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Current carbon cycle-climate models predict that future soil carbon storage will be determined by the
balance between CO2 fertilization and warming. However, it is uncertain whether greater carbon inputs
to soils with elevated CO2 will be sequestered, particularly since warming hastens soil carbon decom-
position rates, and may alter the response of soils to new plant inputs. We studied the effects of elevated
CO2 and warming on microbial soil carbon decomposition processes using laboratory manipulations of
carbon inputs and soil temperature. We incubated soils from the Aspen Free Air CO2 Enrichment
experiment, where no accumulation of soil carbon has been observed despite a decade of increased
carbon inputs to soils under elevated CO2. We added isotopically-labeled sucrose to these soils in the
laboratory to mimic and trace the effects of increased carbon inputs on soil organic carbon decompo-
sition and its temperature sensitivity. Sucrose additions caused a positive priming of soil organic carbon
decomposition, demonstrated by increased respiration derived from soil carbon, increased microbial
abundance, and a shift in the microbial community towards faster growing microorganisms. Similar
patterns were observed for elevated CO2 soils, suggesting that the priming effect was responsible for
reductions in soil carbon accumulation at the site. Laboratory warming accelerated the rate of the
priming effect, but the magnitude of the priming effect was not different amongst temperatures, sug-
gesting that the priming effect was limited by substrate availability, not soil temperature. No changes in
substrate use efficiency were observed with elevated CO2 or warming. The stimulatory effects of
warming on the priming effect suggest that increased belowground carbon inputs from CO2 fertilization
are not likely to be stored in mineral soils.
� 2014 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/3.0/).
1. Introduction

The terrestrial carbon (C) cycle regulates atmospheric CO2

concentrations through a balance between photosynthetic uptake
and respiratory release from plants and plant residues sequestered
in soils. Rising atmospheric CO2 and concomitant global warming
are likely to alter this balance by modifying the rates of these up-
take and release processes, with unknown implications for long-
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term soil C storage. Higher atmospheric CO2 concentrations
fertilize plant C uptake, resulting in greater plant productivity that
is transferred to soils in the form of increased litterfall, root
biomass, and root exudation (Liu et al., 2005; Norby et al., 2005;
Pregitzer et al., 2008; Phillips et al., 2011). However, it is unclear
whether these enhanced inputs increase soil C storage (Norby and
Zak, 2011), because elevated CO2 also stimulates respiratory losses
of C from plant tissues and soils (Drake et al., 2011).

In addition, climate warming is likely to erode stores of soil
organic carbon (SOC) by increasing decomposition rates (Hopkins
et al., 2012); however, the warming effect may be limited by the
amount of substrate available for decomposition (Melillo et al.,
2002). Through its interaction with substrate availability, warm-
ing has the potential to alter the response of soils to additional plant
inputs in a high CO2 world. Ecosystem-scale manipulations of CO2
nder the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).
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and temperature have shown that the combination of these two
drivers has a different effect on SOC turnover rates and soil mi-
crobial community composition than either treatment alone (Gray
et al., 2011; Gutknecht et al., 2012; Nie et al., 2012).

Prior to ecosystem-scale experimental tests, it was predicted
that additional C taken up by forests under elevated CO2 would be
stored in soils (e.g., Harrison et al., 1993); however, data from the
Free Air CO2 Enrichment (FACE) experiments have shown a mixed
response (de Graaff et al., 2006). Despite consistent stimulation of
plant productivity across forested FACE sites (Norby et al., 2005),
increased C allocation belowground under elevated CO2 has actu-
ally resulted in less accrual of C to soil stores in some experiments
(e.g., Talhelm et al., 2009).

Given higher litter inputs under elevated CO2 (eCO2), observed
reductions in SOC formation can only be explained by decreased
retention of new C inputs to soil, or an acceleration of SOC
decomposition rates. Specifically, eCO2 may increase the fraction of
C inputs lost from soils through respiration by changing the effi-
ciency of microbial processes, such as the proportion of C allocated
to respiration vs. growth (Ziegler and Billings, 2011). In contrast,
eCO2 may increase decomposition outputs from SOC via the
rhizosphere priming effect, whereby additions of easily degradable
C exuded by roots stimulates microbial activity and results in
greater SOC turnover (Kuzyakov et al., 2000; Carney et al., 2007;
Cheng et al., 2013). Higher root exudation rates have been
observed under eCO2 (Phillips et al., 2011), as have increased soil
respiration rates (Pregitzer et al., 2006); however, the many sources
of soil respiration make the detection of the priming effect in an
intact ecosystem extremely challenging (Hopkins et al., 2013;
Phillips et al., 2013). Nevertheless, both explanationsd reduced
microbial efficiency and rhizosphere primingd invoke changes in
microbial metabolism as drivers for reductions in SOC under eCO2;
thus, better understanding of the microbial drivers of SOC
decomposition is needed to assess the effect of CO2 fertilization on
soil C storage (Billings et al., 2010).

The effect of climate warming on the C balance of soils is also
mediated by microbial decompositiondwarming rapidly stimulates
microbial metabolism, and results in nearly instantaneous increases
in microbial respiration (Dijkstra et al., 2011). In the long term,
however, warming may hasten substrate limitation for microor-
ganisms (e.g., Melillo et al., 2002dfield; Fissore et al.,
2008dlaboratory), and alter the temperature response of microbi-
al respiration rates (Thiessen et al., 2013). It remains unclearwhether
observed decreases in the temperature sensitivity of microbial
respiration over the course of long-term soil warming experiments is
due to the direct effect of temperature on microbial physiology, such
as through reduced substrate use efficiency (Bradford et al., 2008), or
whether the decrease is owed to indirect effects of warming on
microbial substrate supply (Dungait et al., 2012).

In this study, we combine short-term manipulations of tem-
perature and substrate supply in a laboratory incubation experi-
ment of soils from a decade-long CO2 fertilization experiment. We
used a combination of C isotope labels, respiration measurements,
and microbial biomarker analysis to study the response of micro-
bial processes to eCO2 and warming. Soils were taken from the
Aspen FACE experiment, where eCO2 exposure had altered the
amount and 13C and 14C isotope signature of plant-derived C inputs
to soils for more than 10 years. In the laboratory, we warmed soils
and added isotopically-labeled sucrose to mimic root exudation,
further enabling us to track incorporation of new C inputs, and to
monitor the effects of changing substrate availability on the tem-
perature response of respiration. Our goal was to determine how
global change effects on microbial community composition and
activity might affect the decomposition process, and in turn, the
fate of soil C stores in the future.
We evaluated the plausibility of a rhizosphere priming effect in
eCO2 soils by adding isotopically-labeled sucrose to soils in the
laboratory. Sucrose and its monomers are a common component of
root exudate (Grayston et al., 1996) that can induce priming effects
(de Graaff et al., 2010), and are readily available to most hetero-
trophic soil organisms (Killham and Prosser, 2007). We hypothe-
sized that sucrose addition would induce a positive priming effect,
exemplified by increases in respiration of soil-derived C and mi-
crobial abundance relative to soils receiving water alone. We also
examined the effect of eCO2 and sucrose addition on microbial
community composition to determine whether they were consis-
tent with a priming effect. We tracked incorporation and respira-
tion of added sucrose as a measure of microbial function, which
allowed us to determine the effect of eCO2 on microbial substrate
use. We hypothesized the eCO2 soils would retain a lower propor-
tion of new C inputs, demonstrated by less incorporation of the
sucrose d13C label into microbial biomass per unit of CO2 respired.
We also investigated the relationship between substrate availabil-
ity and thewarming response by using respiration of added sucrose
as a proxy for substrate availability. We monitored respiration of
added sucrose, using the 13C and 14C label, and compared temper-
ature treatments on the basis of amount of sucrose respired rather
than length of time of the experiment. We hypothesized that any
apparent interactions between warming and substrate supply, e.g.,
higher temperature sensitivity in the sucrose addition treatment,
would result from differences in amount of C available to microbes,
not to changes in microbial substrate use.

2. Methods

2.1. Free air CO2 enrichment

We studied soils from the Aspen FACE experiment near Rhine-
lander, WI, USA (45�40.50N, 89�37.50W), which was designed to
study the effects of eCO2 on a newly planted stand of deciduous
trees (Dickson et al., 2000). In eCO2 plots, CO2 concentrations were
raised during the growing season by 200 mmol mol�1 above back-
ground levels for 11 years (1998e2009). The CO2 used in the
experiment was derived from fossil sources, and thus had a distinct
C isotope signature from background air (Pregitzer et al., 2006).
Hence the SOC isotopic signature records incorporation of C into
soils in eCO2 plots over the 11-year duration of the experiment. C
fixed by photosynthesis and delivered belowground in eCO2 plots
in 2009, the year of sampling, was depleted in its C isotope signa-
ture by �12& in d13C and �340& in D14C relative to C fixed in
ambient CO2 plots (Table 1a).

2.2. Aspen FACE site

We sampled soils where the vegetation type was an aspen
clonal monoculture plantation (Populus tremuloides Michx.). The
soils are classified as mixed, frigid Alfic Haplorthods with sandy
loam A horizons. After a decade of eCO2, net primary productivity
(NPP) was enhanced by an average of 26% over the aCO2 control
plots, with a 34% stimulation of litterfall and a 15% stimulation of
fine root production (Zak et al., 2011). After trees were planted in
1997, SOC contents increased linearly in both eCO2 and ambient CO2
(aCO2) control plots (Talhelm et al., 2009), but after a decade of
eCO2, SOC contents did not differ significantly between the CO2
treatments (Hofmockel et al., 2011).

2.3. Soil sampling and processing

In July 2009, we sampled soils from 3 replicate eCO2 plots, and 3
replicate aCO2 plots. After removal of surface litter, soils were



Table 1
Isotopic signature of microbial carbon sources and products. Reported values are the
mean of three replicates, with the standard error of the mean given in parentheses,
in units of &.

a) Microbial carbon sources

d13C D14C

Source Ambient
CO2

Elevated CO2 Ambient
CO2

Elevated
CO2

Soil organic carbon �26.4 (0.2) �31.1 (1.2) 51(4) �98 (20)
Roots <2 mm �27.9 (0.2) �39.9 (0.5) 53 (2) �287 (22)
IAEA-CH-6 (sucrose) �10.2 (0.2) 490.8 (2.0)

b) Microbial carbon products

d13C D14C

Product Treatment Ambient
CO2

Elevated
CO2

Ambient
CO2

Elevated
CO2

Microbial
respired
CO2

þWater, 5� �26.4 (0.8) �34.0 (1.6) 40 (33) �187 (34)
þWater, 25� �27.5 (0.3) �35.3 (0.7) 63 (29) �169 (34)
þSucrose, 5� �16.3 (0.2) �18.9 (0.3) 42 (57) �220 (66)
þSucrose, 25� �18.2 (0.4) �22.5 (0.4) 84 (63) �162 (74)

Microbial
PLFA-C

þWater, 5� �26.7 (0.4) �33.5 (1.1)
þWater, 25� �26.1 (0.03) �33.8 (1.2)
þSucrose, 5� �25.1 (0.4) �31.5 (0.6)
þSucrose, 25� �24.7 (0.3) �30.9 (0.3)
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collected in increments of 0e5 cm and 5e15 cm with a 5 cm
diameter impact corer. 5 cores of mineral soil were sampled from
each of the 6 plots, then composited and subdivided into 6 sub-
samples for laboratory incubation. Soils were sieved to 4 mm, and
roots and rocks were removed. Soils were transported on ice and
refrigerated between processing steps.

We took a 5 g subsample from each composite to determine soil
moisture, C content, and C isotope ratio of bulk soil. Subsamples
were dried at 60 �C, ground, and analyzed on an NA 1500 NC
elemental analyzer (Fisions Instruments) coupled to an isotope
ratio mass spectrometer (IRMS; Thermo Finnigan continuous flow
Delta Plus) for mass percent C and d13C value.

2.4. Laboratory incubation experiment

We incubated soils in the laboratory with a factorial manipu-
lation of temperature (3 levels: 5 �C, 15 �C, 25 �C) and substrate (2
levels: water and sucrose addition). Soils were incubated at 5 �C,
the site mean annual temperature, and with two levels of warming,
15 �C and 25 �C, applied in þ10 �C increments (e.g., Steinweg et al.,
2008; Nie et al., 2012; Thiessen et al., 2013). Substrate levels in half
of the soils were raised by addition of 20 mg of sucrose dissolved in
1 mL of deionized water, equivalent to about 70 mg sucrose C per
gram soil, or<0.5% of SOC. The other half of soils served as controls,
receiving 1 mL of deionized water to compensate for water lost
during soil sieving. The amount of sucrose-C added was roughly
equivalent to 20% of annual inputs to SOC pools (Talhelm et al.,
2009), and was of the same magnitude as root exudation rates
measured in other ecosystems (Phillips et al., 2011), and expected
exudation rate based on root biomass observed at the site (Grayston
et al., 1996). The added sucrose (IAEA-CH-6) had a known C isotope
composition that was distinct from SOC (Table 1a; Coplen et al.,
2006; Xu et al., 2010), so we could track its contribution to
respired CO2. We considered each of the 6 experimental plots
sampled (3 eCO2 plots, 3 aCO2 plots) to be the level of replication for
the experiment (n ¼ 3).

Roughly 120 g of soil from each plot was weighed into 250 mL
glass containers. Water or sucrose solutionwas slowly added to soil
surface by drops from a needleless syringe, taking care to evenly
distribute additions, and avoid pooling of water. Soils were placed
in 0.5 L Mason jars with lids equipped with sampling ports
(Hopkins et al., 2012). CO2-free air was used to purge the each jar’s
headspace, so subsequent CO2 accumulationwas derived only from
soil respiration. We measured CO2 concentrations periodically (up
to 8 times) by removing 2 mL syringe samples from the jar head-
space, and injecting them into a LI-6252 (Licor) infrared gas
analyzer (Davidson and Trumbore, 1995). We also periodically took
subsamples of headspace air for measurements of d13C (3 times)
and D14C (once). d13C of CO2 was measured directly on subsamples
of headspace air injected into He-filled exetainers by IRMS (Thermo
Finnigan Gas Bench coupled to continuous flow Delta Plus). For
D14C analysis, we collected headspace air by connecting a 0.5 L,
evacuated stainless steel canister to the jar lid sampling port. CO2
was cryogenically purified, and converted to graphite for 14C
measurement at the WM Keck Carbon Cycle Accelerator Mass
Spectrometer Facility at UC Irvine (Xu et al., 2007).

The overall length and timing of the incubation experiment was
determined by the amount of sucrose-C lost through respiration, as
a means to control for differential substrate depletion amongst
temperature treatments. Substrate depletion can affect observed
respiration and substrate use efficiency in soils (Fissore et al., 2008;
Shen and Bartha, 1996). Because of the large difference in flux rates
between temperature treatments, we measured CO2 fluxes and
their isotopic composition at different times for each temperature
level, but selected those times when approximately the same
amount (w60%) of sucrose-C had been respired. At this point (1/e of
sucrose remaining in soil), we collected the last headspace CO2 for
isotope analysis, and then immediately froze soils for phospholipid
fatty acid (PLFA) analysis.

2.5. PLFA analysis

We extracted lipids from 50 g dry weight equivalent of soil by
shaking with chloroform, methanol and 0.05 M phosphate buffer,
following the Bligh-Dyer method as applied in Kramer and Gleixner
(2006). Phospholipids were separated from other lipid fractions by
sequential elution with chloroform, acetone, and methanol on
silica-filled solid phase extraction columns. Phospholipids were
hydrolyzed and methylated to form fatty acid methyl esters
(FAMEs), which were subsequently separated into saturated
(SATFA), monounsaturated (MUFA), and polyunsaturated (PUFA)
fatty acids with silver impregnated SCX columns, so they could be
analyzed separately for amount and d13C.

We determined PLFA amounts using the relative size of chro-
matographic peaks detected on an HP-6890 gas chromatograph
(GC) with a flame ionization detector (Agilent) using the program
described by Gude et al. (2012). Before analysis, we added a known
amount of PLFA nonadecanoic acid-methyl ester (19:0) standard to
allow quantification of PLFAs. We only included peaks greater than
10 ng mL�1 in our analysis based on the lower limit of our GC
calibration.

We measured the d13C of individual FAMEs by GC-IRMS (Fin-
nigan Delta Plus XL). We analyzed each of the three FAME groups
per sample in triplicate, so d13C values reported here are the average
of the three analytical replicates. We corrected d13C values for the
contributions of methyl-C using mass balance for each FAME. We
used the 19:0 standard (d13C ¼ �30.05) to correct for machine drift
and sample fractionation. We used a standard mixture of SATFAs
(Supelco) as a secondary standard. The standard deviation of 40
measurements of secondary standards was 0.53& in d13C.

We identified 49 different FAME peaks, 37 of which were large
enough for quantification in all samples, including 22 SATFA, 12
MUFA, and 3 PUFA. FAMEs were identified by comparison of
retention times and peak shape primarily using an in-house data-
base that was developed from GCeMS and mass spectral libraries
(Thoms et al., 2010). Chromatograms were also checked against the
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SATFA standard that was analyzed alongside samples. We used the
sum of all FAMEs in the sample to estimate relative amounts of
microbial biomass C between treatments.

2.6. Calculations

2.6.1. Sources of C for respiration and PLFA using C isotopes
2.6.1.1. Sucrose-derived CO2. We used a 13C mass balance equation
to determine the fractional contribution of added sucrose to
respired CO2:

fsucrose ¼ d13CO2;soilþsucrose � d13Csucrose

d13CO2;soilþwater � d13Csucrose
(1)

where values for d13Csucrose and d13CO2, soil for microbial respiration
from sucrose addition and water addition soils are reported in
Tables 1a and b, respectively.

The contribution of SOC to respired CO2 from sucrose treatment
soils was determined:

RSOC; soilþsucrose treatment ¼ 1� fsucrose*Rtotal; soilþsucrose treatment

(2)

The priming effect (PE) was calculated as:

PE ¼ RSOC; soilþsucrose treatment � RSOC; soilþwater treatment (3)

We used the known D14C value of added sucrose to determine
the D14C value of SOC-derived CO2 using a 14C mass balance:

D14CO2;SOC ¼ D14CO2;soilþsucrose � fsucrose*D
14Csucrose

1� fsucrose
(4)

2.6.1.2. FACE-label derived CO2. After using d13C (equation (1)) to
remove the contribution of sucrose-C fromthe amount (equation (2))
and isotopic signature (equation (4)) of respired CO2, we usedD14C to
calculate the fraction of respired CO2 consisting of C fixed since the
FACE experiment began (fFACE) using the 14C mass balance equations
described in Hopkins et al. (2012). The 14C end-member for FACE C
was the average D14C signature of roots in each experimental plot,
and the 14C end-member for pre-FACE C was based on the D14C
signature of SOC from the paired aCO2 control plots (Table 1a).

We confirmed the results of the D14C mixing model using a d13C
mixing model for soils that did not receive sucrose addition, and
found no differences in overall pattern.

2.6.1.3. Sucrose-derived PLFA-C. We calculated the fraction of
sucrose-C incorporated in each individual PLFA biomarker,
fPLFA�sucrose, accordingly:

fPLFA�sucrose ¼ d13C� PLFAsoilþsucrose � d13C� PLFAsoilþwater

d13Csucrose � d13CO2;soilþwater

(5)

Values of fPLFA�sucrose were only retained for further analysis if
they were greater than the value of their propagated standard er-
rors (Phillips and Gregg, 2001), excluding 22% of PLFA by mass.

2.6.1.4. FACE-derived PLFA-C. Similarly, we calculated the fraction
of FACE-derived C in individual PLFA biomarkers, fPLFA�FACE, by
assuming that the maximum possible difference between d13C-
PLFA from eCO2 and aCO2 soils is similar to the difference in the d13C
values of fine roots between eCO2 and aCO2 (Table 1; see also
Balesdent and Mariotti, 1996; Kramer and Gleixner, 2006):
fPLFA�FACE ¼ d13C� PLFAeCO2
� d13C� PLFAaCO2

d13C� rootseCO2
� d13C� rootsaCO2

(6)

2.6.2. Microbial community structure and function
2.6.2.1. Whole community. We estimated relative amounts of mi-
crobial biomass C as the sum of all detectable PLFA-C amounts for
each sample. Similarly, we estimated the total amount of sucrose-
derived PLFA-C by summing the product of fPLFA�sucrose and PLFA-
C amount for each biomarker for each sample. Bulk d13C of all
PLFAs in a sample was the sum of the product of the amount of C for
each PLFA by its d13C value, divided by total PLFA-C (Morrison et al.,
2010).

2.6.2.2. Microbial functional groups. We separated the 37 microbial
PLFAs into functional groups (Table S1) primarily using the stan-
dard community structure method (Hedrick et al., 2005), where
monounsaturated and cyclopropyl fatty acids were classified as
Gram-negative bacteria, terminally branched SATFAs were Gram-
positive, mid-chain branched SATFAs were Actinobacteria, and
PUFAs were Eukaryotes. The straight chain fatty acids, which are
produced by all organisms, were grouped as a “general” microbial
biomarker. Among PUFAs, we distinguished two types of organ-
isms; 18:2u6c, a biomarker for saprotrophic and ectomycorrhizal
fungi (Frostegård and Bååth, 1996; Olsson, 1999); and 20:4u6c, a
biomarker for protozoa (Vestal and White, 1989). Among MUFAs,
two fatty acids were not grouped as Gram-negative bacteria, and
were analyzed separately or as part of the fungal PLFA group;
16:1u5t was considered to be a biomarker for arbuscular mycor-
rhizal (AM) fungi (Olsson, 1999; Drigo et al., 2010), and 18:1u9c,
which is produced by both fungi and Gram-negative bacteria
(Frostegård and Bååth, 1996), were analyzed separately.

2.6.2.3. Microbial community composition. We evaluated changes
to the microbial community by testing treatment effects on the
relative abundance of individual PLFAs using redundancy analysis
(RDA), a statistical procedure which derives a set of synthetic var-
iables from imposed treatments and explanatory environmental
variables which are not of primary interest to determine howmuch
of the variance in the data can be attributed to treatment effects.
Partial RDAs allow us to remove the effect of environmental vari-
ables by including them as co-variables in ordination models, and
thus determine howmuch variance in the data can be attributed to
treatment effects (Leps and Smilauer, 2003). RDAs were performed
in CANOCO software (ver. 4.5, Microcomputer Power, Inc., Ithaca,
NY).

2.6.2.4. Microbial activity. Differences in the d13C signature of PLFA
between eCO2 and temperature treatments with sucrose addition
were interpreted as changes in the amount of sucrose-C remaining
in microbial biomass. Similarly, difference in d13C of PLFA among
temperature treatments for eCO2 soils was interpreted as changes
in the proportion of FACE-derived C taken up by microbes.

We then calculated PLFA-based substrate-use efficiency (SUE;
Ziegler and Billings, 2011):

SUE ¼

P

i
PLFA� C�fPLFA�sucrose

P

i
PLFA� C�fPLFA�sucrose þ Rtotal�fsucrose

(7)

where i was either all PLFA measured in each sample (integrated
community SUE), or individual PLFAs, for soils receiving added
sucrose. Similarly, we also compared treatments on the basis of
ratios of respired CO2 to total PLFA.
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2.7. Statistics

We analyzed the data using ANOVAs with a randomized block
design (Phillips et al., 2002) in Proc GLM in SAS version 9.2. We
tested the effect of the field CO2 treatment, and laboratory tem-
perature and sucrose addition effects on cumulative respiration of
sucrose-derived and SOC-derived CO2 and d13CeCO2, and amounts
and d13C content of PLFAs (bulk, groups, and individual biomarkers)
with Tukey’s Honestly Significant Differences (HSD) test. Treatment
effects were considered significant at the a ¼ 0.05 level, and
marginally significant at the a ¼ 0.1 level. We adjusted the p-value
threshold for significance at the a ¼ 0.05 level to account for
multiple comparisons when testing effects of treatments on mul-
tiple PLFA (Holm, 1979).

3. Results

3.1. Fate of sucrose

Respiration of sucrose added to soils at the beginning of the
experiment was highly temperature sensitive (Fig. 1a, p ¼ 0.0002),
but we controlled for this effect by sampling all temperature
treatments after 62% (�8%, 1 standard deviation) of added sucrose-
C had been respired (so there was no significant difference in cu-
mulative sucrose respired across temperature treatments, Fig. 1b,
p > 0.9). This represented a cumulative loss of 44 mg of sucrose-C
per g soil over 31 days for soils incubated at 5 �C, 13 days for soils
at 15 �C, and 6 days for soils at 25 �C (Fig. 1a).

While 62% of added sucrose had been respired as CO2, 5%
(�3.5%, 1 standard deviation) was recovered in microbial PLFA. For
soils that were amended with sucrose, about 10% of PLFA-C was
derived from added sucrose (Table 2). CO2 treatment and laboratory
warming had no effect on the amount of sucrose-C recovered in
PLFA. The remaining 23% of added sucrose that was not accounted
for by our methods was probably incorporated into other microbial
products, as PLFA only accounts for a small portion of microbial
biomass C (5e20%, based on observed species composition; Bååth,
1994; Frostegård and Bååth, 1996).

3.2. Higher C inputs increase respiration of SOC-derived CO2

Soils that had experienced increased C inputs, over the long
term in eCO2 soils, and immediately following a pulse addition of
sucrose in the laboratory, had higher rates of respiration from SOC
sources (Fig. 1c, g). Cumulative respiration losses of SOC were about
35% higher from eCO2 soils than aCO2 soils on a soil mass basis
(Table 3, p ¼ 0.0003), reflecting a decade of increased plant inputs
in the eCO2 treatment soils. Respiration from eCO2 soils remained
consistently higher than from aCO2 soils over the length of the
experiment (Fig. 1c, p< 0.0001). Short-term laboratory additions of
sucrose also increased respiration of SOC, inducing a positive
priming effect. Soils receiving added sucrose respired 20% more
from SOC sources, averaged over all treatments, than soils receiving
water alone (Table 3, p¼ 0.0044). In contrast to the eCO2 treatment,
the sucrose addition effect declined over the course of the experi-
ment (Fig. 1g, p < 0.0001). The priming effect induced by sucrose
additions declined at a similar rate as sucrose respiration over time
(Fig. 1a, e).

3.3. Warming effects on respiration and interactions with increased
C inputs

Warming strongly increased respiration rates of SOC-derived
CO2 (p < 0.0001, Fig. 1 c, e), and cumulative SOC lost over the
experiment (p ¼ 0.0007). Even when controlling for the same
cumulative loss of sucrose across temperature treatments, there
was still greater loss of SOC to respiration inwarmed soils, by about
50% between 5� and 25 �C treatments (Table 3). The combination of
warming and high C inputs increased respiration rates much more
strongly than either effect alone. This interactive effect was
observed over the whole experimental period for the eCO2 soils
(Fig. 1d, p ¼ 0.0004), but only initially for soils with added sucrose
(Fig.1e, f). The positive interaction of sucrose addition andwarming
declined as added sucrose was consumed. By the end of the
experiment, the cumulative amount of SOC primed by sucrose
addition was the same across temperature treatments (Fig. 1f).

3.4. Sources of soil-respired CO2 with sucrose-induced priming

The C isotope signature of SOC in eCO2 treatment soils showed
significant incorporation of depleted fumigation C into SOC pools
over the ten years of FACEdabout 30% of the SOC stock carried the
FACE isotope label (Table 1). Actively decomposing C, as measured
in CO2 respired from soils, was closer in d13C and D14C to new roots,
showing preferential degradation of more recently added C.
Nonetheless, about 30% of respired C was more than 10 years old,
pre-dating the FACE experiment (Table 4). Since the C isotope
signature of eCO2 soils was altered by the CO2 treatment itself, we
could not directly test whether the priming effect in eCO2 soils
changed the age of decomposing C relative to the aCO2 treatment.
Instead, we used priming caused by sucrose addition to test the
effect of priming on the age of decomposed C. We used the d13C of
respired CO2 to determine the contribution of added sucrose to
respiration (Eqn. (1)), and subtracted it from total CO2 (and 14CO2)
flux (Eqns. (2) and (4)). The D14C signature of CO2 derived from SOC
(Eqn. (4)) was used to determine the proportion of C that pre-dated
the FACE experiment. Addition of sucrose stimulated respiration of
both FACE and pre-FACE derived C (Fig. 1h), but did not alter the
relative proportion of the two sources (Table 3). There was no
statistically significant difference between the fractions of FACE-
derived C (fFACE) respired by soils receiving added sucrose and
those receiving water alone. We also calculated the D14C signature
(and fFACE) of CO2 from the priming effect (Eqn. (3)), but due to the
small size of the priming effect and spatial heterogeneity of fluxes
and isotopic endmembers among plots, we were unable to resolve
the source of priming effect-derived CO2 (Fig. 2). We performed a
sensitivity test, assuming all primed CO2 originated from either
entirely FACE-C, or entirely pre-FACE C. Small differences and large
errors in the expected D14C signatures of these two scenarios
suggest that we cannot definitively determine the origin of primed
CO2. In aCO2 soils, which do not have the FACE isotope label, D14C of
respired CO2 also gives information about age of C sources in sur-
face soils on timescales of years to decades (Trumbore, 2000). In
aCO2 soils, there was no change in D14C of CO2 respired from soils
with sucrose-induced priming, contrary to results observed for
deeper soils with natural abundance levels of 14C (Fontaine et al.,
2007). This provides additional support that the priming effect
did not cause preferential degradation of older or younger SOC
pools.

3.5. Effect of higher C inputs and warming on PLFA

Total PLFA-C was higher in eCO2 soils compared to aCO2 soils
(Table 3, p¼ 0.0112), due to significant increases in PLFA-C of Gram-
negative bacteria (þ25%, p ¼ 0.0159 for group), fungal biomarkers
(þ25%, p ¼ 0.0036 for group), and protozoa (þ60%, p ¼ 0.0281),
(Fig. 3, Table S1). Sucrose addition soils also had higher total PLFA-C
(Table 2, p ¼ 0.0157), attributed to growth of Gram-negative bac-
teria (p ¼ 0.0116 for group) and all fungal biomarkers (p ¼ 0.0016
for group) by 30% and 34%, respectively (Fig. 3, Table S1).



Fig. 1. Cumulative respiration and temperature sensitivity of respired CO2 sources, in mg CO2eC g soil C�1. Left side plots show cumulative respiration for the three temperature
treatmentsd 5�: blue, 15�: yellow, 25�: red, over the course of the experiment. Right side plots show temperature sensitivity of different respired CO2 sources. a) Cumulative
respiration of sucrose-derived CO2 from aCO2 soils (dotted lines) and eCO2 soils (solid lines), b) Temperature sensitivity of cumulative sucrose-C lost by the end of the experiment, c)
Cumulative respiration of SOC-derived CO2 from aCO2 and eCO2 soils, d) Temperature sensitivity of cumulative SOC-derived CO2 from aCO2 and eCO2 soils, e) Cumulative respiration
of soil-derived CO2 from the priming effect, calculated as RSOC þ sucrose e RSOC þ water for each temperature treatment, averaging both CO2 treatments, f) Temperature sensitivity of the
priming effect, at the first respiration measurement (solid lines and symbols) and the last respiration measurement (dashed lines and open symbols), g) Cumulative respiration of
SOC-derived CO2 comparing soils receiving water addition (solid lines) and sucrose addition (dashed lines), h) Temperature sensitivity of FACE-labeled C (recent) and pre-FACE
(>10 y) C respired from þwater and þsucrose treatments from eCO2 soils.
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Warming had no significant effect on total PLFA-C (p ¼ 0.947);
however, the increase in PLFA-C caused by added sucrosewas lower
at 25� than at 5 �C, shown by a marginally significant interaction
(p ¼ 0.0935) between warming and sucrose addition on total PLFA
and for many individual biomarkers. In the warming treatment, all
fungal and many Gram-negative biomarkers showed less of a
growth response to added sucrose than they had at the control
temperature (Fig. 4). None of the treatments significantly changed
the amount of PLFA-C for actinobacteria, Gram-positive bacteria, or
the general microbial biomarkers.

3.6. Sources of C in PLFA

Similar to respiration, we calculated the fraction of PLFA-C
coming from different C sources using the d13C signature of
PLFA biomarkers. The eCO2 (p < 0.0001) and sucrose addition



Table 2
PLFA-C, in mg CPLFA g soil�1, across CO2, temperature, and substrate treatments. For
eCO2 soils, PLFA-C was partitioned using its d13C signature into C added during FACE,
and C previous to FACE (pre-FACE). For soils receiving added sucrose, PLFA-C was
similarly partitioned into PLFA derived from added sucrose, and PLFA derived from
SOC sources.

5 �C 25 �C

Ambient
CO2

Elevated
CO2

Ambient
CO2

Elevated
CO2

þWater Total PLFA-C 22.0 (8.9) 21.1 (1.2) 22.5 (3.9) 27.0 (3.3)
FACE C 11.8 (2.2) 15.9 (2.7)
Pre-FACE C 9.3 (2.1) 11.1 (3.9)

þSucrose Total PLFA-C 25.6 (4.1) 33.3 (11.3) 23.0 (6.1) 31.2 (7.3)
Sucrose-C 3.4 (1.1) 4.0 (2.0) 2.12 (0.7) 4.3 (2.0)
SOC 22.3 (3.2) 29.3 (9.4) 20.8 (5.4) 26.9 (5.5) 0 
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Fig. 2. Contributions of pre-FACE and FACE C to priming effect. Solid bars show SOC-
derived CO2 respired from FACE soils with additions of water and sucrose parti-
tioned into FACE-derived (blue) and pre-FACE (red) sources using a 14C mixing model.
Open bars show expected contributions of FACE-derived and pre-FACE sources if
priming effect was driven by increased decomposition of only new FACE-labeled C
inputs, and or of only pre-FACE C sources. Error bars are the standard error of mea-
surement means propagated through the mixing model. Box above figure shows actual
and predicted D14CeCO2 values (�standard error of the mean) for each scenario shown
below.
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(p ¼ 0.0062) treatments had large effects on the d13C composition
of total PLFA, by �6.0 per mil and þ1.8 per mil, respectively, asso-
ciated with microbial uptake of recently added C inputsdi.e., over
the past 10 y in eCO2 soils, and from additions of sucrose in the
laboratory incubation experiment. Incubation temperature had no
consistent effect on d13C of PLFA for any groups or biomarkers
(Figure S1), hence warming caused no detectable change in the
proportion of new and decades-old C in biomass.

To explore the role and relative contribution of different mi-
crobial groups to the whole community response, we tested the
effects of treatments on d13C of each PLFA biomarker and on mi-
crobial functional groups. The eCO2 treatment caused a shift toward
more depleted d13C values for all microbial functional groups, and
all PLFAs except 16:1u5t (AM fungi), 15:1u11 (Gram-negative
bacteria), and 17:1u8t (Gram-negative bacteria), a putative
methane oxidizer, hence, very low d13C-PLFA value for 17:1 u8t;
Ringelberg et al., 1989; Figure S1). This shift indicates that the
majority of soil microorganisms were using C fixed during the last
decade, and is consistent with the finding of depleted d13C values
for all physically separable soil pools under eCO2 at this site
(Hofmockel et al., 2011).

In contrast, sucrose addition only affected the d13C-PLFA of
certain groups. The general microbial biomarkers, Gram-negative
Table 3
Cumulative CO2 respired over experiment from soil organic carbon (SOC) and added suc
between recent FACE C (<10 y old) and pre-FACE C (>10 y old) using its D14C signature. For
CO2 using its d13C signature. Values are reported as the mean of three replicates with th

5 �C

Ambient CO2 Elevated CO2

þWater Total respiration 17.0 (5.0) 24.3 (1.8)
FACE 16.3 (1.6)
pre-FACE 8.0 (3.0)

þSucrose Total respiration 71.5 (7.9) 63.0 (3.6)
SOC 27.7 (5.6) 23.6 (4.1)
FACE 18.1 (1.5)
pre-FACE 5.5 (1.5)

Table 4
Fractional contribution of recent, FACE-label C (fFACE) to microbial products in eCO2 soils. fF
PLFA is given for all microbial groups, and for microbial functional groups. Values are av

fFACE-CO2 fFACE-PLFA

All Actino-bacteria General

þWater 5�C 0.67 (0.06) 0.60 (0.11) 0.51 (0.13) 0.58 (0.
þWater 25�C 0.68 (0.05) 0.68 (0.11) 0.75 (0.11) 0.63 (0.
þSucrose 5�C 0.87 (0.11)
þSucrose 25�C 0.71 (0.09)
bacteria, and PLFA 18:1u9c (biomarker for Gram-negative bacte-
ria and fungi) became more enriched with addition of sucrose,
by þ1.2& (p ¼ 0.063), þ2.3& (p ¼ 0.0011), and 3.3& (p ¼ 0.0021),
respectively (Figure S1). The protozoa biomarker, 20:4u6c, became
more depleted, by 1.8& (p¼ 0.0085). Sucrose addition had no effect
on the d13C-PLFA of Gram-positive bacteria or actinobacteria. Tests
on individual PLFA from microbial functional groups revealed
similar resultsdthe majority of PLFA classified as Gram-negative
bacteria were significantly enriched in d13C with sucrose addition
(Figure S1), while only 1 PLFA from the Gram-positive bacteria
group was significantly enriched in d13C (p ¼ 0.0028, PLFA 15:0a).
Neither incubation temperature, nor the interaction of temperature
rose, in mg Crespired g soil�1. For eCO2 soils, SOC-derived CO2 efflux was partitioned
sucrose addition soils, SOC-derived respired CO2 was partitioned from total respired
e standard error of the mean given in parentheses.

15 �C 25 �C

Ambient CO2 Elevated CO2 Ambient CO2 Elevated CO2

22.5 (2.4) 30.6 (5.9) 32.4 (3.6) 47.0 (9.3)
20.9 (4.8) 31.9 (7.8)
9.6 (2.4) 15.1 (4.7)

65.3 (8.6) 87.2 (25.7) 81.8 (6.3) 103.7 (10.8)
25.7 (4.1) 42.3 (15.3) 38.3 (5.9) 51.2 (8.9)

25.9 (3.4) 37.1 (12.4)
16.4 (10.3) 14.1 (5.7)

ACE of respired CO2 is calculated using D14C, and fFACE of PLFA is calculated using d13C.
erages of three replicates, with standard errors shown in parentheses.

Gram-positive Gram-negative Fungi Protozoa

10) 0.58 (0.09) 0.61 (0.09) 0.64 (0.09) 0.35 (0.11)
11) 0.66 (0.10) 0.66 (0.12) 0.70 (0.12) 0.42 (0.07)



Fig. 3. Effect of eCO2 and laboratory sucrose addition on PLFA amounts for microbial
functional groups, in mg PLFA-C g dry soil�1. Light-colored, left side bars for each group
represent aCO2 soils, and dark-colored, right side bars represent eCO2 soils. The in-
crease in PLFA abundance from sucrose addition is overlaid (orange) over the PLFA
abundance in the water only addition treatment (blue). Groups that had a statistically
significant difference between CO2 treatments are denoted by *, and for sucrose
addition, by .̂ Error bars are the standard error of the mean of three replicate samples
per treatment.
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with other treatments, had a statistically significant effect on d13C-
PLFA on any group.

Greater incorporation of the FACE label by certain microbial
groups was demonstrated by significant differences in fFACE of PLFA
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Fig. 4. Effect of warming and sucrose addition on PLFA abundance of individual fungal and G
5 �C incubation treatment, and righthand (red) bars show PLFA abundance in the 25 �C incub
dashed area above each bar. Top plot (a) shows aCO2 soils, bottom plot (b) shows eCO2 soils.
between microbial functional groups (Table 4; p < 0.0001, Tukey’s
HSD: fungi and Gram-negative bacteria [A] � general
[AB] � Actinobacteria [BC] � Gram-positive bacteria [C] > protozoa
[D]). Warming increased fFACE for Actinobacteria (p ¼ 0.0109), the
general microbial group (p ¼ 0.0006), and fungi (p ¼ 0.0325).
Incorporation of the sucrose label, fsucrose of PLFA, also differed
significantly between microbial functional groups (Table 3;
p ¼ 0.0011, Tukey’s HSD: fungi [A] � Gram-negative bacteria
[AB] � Gram-positive bacteria [ABC] � general
[BCD] � Actinobacteria [DC] � protozoa [D]).
3.7. Treatment effects on microbial activity

We used the total amount of sucrose-derived PLFA-C and
respired CO2 to calculate PLFA-based SUE for each individual PLFAs,
and by group (Table 5). We found no significant effects of eCO2 or
warming on SUE. Combining respiration amounts and microbial
biomass estimates from PLFA abundance, we found that sucrose
addition (p ¼ 0.0001) and warming (p ¼ 0.0340) both significantly
increased total respiration per unit biomass (Rtotal/PLFAtotal). For
respiration originating from SOC (calculated from Eqn. (2)), only
warming (p ¼ 0.0016) significantly increased respiration per unit
biomass (RSOC/PLFAtotal).
3.8. Microbial community composition

PLFAs of Gram-negative bacteria dominated the microbial
community in all treatments, with about 40% (by mol) of the total
PLFA biomass, followed by Gram-positive (w20%), the general
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Error bars are the standard error of the mean of three replicate samples per treatment.



Table 5
Sucrose-C as a component of respired CO2 and PLFA-C (fsucrose). Also shown are sucrose content of PLFA (mg C g soil�1), and PLFA-based substrate use efficiency (SUE).

CO2 level fsucrose Sucrose content SUE

5 �C 25 �C 5 �C 25 �C 5 �C 25 �C

Respired CO2 Ambient 0.67 (0.06) 0.56 (0.07)
Elevated 0.68 (0.05) 0.53 (0.05)

PLFA All Ambient 0.10 (0.03) 0.09 (0.02) 22 (3) 21 (5) 1.5 (0.6) 0.4 (0.3)
Elevated 0.08 (0.05) 0.12 (0.05) 31 (10) 27 (5) 1.2 (0.6) 1.0 (0.4)

Actinobacteria Ambient 0.08 (0.08) 0.01 (0.01) 1.4 (0.1) 1.5 (0.3) 0.09 (0.09) 0 (0)
Elevated 0.03 (0.02) 0.11 (0.06) 1.9 (0.5) 1.7 (0.2) 0.03 (0.02) 0.06 (0.03)

General Ambient 0.07 (0.07) 0.06 (0.03) 3.9 (0.2) 4.0 (0.7) 0.18 (0.18) 0.07 (0.04)
Elevated 0.05 (0.03) 0.10 (0.05) 5.2 (1.5) 5.5 (1.2) 0.17 (0.09) 0.18 (0.10)

Gram-positive Ambient 0.09 (0.07) 0.07 (0.03) 4.3 (0.03) 4.2 (0.7) 0.27 (0.24) 0.08 (0.04)
Elevated 0.07 (0.02) 0.11 (0.05) 5.4 (1.5) 5.2 (0.9) 0.20 (0.08) 0.17 (0.08)

Gram-negative Ambient 0.16 (0.02) 0.12 (0.02) 10 (2) 9 (3) 0.77 (0.11) 0.23 (0.04)
Elevated 0.07 (0.03) 0.12 (0.04) 15 (5) 11 (2) 0.57 (0.29) 0.43 (0.18)

Fungi Ambient 0.15 (0.02) 0.14 (0.03) 2.7 (0.5) 2.2 (0.7) 0.19 (0.02) 0.06 (0.00)
Elevated 0.10 (0.05) 0.15 (0.03) 3.7 (1.2) 2.9 (0.6) 0.21 (0.13) 0.12 (0.04)

Protozoa Ambient 0 (0) 0.03 (0.03) 0.10 (0.02) 0.07 (0.02) NA NA
Elevated 0 (0) 0.02 (0.02) 0.12 (0.03) 0.15 (0.07) NA NA
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microbial group (w20%), fungi (w10%), Actinobacteria (w10%), and
protozoa (<0.5%) (Table S1).

Increased abundance of total PLFA-C in both eCO2 and sucrose
addition soils was mostly due to growth of Gram-negative bacteria
and fungi, which suggests a change in community composition
with increasing C input amounts. Despite the significant change in
PLFA abundance for the Gram-negative bacteria and fungi, eCO2,
sucrose addition, and warming treatments were less important to
microbial community composition than environmental variables
from the field site. Specifically, there is an NPP gradient across the
field site (Dickson et al., 2000) that strongly determined commu-
nity composition among replicate field plots. Fine root biomass,
which was closely related to NPP, was the best predictor of mi-
crobial community composition by RDA. The explained variation in
community composition was 67.1% including fine roots and NPP as
variables in RDA (Figure S2a). When these factors were fit as
covariables, the explanatory power of RDA decreased to 20.1%
(Figure S2b).
Table 6
Summary of treatment effects. Arrows indicate effect, colors indicate treatment:
green, sucrose addition; blue, eCO2; red, warming. Up arrows indicate positive
treatment effects, sideways arrows indicate no effect, and down arrows indicate
negative treatment effects. Statistically significant interactions between treatments
are shown by two-colored arrows. n/a indicates that treatment effects cannot be
determined. For example, in the first row, incubation-derived rates of CO2 evolution
increased in elevated CO2 plots compared to controls (blue upward arrow), and
warming increased the rate of CO2 evolution in ambient CO2 soils (red upward ar-
row). Elevated CO2 soils responded more to warming (indicated by both upward
blue and red arrows, and the two-color arrow indicates there was a significant
positive interaction).
4. Discussion

4.1. Reduced SOC accumulation under eCO2 likely driven by
microbial priming effect

A mechanistic explanation for observed reductions in SOC
accumulation despite substantial increases in above- and below-
ground C inputs is an important unresolved issue for the Aspen
FACE site, and eCO2 in general (Talhem et al., 2009; Norby and Zak,
2011). In this study, we tested two potential explanations for this
pattern: (a) a change in microbial efficiency under eCO2 leads to
faster, more complete decomposition of newly added C inputs, and
(b) increased C inputs with eCO2 caused positive priming of SOC
decomposition, and accelerated the overall rate of SOC cycling. We
found that the positive priming of SOC decomposition is a more
likely explanation than altered microbial efficiency.

SOC decomposition is difficult to observe directly on the
timescales of a laboratory experiment, so we inferred eCO2 effects
on SOC decomposition using isotopic and microbial measure-
ments (Conant et al., 2011). In addition, the lack of a parallel
isotope label to compare eCO2 and aCO2 soils required addition of
a new isotope label, in the form of sucrose, which doubled as a
proxy for soluble C inputs added to soils by roots. Laboratory
additions of sucrose induced a positive priming of SOC decom-
position, exemplified by increased respiration of SOC-derived CO2
and greater PLFA abundance (Table 6). Moreover, PLFA measure-
ments showed that increased microbial abundance was not just
derived from added sucrose, but also from SOC sources. We also
observed a shift in community composition toward microorgan-
isms that are closely associated with the rhizosphere, particularly
Gram-negative bacteria and fungi. Indeed, the d13C-PLFA of these
microbial groups suggested that they took up a higher proportion
of added sucrose, and likely used a greater proportion of recently
fixed C sources.

The difference in SOC decomposition metricsdSOC-derived
respiration, PLFA abundance, andmicrobial community activity and
compositiondbetween eCO2 and aCO2 soils was qualitatively
similar to the differences induced by laboratory sucrose addition,
providing mechanistic support for the inference of a priming effect
in eCO2 soils. It is difficult to quantitatively compare the short-term
influence of sucrose addition to the decade-long influence of
increased belowground C inputs to soils under eCO2; however, the
priming effect in both soils was of similar size (Fig. 1). Indeed, if the
30% increase in respiration for eCO2 soils measured here are
representative of a priming effect, it could explain Talhelm and
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colleagues’ (2009) finding of 17.4 Mg C ha�1 less C in eCO2 plots
over 7 years given estimated input rates (w1.4 Mg C ha�1).

It is possible that sucrose addition is not a good proxy for
increased belowground C inputs under eCO2. Specifically, eCO2
experimental plots at Aspen FACE experienced increased inputs of
many types of organic C substrates to soils, such as increased leaf
and root litter as well as increased root exudation. However, it is
very likely that higher leaf litter inputs do not contribute to the
priming effect in soils at the Aspen FACE site, as demonstrated by
the negative priming effect observed by Liu et al. (2009) after
adding varying amounts of leaf litter in a soil incubation experi-
ment. Changes in litter quality have been observed with eCO2 at
Aspen FACE (e.g., Parsons et al., 2008), but this effect was shown to
be relatively unimportant for SOC cycling at the site (Liu et al.,
2009). While we do not have direct observational evidence of
increased rhizodeposition under eCO2 at Aspen FACE, Johnson and
Pregitzer (2007) report a marginally significant increase in total
soluble sugars in soils of eCO2 plots at the Aspen site. In addition,
eCO2 strongly increased fine root biomass (King et al., 2005; Zak
et al., 2011), so the proportion of soil in contact with the rhizo-
sphere likely increased along with root abundance (Phillips et al.,
2011).

One of the original goals of this experiment was to determine
whether the sucrose-driven priming of SOC decomposition in
eCO2 soils was due to faster cycling of new, FACE-derived C in-
puts, or rather from acceleration of the turnover of decades-old
and new SOC in these soils. We found no difference in the frac-
tion of FACE-derived C respired from soils with a priming effect
and their controls (Table 6). In fact, the D14C signature of soils
receiving added sucrose was identical to those receiving only
water after the contribution of sucrose respiration to the isotopic
value of CO2 was separated out. This suggests that the same
sources of C contributed to the priming effect as to basal respi-
ration in the water addition control soils. However, we cannot
rule out the possibility of primed C consisting solely of new,
FACE-labeled, root-derived C due to the small size of the priming
effect and spatial heterogeneity of CO2 fluxes and their D14C
signatures.

Other studies done at the Aspen FACE site provide additional
evidence for rhizosphere priming of SOC. Despite the increase in
fine root biomass with eCO2, decomposition rates of fine root
biomass did not change in eCO2 plots relative to aCO2 (Chapman
et al., 2005), eliminating different root decomposition rates under
eCO2 as a cause of these differences. Moreover, all SOC pools
separated by physical methods were labeled; new, FACE-derived C
comprised at least 40% of even the slowest cycling SOC fraction
(Hofmockel et al., 2011). Loss of SOC from the mineral-associated
fraction of these soils with eCO2 provides further support for the
involvement of SOC decomposition in the observed increases in
respiration from eCO2 soils (Hofmockel et al., 2011). In addition,
increased activity of cellulolytic enzymes with eCO2 has been
observed at Aspen FACE (Larson et al., 2002), and is considered a
key indicator of microbially-driven priming effects (Kuzyakov,
2010).

4.2. eCO2 does not affect microbial processing of newly added C
substrates

The alternative hypothesis, that decomposition of newly added
C inputs was fundamentally different in eCO2 soils, was not sup-
ported by the results of this experiment. We found that SUE for
added sucrose was not different between eCO2 and aCO2 soils,
suggesting eCO2 did not alter the proportion of new C inputs to soils
that were lost to respiration vs. incorporated into microbial cell
membranes, with the chance to be stabilized in soil over a longer
time period (Grandy and Neff, 2008). Our findings are limited by
the fact that we only could measure the SUE of added sucrose,
which may not be representative of the overall suite of microbial C
sources, and that we only measured sucrose-C incorporated into
PLFA. However, Larson et al. (2002) found no effect of eCO2 on
microbial metabolism of a number of root-derived substrates at
Aspen FACE.

4.3. Mechanisms of microbial respiration response to increased C
inputs

Despite lack of change in SUE, other changes to the microbial
community were observed that explain the observed increase in
respiration with higher levels of C inputs. Greater microbial abun-
dance without a change in respiration on a biomass-specific basis
suggests that a larger microbial community may be more efficient
at decomposing any SOC that becomes available to microorgan-
isms, either by the action of increased extracellular enzyme activity,
or through abiotic processes, such as described in the “Regulatory
Gate” hypothesis (Kemmitt et al., 2008). Essentially, more micro-
organismsmean that the microbial decomposition process is better
able to compete for soluble forms of C against abiotic stabilization
factors like sorption to mineral surfaces (Conant et al., 2011),
increasing the probability that any C molecule in soil is taken up
into biomass and respired (Gleixner, 2013).

Microbial community composition changes may also be
related to the observed priming effect. In general, greater C inputs
lead to an increase in the abundance of Gram-negative bacteria
and fungi that are often associated with the rhizosphere (Lu et al.,
2004). Indeed, d13C of PLFA supports this interpretationd more
enriched d13C-PLFA values of these groups relative to the whole
community with sucrose addition demonstrates the ability of this
group to compete for easily decomposable C, and more depleted
d13C-PLFA of these groups relative to the community in eCO2 soils
suggests the importance of recently added rhizodeposits as a C
source. Organisms with these characteristics are often termed as
copiotrophsdorganisms that thrive under high substrate avail-
ability, as opposed to oligotrophsdorganisms that are better
equipped to tolerate low substrate availability (Fierer et al., 2007).
Copiotrophs necessarily have high turnover rates (Blagodatskaya
et al., 2007), suggesting that increased rates of microbial turn-
over may be responsible for some portion of increased respiration
with sucrose addition. This interpretation is supported by the
observed increase in protozoa abundance with eCO2, as protozoa
are the primary predators in a bacteria-dominated soil food chain
(Kuzyakov et al., 2000). Counterintuitively, protozoa PLFAs
became more d13C-depleted with addition of d13C-enriched su-
crose, suggesting that sucrose addition induced protozoa to
consume soil microorganisms with the most depleted d13C-PLFA
values.

4.4. Warming enhances the rate, not amount, of priming for a given
C input

Increased rates of SOC cycling caused by increased C inputs were
exacerbated by warmingdtwice as much priming from sucrose
was observed in soils at 25 �C compared to 5 �C at the time of the
first respiration measurement. Enhancement of the priming effect
withwarming has also been observed in a soil warming experiment
with live plants (Zhu and Cheng, 2011), suggesting that warming
increases the rate of priming as long as sufficient levels of substrate
are available. This was the case for eCO2 soils, in which warming
had a greater effect on respiration relative to aCO2 soils for the
duration of the experiment, indicating continued higher substrate
availability.
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In contrast, the sucrose addition experiment showed that
warming affected the rate, not the amount, of priming for a given
amount of added substrate. The priming effect from added sucrose
declined over time in proportion to the amount of sucrose
remaining in soil, so the priming effect in 5 �C soils caught up to the
priming effect in 25 �C soils by the time the same amount of sucrose
had been lost. This suggests that amount of priming is primarily
determined by the amount of microbially-available C substrate
added to soils (de Graaff et al., 2010; Dilly and Zyakun, 2008). Ul-
timately, there was no difference in the amount of priming effect
across temperature for the same amount of sucrose respired, sug-
gesting that SOC loss through the priming effect will be limited by
the rate of substrate supply from plants relative to consumption by
microorganisms.

4.5. Interactive effects of warming and increased C inputs on soil
microbial community form and function

In this experiment, temperature sensitivity of microbial respi-
ration appeared greater in soils with higher substrate availability, as
previously observed in soils from themicrocosm (Gershenson et al.,
2009) to ecosystem scale (Curiel Yuste et al., 2007). The interaction
betweenwarming and substrate availability suggests that there are
distinct mechanisms by which these two factors affect microbial
respirationdwarming allowed microorganisms to take up and
metabolize substrates more quickly, and sucrose addition made
greater amounts of C available to soil microorganisms in general.
Sucrose addition increasedmicrobial PLFA and respiration together,
indicating that short-term substrate availability is the primary
control over microbial community size and activity, and likely the
mechanism for the priming effect. Neither elevated CO2 nor
warming changed SUE, in contrast to previous studies which found
that warming reduced SUE (e.g., Steinweg et al., 2008). Lack of
observed change in SUE in our experiment is likely due to the fact
that we controlled for faster substrate processing rates with
warming by sampling soils from higher incubation temperatures
sooner, and thus eliminating the potential bias of substrate deple-
tion (Dijkstra et al., 2011).

In contrast to eCO2 and sucrose addition, warming had few in-
dependent effects on the microbial community, subtly increasing
the abundance of Gram-positive bacteria, and decreasing the fungal
to bacterial ratio. Positive responses of Gram-positive bacteria have
been observed in many experiments (e.g., Frey et al., 2008; Feng
and Simpson, 2009), including field warming experiments that
received a continual supply of new C inputs from overlying plant
communities (e.g., Bardgett et al., 1999; Gutknecht et al., 2012). In
this study, the effects of warming on the microbial community
were greatest in eCO2 and sucrose addition treatments, where it
appeared that warming helped Gram-positive bacteria better
compete for increased C inputs. Field warming has also been
observed to lessen the stimulatory effect of eCO2 on Gram-negative
bacteria (Gutknecht et al., 2012).

Indeed, the differing physiology of the two bacteria types may
provide the key to the differences inwarming response, particularly
in the sucrose addition treatment. The strong interlinked cell walls
of Gram-positive bacteria are thought to make them inherently
more resistant to stress than the single layer cell wall of Gram-
negative bacteria (Schimel et al., 2007). Gram-negative bacteria
likely responded rapidly to sucrose additions by growing; however,
active growth makes microorganisms more vulnerable to rapid
substrate exhaustion with warming (Schimel et al., 2007 and ref-
erences therein). Thus, warming gave Gram-positive bacteria a
competitive advantage over Gram-negative bacteria that became
particularly apparent with the difference in exploitation of a new
resource, sucrose.
4.6. Implications of global change on future SOC balance: elevated
CO2 and warming are likely to cause net loss of SOC through
increased heterotrophic respiration

The C balance of soils in the future depends on how higher at-
mospheric CO2 levels and global warming alter inputs, outputs, and
residence time of C in soils. We found that the fate of new C inputs,
quantified as a laboratory addition of traceable sucrose into
respired CO2 and PLFA, did not change in eCO2 or warmed soils. In
contrast, we found strong effects of increased C inputs and warm-
ing on decomposition outputs. These effects were particularly
pronounced whenwarming and substrate treatments were applied
together. In addition, the isotopic composition of additional C lost
by both substrate-induced priming and warming suggests that this
effect will most likely not be limited to young, fast-cycling SOC, but
applies to the majority of the SOC stock (53e94%, Hopkins et al.,
2012). Together, these findings suggest that the residence time of
C in soils will decrease, and that soils will become a net source of C
to the atmosphere in the future.

Large, ecosystem-scale manipulations such as FACE are power-
ful because they allow us to test the accuracy of our predictions
about global change, and to closely investigate the processes that
determine an ecosystem-scale observation. We found that both
eCO2 and warming increased SOC decomposition rates in these
soils, and had an even greater effect together, suggesting that these
factors in concert will cause a net loss of SOC to the atmosphere. In
contrast, global climate-C cycle models currently predict that eCO2

will add SOC to soils, and at least partially counterbalance increased
SOC decompositionwith warming (Todd-Brown et al., 2013). While
the amount of experimental warming (10 and 20 �C) was quite
large compared to predictions for the 21st century, sucrose addition
and elevated CO2 treatments are very reasonable, even modest,
estimates of changes to SOC inputs (Friedlingstein et al., 2006).
Other eCO2 experiments have observed a similar lack of accumu-
lation of SOC in soils (e.g., Carney et al., 2007), and our work sug-
gests that the largemicrobial community that develops with higher
C input rates to soils will more efficiently return any available C in
soils back to the atmosphere. These results highlight the urgent
need to better understand soil microbial processes, and to incor-
porate these findings into predictive models.
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