
p(x)Ub(x; a; b(a; q))]

so that this term must be zero. Since H¡1 is negative de…nite, we get

@

@a

X
p(x)Ub(x; a; b(a; q)) = 0: (15)

So we have proven that b(a; p) = b(a; q) implies

@b

@a
(a; q) =

@b

@a
(a; p):

Then there exists a vector d(a; b) such that

b(a; p) = b0 ) @b

@a
(a; p) = d(a; b):

Another manner to rephrase our result is the following. b(a; p) = b(a; q)
means that X

p(x)Ub(x; a; b(a; q)) = 0:

De…ne G(a; q) as the N £X matrix with typical line Ub(x; a; b(a; q))0. Then
we have

G(a; q)p = 0:

Now, from (15) we have shown that this implies

Ga(a; q)p = 0:

This implication is valid for any p. Therefore this means18 that there exists
a matrix M(a; b) such that

Ga(a; q) =M (a; b)G(a; q):

This shows i).

1 8Lemma 1 below provides a formal proof of this point.
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There remains to show ii). From iv) in Proposition 2, we know that
Ka(a; 0; s) must decrease with s. Notice that

Ka(a; 0; s) =
X

p(x)Ua(x; a; b(a; (1¡ s)p+ sq))

+[
X

p(x)Ub(x; a; b(a; (1¡ s)p + sq))]:@b(a; (1¡ s)p+ sq)
@a

=
hX

p(x)[Ua + Ub:d]
i
(a; b(a; (1¡ s)p+ sq)):

Di¤erentiating with respect to s yields

hX
p(x)[Uab +Ubbd + dbUb]

i
:
@

@s
b(a; (1¡ s)p+ sq) · 0:

From i) the bracketted term is equal to (M + db)Ub; and the last term was
computed in (14). Replacing we get ii).

Finally i) and ii) are clearly su¢cient, as the last paragraph has shown.¥

Lemma 1 Suppose two matrices A and B are such that
*) for all weight p, Ap = 0 ) Bp = 0;
**) there exists a weight q such that Aq = 0.
Then there exists a matrix M such that B =MA.

Proof of Lemma 1: given the weight q, any vector v can be written
v = ®q + w, with

P
x w(x) = 0. Suppose that Av = 0. From **) we know

that Aq = 0, so that we get Aw = 0. Now, for ¯ small enough p ´ q+¯w is a
weight, and we haveAp = 0. From **), this implies that Bp = 0 = Bq+¯Bw.
From *) and **), we know that Bq = 0. Therefore we must have Bw = 0,
and …nally Bv = ®Bq+Bw = 0. Therefore we have shown that for any vec-
tor v, Av = 0 implies that Bv = 0. This shows the Lemma, from a standard
property of matrixes.¥

Proof of Proposition 5: The regulator’s decision decreases with more
distant beliefs if and only if (s¡ r)Las(a; r; s) is negative. We easily get, as
in the proof of Proposition 1, that

L(a; r; s) = L(a; s; s) ¡ (s¡ r)Lr(a; :; s);
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so that

L(a; r; s) = (r ¡ s)Lrs(a; :; s)

= (r ¡ s)d
2L(a; s; s)

ds2
:

Hence, by di¤erentiating with respect to a, we obtain that (s¡ r)Las(a; r; s)
is negative if and only if La(a; s; s) is convex in s. Notice that

La(a; s; s) = Eija(a; (1 ¡ s)p+ sqi):

It is then direct that ja(a; p) convex in p is a su¢cient condition for La(a; s; s)
to be convex in s. It is also necessary at s = 0. By Proposition 3, we get the
equivalence between i) and ii).

Now, we will prove the equivalence between i) and iii). Take r = s. Then
for such a given r, the regulator’s decision is lower in society i than in society
i0 if and only if

Ei0ja(a; (1 ¡ s)p + sqi0 ) ¸ Eija(a; (1 ¡ s)p+ sqi):

From inequality (10), a necessary and su¢cient condition for the regulator’s
decision to decrease with more heterogeneous beliefs is thus, again, ja(a; p)
is convex in p.¥
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Figure 1:

Cleanup e¤orts as a function of beliefs for the three polar cases: functional
forms given in the Introduction.
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Figure 2:

”More di¤erent” beliefs for the three state of the world case: The regulator
has beliefs r; The two subgroups i = 1; 2 have beliefs s (upper s for group 1
and lower s for group 2).
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