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MOU 284 Final Report
Evaluation of Work Crew and Highway Hazard Conspicuity

James A. Misener

Abstract.  The work reported here quantitatively addresses conspicuity of highway

features, and in Caltrans work zones -- from the perspective of driver detection, and to

some extent, driver decision making.  It was initially focused on acquiring and operating

on a computational visual signature analysis tool, but it evolved into evaluating the

detection process, then selecting and exercising human perception-acquisition models

suitable for relatively quick running and larger scale microsimulations to evaluate system

effectiveness of Òpre-AHSÓ driver-assist systems.  This process and especially the

recommended Bailey-Rand Contrast Model is described, and an detection example of a

driver-assist collision avoidance model is provided.

Key Words.  Conspicuity, Perception, Visual Performance, Human Vision,

Microsimulation, Vigilance, Pre-attentive, Pre-congnitive, Contrast Model, Work Zones



1

Executive Summary.  Work under this MOU was originally slated to employ a state-of-

the-art visual signature analysis tool as a means to measure and improve conspicuity of

human and roadway hazards on California highways.  It was believed Ð and is still

believed Ð that this tool could serve as a powerful, cost-effective and semi-automated

method of Òvirtual prototypingÓ in which driversÕ perception of increased

conspicuousness could be gauged.  Notional designs and configurations could be simulated

with very little investment, under different geometries, color/illumination combinations

and ambient lighting conditions.  The ÒbestÓ design which optimizes some combination of

cost-effectiveness and safety could then be confidently built and implemented.

Due to other PATH research needs, and availability of the computational vison tool, the

work evolved into evaluating the detection process, then selecting and exercising human

perception-acquisition models suitable for relatively quick running and larger scale

SmartAHS microsimulations to evaluate system effectiveness of Òpre-AHSÓ driver-assist

systems. Because the SmartAHS-based work was aimed at assessing the safety of driver-

assist devices, the work conducted in this MOU focused on models appropriate for that

microsimulation, particularly as it fit into the perception-decision making-control

hierarchy.

Two elements of perception were considered in this study human vision- and cognition-

based detection models:  acquisition (defined for here as proximal obstacle or vehicle

detection probability Pd at range x) and tracking (defined for here as deceleration xÕ

relative to the driver).  In acquisition, progresssively higher fidelity models in human

vision-based target acquisition were shown, with positive and negative aspects described.

The work began with the Bailey-Rand (BR) Contrast Model, then progressed to the Doll-

Schmieder (DS) Model, and ended with the originally-proposed focus of work, the

National Automotive Center-Visual Performance Model (VPM).  These models are

shown to sequentially yield higher confidence results in the analysis of more specific
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driver-assist or work zone implementations and scenarios.  In tracking, the work here is

contained to a mathematical model describing longitudinal time to collision-based

perception.

Of the three perception-acquisition models investigated Ð the Bailey Rand (BR) Contrast

Model, the Doll-Schmieder Model and Visual Performance Model Ð the BR model is

determined to be the ÒbestÓ for short-term application into the SmartAHS

microsimulation, due to a combination of believability and its low computational

complexity.  However, a logical progression and continued checking of computational

complexity of salient aspects of the other listed candidate models is recommended in a

carefully constructed longer term program to gradually build up the human vision aspects

of SmartAHS.  Additionally, incorporation of perception-tracking models is

recommended, starting first with the already-explored longitudinal component and

progressing to yet-to-be-explored lateral tracking.

Human vision models are applicable to the SmartAHS microsimulation mainly because of

the impending driver-assist research needs.  To illustrate how these models could be used,

a collision avoidance case was illustrated.  In that case, the need to supplement human

detection with driver-assist detection technologies in inclement weather was highlighted.

To more fully explore this and the potential ramifications of weather and configuration on

Caltrans work zone conspicuity, especially in the context of the originally planned scope

of this MOU 284, further elaboration on an probably not-for-SmartAHS tool Ð the Visual

Performance Model Ð is suggested.  This is precisely the focus of the follow-on MOU

328.
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1.0  Introduction

This report is organized as follows:  Section 1 (Introduction) contrasts the original and
modified objectives of the project.  Section 2 sets the overarching human driver model
context, in which the current work fits.  Section 3 of this report will show candidate
perception-acquisition models for the SmartAHS microsimulation, and finally, Section 4
will provide an example of how the ÒbestÓ model Ð defined as a combination of
believability and quick-running Ð is used in a relevant driver-assist example.

Work under this MOU was originally slated to employ a state-of-the-art visual signature

analysis tool as a means to measure and improve conspicuity of human and roadway

hazards on California highways.  It was believed Ð and is still believed Ð that this tool

could serve as a powerful, cost-effective and semi-automated method of Òvirtual

prototypingÓ in which driversÕ perception of increased conspicuousness could be gauged.

Notional designs and configurations could be simulated with very little investment, under

different geometries, color/illumination combinations and ambient lighting conditions.  The

ÒbestÓ design which optimizes some combination of cost-effectiveness and safety could

then be confidently built and implemented.

Three conspicuity subtopics were to be addressed:

1. Caltrans work zones;
2. highway configuration hazards (e.g., a high curvature off-ramp); and
3. roadway obstacles in a human-augmented Automated Highway Systems (AHS).

The end-product of the first two subtopics was to be a suite of recommended sign

placement, color and configuration changes, and a concomitant quantification of the

increased detectivity of these changes.  The end-product of the third subtopic will be an

assessment of human visual system capabilities and the degree of augmentation that may

be required with driver displays to increase detectivity to AHS design thresholds.

As the project proceeded, however, three influencing events modified the work product:
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Parallel research efforts were aimed at driver-assist Òsafety servicesÓ, which are

presumably antecedent and certainly shorter-term in focus than AHS1:

1. Emergence of the PATH SmartAHS effort, which is partially sponsored by
Caltrans under MOU 258, and also the National Automated Highway Systems
Consortium (NAHSC).

2. The SmartAHS microsimulation is being adapted to accommodate human driver
models in order to expand its utility beyond full automation; the objective is to
include this functionality to assess safety of driver-assist approaches.  This
requires input from MOU 284 work, namely credible, quick-running human vision
models.

3. Difficulty in acquiring the genesis behind the project:  a tool developed by the
U.S. Army Tank-Automotive Research, Development and Engineering Center
(TARDEC) and applied by the TARDEC National Automotive Center (NAC)
and the General Motors Research and Development and Safety and Restraint
Centers to detect taillight conspicuity.  This tool, the NAC Visual Performance
Model (VPM), was to be adapted for highway drivers and its use constituted the
main thrust of the original project plan.  The original legal vehicle to use this tool
was to be a pre-arranged Cooperative Research and Development Agreement
(CRADA) between PATH and TARDEC, but in time-consuming deliberations,
TARDEC CRADA administrators determined not to go that route.  Finally,
toward the end of 1997, the VPM was supplied to PATH Ð too late to do
substantial work in the planned area.  However, due to reasons 1 and 2 above,
under this MOU, significant research was accomplished in investigating visual
perception models for use in driver-assist microsimulations and analyses.

The original topics2 are now essentially intact and to be addressed in the 97-98 MOU

328. Although they do not fulfill the currently-addressed need for quick running and

                                                
1 Examples abound:  in the U.S., the redirection of work conducted under the auspices of the NAHSC
toward goals and objectives of the emerging US DOT Intelligent Vehicle Initiative; in Europe, analyses
sponsored by the Dutch DOT to examine the effects of wide-scale market penetration of Adaptive Cruise
Control (ACC) on traffic flow [1] and work conducted by Benz [2] to evaluate driver-assist aspects of the
European Union CHAUFFER Project; in Japan, the focus on AHS-i (information) and AHS-c (control)
rather than AHS-a (full automation) of the Advanced Cruise-Assist Highway System Research Association
(AHSRA), a move which was probably strongly influenced by the Ministry of Construction.

2 For reference, the following eight tasks comprised the original MOU 284 work plan:
Task 1.  Acquire, evaluate and if necessary, customize and modify the VPM.
Task 2.  Work with highway design, safety and operations practitioners to develop nominal configurations
(i.e., scenarios) for all three research subtopics
Task 3.  Develop image sets (photographs and post-photographic rendering, when necessary) of nominal
configurations.
Task 4.  Work with highway design, safety and operations practitioners to develop several notionally
improved configuration variants.
Task 5.  Assess relative improvement in conspicuity of different configurations by applying TVM.
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believable human driver model inputs, they do fully address the original goals of the

project, focusing in particular on an accurate (albeit computationally-intensive)

methodology to assess relative improvements in conspicuity enhancements for Caltrans

work zones.

2.0 Framework to Describe Human Driving

Several taxonomies have been developed describe the sequence of ÒnormalÓ, i.e., non-

emergency, driving actions:  perception-decision making-control, navigation-guidance-

control, and the 3T architecture.  The perception-decision making-control triplet was

derived to describe localized, near-term driver actions [3].  The navigation-guidance-

control conceptual framework was developed to bridge higher level goal-setting or

navigation activities with near-term driver or control actions via monitoring, or guidance

[4].  The 3T architecture navigates an automaton via a succession of micro-level skills,

then progressing to tactical and strategic levels [5].

Because the SmartAHS application is aimed at assessing the safety of driver-assist

devices, the work conducted in this MOU focused on the local (or borrowing from the 3T

lexicon, tactical) layer, bypassing the guidance or strategic levels.  The model structure

that the MOU 284 work was fit is therefore the perception-decision making-control

hierarchy.

As an important note, for simplicity an alerted driver is assumed Ð one who is already

vigilant, attentive and monitoring.  These necessary conditions for full cognition are

                                                                                                                                                
Task 6.  Initiate assessing absolute ÒbestÓ configurations by calibrating for absolute detection; design
human jury verification and validation experiments in collaboration with researchers at TARDEC NAC and
General Motors.  (The experiments are to be conducted by these organizations as partof their separate and
parallel experimental program.)
Task 7.  Reiterate Tasks 2 - 6 to optimize or reassess configurations.
Task 8.  Deliver final recommendations and final report.
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generally described in a wide body of supervisory control literature [6,7,8].  The specifics

of objectively modeling these precursors to perception is a complex undertaking [9], and

one that is deferred in the current project.  A simplifying advantage of not addressing this

in the MOU is that by considering only an already-alerted driver, complicated issues in

warning and human machine interface design are sidestepped; the focus is clearly on driver

reactions, and on responses to exogenous disturbances from outside the vehicle.

3.0 Perception Models

Two elements of perception should be considered in human vision- and cognition-based

detection models:  acquisition (defined for our purposes as proximal obstacle or vehicle

detection probability Pd at range x) and tracking (defined for our purposes as deceleration

xÕ relative to the driver).

3.1  Acquisition Models.  Progressively higher fidelity models in human vision-based

target acquisition are shown with positive and negative aspects described.  The

description begins with the Bailey-Rand (BR) Contrast Model, then progresses to the

Doll-Schmieder (DS) Model, and ends with the NAC-Visual Performance Model (VPM).

These models will sequentially yield higher confidence results in the analysis of more

specific driver-assist or work zone implementations and scenarios.

3.1.1  Bailey-Rand Contrast and Similar Models.  The BR model incorporates, in a

compact manner, the first-order effects of luminance contrast.  To do so, it assumes that

targets are static and can be represented by circles with varying contrasts to an

appreciably uniform (and therefore uncluttered) background [10,11].   Given these

simplifications, the prediction of the detection probability as a function of range x, Pd(x),

is relatively straightforward:
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where CT  is the human detection threshold, and D/x is an angular resolution term which

may be expressed in terms of line pairs/target (when viewed through a vision enhancement

device), cycles/mrad, or some other appropriate measure of spatial frequency.  Also, CR is

the apparent contrast and is expressed as a function of C0 , the physical target contrast

with the local surround; SGR is the sky-to-ground luminance ratio; the parameter D is the

diameter of the equivalent area target circle; and x is the detection range.

The BR model also includes a target visibility V factor, or the maximum range to a target

with CR = 1, where CR  is diminished no more than 2%.   Atmospheric phenomenology Ð

specifically, the magnitude of weather obscuration affecting Pd Ð can be represented in V

by pairing it with a Beer-Lambert or KoschmeiderÕs Law multiplier:
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T e ax( )λ = − (4)

where T(λ) is the transmittance and a is the precipitation volume extinction coefficient

(km-1).  Expressions for a are available in the form brc and values for b and c for a variety

of natural and manmade obscurants, and also as a function of density, e.g., rain rate

[12,13].

Limitations of the BR model primarily include the aforementioned assumption of static,

circular targets.  (Some targets such as stalled vehicles and stationary objects are certainly

static, but the driverÕs vehicle is normally moving, nominally at 30 m/s or 10 m during the

1/3 s glimpse.)  Moreover, the surround is not clutter-free, and scenes have considerably

more spatial, spectral (such as color) and temporal features that contribute toward target

discrimination, e.g., transient glare.  These assumptions may be less far-fetched under

certain constrained scenarios such as with a limited search within a rural highway and

under relatively high but diffuse luminance.  However, they have been successfully

applied in DoD applications [11], on non-circular targets and on natural backgrounds with

considerably more clutter than many highway scenes.   For this reason, the

computationally-simple BR model can be confidently used in SmartAHS under

carefully designed scenarios.

In the related and follow-on work in MOU 258 to adapt the BR model into SmartAHS,

the initial plan is to improve BR formulation by incorporating an explicit driver search

model.  Because of its empirical foundation, we will maintain the independent 1/3 s BR

glimpses. Head dwell and gaze abduction behavior measurements have been conducted for

driving [14] and at intersections [15], but there are very few field experiments on which to

build driver visual search models [16].  For the most probable  near- to mid-term driver-

assist focus at PATH on forward driving on limited access highways, work from [14] is
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expected to be incorporated; in it, the driver will be assumed to direct her alerted search to

the lane directly ahead.

Finally, it should be noted that the BR model differs from the Visibility Index and

Visibility Index/Fog (VI/FOG) models used in the NHTSA-sponsored Perception-

Decision-Response framework constructed to assess causes of reduced visibility crashes

[20], in that the BR model more rigorously defines meteorological parameters affecting

detectability.  The VI/FOG models, however, take glare from artificial illumination into

consideration, including streetlights.  An improvement to the psychophysics embedded

within the VI/FOG models is represented by the PCDETECT model, which takes into

account driver age and glare.  All three competing models (BR, VI/FOG, PCDETECT) are

based on data from the classical Blackwell experiments, which relate differences in visual

contrast over a wide range of illumination conditions [17,18,19,20].  In these experiments,

targets are circular, the background is uniform, and the target-to-background discriminant

is luminance (i.e., gray scale) contrast.  As these assumptions exist within the other

models, the common foundation makes use of any of the three similar classes of models

almost equally valid.   The BR model is preferred for adoption into SmartAHS because it

can be compactly expressed in three equations (Eq. 1 - 3), and it is acknowledged outside

the transportation safety community [11].   However, given time a resources, a more

robust and higher fidelity representation of the human visual system is recommended to

reduce systematic errors from the simplifying assumptions of the BR and like models.

3.1.2  Doll-Schmieder and Related Models.  The DS model overcomes clutter limitations

and introduces a theoretical framework -- the Theory of Signal Detection (TSD) -- for

detection decision-making [21].  This framework is implicit with BlackwellÕs

relationships.
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The use of TSD puts the DS model into class of acquisition models commonly used for in

sensor processing.   In this class of models,  the detection function can generally be

written as:

P a r f p p SCR p a
p x
p x

d e d sensor a
f

md n o
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b
=
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where ae is the atmospheric extinction, and the sensor processing function fsensor is written

in terms of a combination of obstacle-descriptive parameters (area ao, range x, target

signature distribution po(x)), background-descriptive parameters (background signature

spatial distribution pb(x)), and sensor and sensor processing parameters (sensor noise

distribution pn, false alarm probability Pfa, missed detection probability pmd, detection

range rd, signal-to-clutter threshold design point SCR).

Each sensing system possesses unique detection decision criteria which comprise the

factors within fsensor, and as such fsensor has a wide design space.  For example, a FCA radar

designer will likely specify what is termed a Neyman-Pearson or likelihood ratio receiver

[22], where Pfa and pmd are stochastic distributions.  The compromise or design point

between these distributions can be specified by first determining the likelihood ratio

SCR/pn [22].  When we consider that Pfa = f(SCR/pn) and then f is highly dependent on the

specific radar processing design.  In addition, a priori knowledge of the range of target and

background signature characteristics is necessary in determining SCR.

For military vehicles in rural clutter, Doll and Schmieder have recognized that the human

vision system is fsensor, and they have predicted Pfa as a function of clutter, resolution and

range [23].  Their Neyman-Pearson receiver is an application of TSD decision-making ,
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where the target and clutter are considered as Gaussian ogives with a mean of 0 and

variance of 1. Hence,

P SCR Cd T
h SCR CT( , ) ,( ) )= − − −[ ]2 1 3

and (6)

P Cfa T
hCT( ) .( )= − +2 1 3

(7)

A parametric fit of observer data is required to fit a linear relationship between the h and

SCR - CT  values.  Doll and Schmieder have done so with military vehicles in rural clutter

and are thus able to predict false alarm probabilities, Pfa, as a function of clutter,

resolution and range.

To make the application of TSD in modeling detectivity by humans complete, the models

must be populated with specific background imagery, then human jury tests to determine

ROCÕs must be conducted.  Hence, to make this model applicable for highways,

appropriate vehicle, obstacle and highway scene data must be gathered and fit.  The data

set could be large, as variations such as the diurnal cycle, different highway topologies and

obstacle types must be considered; however, given a contained and very specific scenario,

a reasonable data set with a high degree of realistic visual cues could be collected, i.e.,

glint, glare and other spatially or temporally unique features.

Although the DS model overcomes the simplified target and background assumptions of

the BR model, it still applies to stationary objects.  Additionally, vehicle motion and the

decision whether the detected object is an obstacle are still not addressed by this model.

3.1.3  National Automotive Center - Visual Performance Model (VPM).  An early vision

model to detect highway obstacles can be applied to overcome the aforementioned

deficiencies.  The VPM once such early vision model, combining precepts of preattentive
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vision and human reasoning to model the human visual/detection system and reconciles

recent theories of post-receptor chromatic-achromatic independence, visual multiplexing

and texture perception, then performs a TSD post-processing to simulate the complex

sequence of events which comprises what has been termed the psychophysical zone

theory of human detection [24,25].  In essence, the VPM introduces effects of color and

motion with mathematical representations of  the early vision process from the receipt of

photons on the retina through response by the photoreceptive fields, and concluding with

TSD for the target detection decision.  The VPM combines aspects of preattentive vision

and human reasoning to model the human visual/detection system.

As with the human, VPM produces sequential channels for color (obtained by dividing

the image into color-opponent channels), motion (obtained by temporal filtering), spatial

frequency (obtained by transforming images into two-dimensional frequency space

scenes) and orientation (obtained by performing horizontal and vertical filtering).  The

model produces a signal-to-noise ratio for each channel, then summed over all channels to

essentially produce a ROC, and from TSD, Pd and Pfa [23].

The VPM is the product of a multi-year, multi-million dollar investment by the Army

Laboratory Command, Weapons Technology Directorate (WTD), working with

TARDEC.  A large-scale investment is currently underway by TARDEC, the U.S. Army

Human Performance Laboratory, and the U.S. Army Combat Systems and Test Activity

to calibrate, validate and verify the code.  As stated in the introduction, the VPM is now

available at PATH, to be used in MOU 328.

Mathematical models such as VPM have only recently been formulated to emulate the

human early vision process [24,25].   The VPM is available to the authors, but there are

other similar models such as Visually-Guided Threats (VGT) model [26].  Both the VPM
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and VGT models analyze characteristics such as motion, color, spatial frequency and

orientation by decomposing visually multiplexed color-opponent images.

Human vision can be regarded as a sequence of preattentive and cognitive functions.  The

series of preattentive human vision functions, as modeled by VPM, is approximated by

[25]:

•  digitizing color video image or independent frames to represent composite
macular/peripheral scene images, within the gamut limitations of capturing Òtrue
colorÓ;

•  temporally filtering these images into three component images:  sustained
(lowpass), transient (mid-frequency bandpass) and highly transient (high-
frequency bandpass);

•  separating color and luminance into five channels (black-white, or luminance only,
for each temporal segment, and -- because human color-opponent channels are
insensitive to transients -- red-green and yellow-blue channels for the lowpass
segment only);

•  transforming separated color-opponent and luminance images into nine pseudo-
images in two dimensional frequency space, with center frequencies spaced at one
octave intervals; and

•  performing horizontal and vertical orientation filtering on each image.

The resultant 90 images (5 color-opponent images x 9 frequency space images x 2 image

orientations) are disaggregated by temporal, luminance, color-opponent, spatial and

orientation characteristics.  These can be directly viewed with VPM, then analyzed in a

conspicuousness design sense for spatial energies (for likely detection features) and

interchannel covariance (for phase information and, therefore, interrelated edge-detection

design attributes).

However, to complete the serial preattentive-cognitive model of human detection, an

intermediate, translation step must be performed by determining the Òvisual information

metricÓ to combine spatial energies over pre-selected regions or over the overall image

scene; this metric is essentially a chi-square statistic to determine signal and clutter

contributions [27].
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From this, cognitive functions are modeled by [27]:

•  implementing a search and detection scheme, to include probabilities of incurring
single- and multiple-saccade, or glimpses, for human scan behavior; and finally,

•  processing the data using TSD to derive ROC curves to relate Pd and Pfa and
derive tod.

The visual multiplexing of color-opponent channels during the preattentive vision

sequence occurs through a set of spatio-temporal decoding rules, and are dependent on a

set of weighted sensitivity functions.  These functions are empirically adjusted and may

have to be further changed for use in the proposed highway application.  In addition, the

visual search module contained within VPM may have to be adapted for human-cognitive

behavior during highway driving via some logical a priori assumptions of the typical

driver search.  The VPM search model is based on human visual search in cluttered

combat backgrounds; however, elements of this may not be extendible to highway driving

without these adjustments.

3.2  Tracking Model.  In light of the PATH near term objective of determining the

efficacy of longitudinal control and warning, the focus on tracking models has been limited

to longitudinal acceleration only.  To be complete, tracking of objects moving laterally

across the field of view (e.g., deer on the roadway, or cars crossing at an intersection)

would also have to be addressed.  Such a model would be complex, and look up tables of

empirically derived eye tracking data such as from [14] might be the most appropriate

means to approach the problem.  At the present time, and due to these complexities, a

lateral tracking model is not being considered for SmartAHS.

In considering longitudinal tracking, work in estimated time to collision (TTC) was

investigated.  The TTC estimates are obtained from empirical studies of variations from

the population norm.  This measures is a standard input to highway design standards
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[28].  In recent years, however, the question of how drivers gauge TTC has arisen.   It is

now known that the human visual system is sensitive to the looming angular target size

ω and its rate of increase (or decrease) dω/dt, but it is not certain whether the driver is

directly sensitive to ω/(dω/dt), or equivalently, TTC [28,29].  Whatever the exact

mechanism, at distances defined at dω/dt< 0.003 rad/s, drivers are unable to discern

differences in relative speed; at values above this threshold, drivers scale perceived speed

in a practically linear relationship to ω, at discrete just-noticeable increments of dω/dt =

0.12 [31].  This can be expressed as [30,31]:

(8)

where v is the perceived relative velocity between the driver and the forward vehicle or

obstacle, x is the distance between the vehicles, and d is the forward vehicle or obstacle

diameter.  To be consistent with [31] we will implement Eq. 6 in SmartAHS at 1/3 s

glimpses (to be consistent with the BR assumption), with perceived v subject to a dω/dt

> 0.003 rad/s threshold and changing only at dω/dt = 0.12 increments.

4.0 Driver-Assist Application of the BR Contrast Model

4.1  Background.  An elemental factor in analyzing the requirements for and benefits from

a longitudinal driver-assist service is the probability of proximate obstacle or vehicle

detection. The detection probability may be an important factor in assessing crash

probabilities, along with probability distribution functions of driver vigilance and

attentiveness.  (The aforementioned descriptive Òlongitudinal driver assistÓ service is

conventionally categorized as a Collision Avoidance System, or CAS.  There are two

types of CAS:  a forward collision warning, or FCW; or a forward collision avoidance, or

FCA, system depending on whether its intervention is in driver warning or takeover of

control.  In the example shown below the Òlongitudinal driver assistÓ service will be

d

x
v

ω2=
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dubbed CAS, and the particular problem will be termed the Lead Vehicle Note Moving, or

LVNM, problem.)

Accurate values for human detection performance would immensely aid in the estimation

of CAS worthiness, but given the difficulty of this, we believe that an understanding of

sensitivites of these is a sufficient and reasonable starting point; that is, the Òhuman

elementÓ should be understood at least to the extent that it and any controlling parameters

can be specified along with tolerance limits.  This allows both a basis for comparison (i.e.,

without CAS vs. with various CAS types) and a methodology to design an appropriate

set of experiments to verify inputs and validate results. With specific regard to proximate

vehicle detection, even if detection probabilities turn out to be the same with and without

collision warning, any level of understanding these probabilities and their sensitivities

(e.g., weather and atmospheric extinction, conditional vigilance) will aid in:

•  understanding the contribution of vision to crash causes;
•  in defining sensor specifications for the requisite vision enhancement; and finally,
•  in more accurately assessing the benefits of implementing crash countermeasures.

This view is at least partially shared in the National Highway and Transportation Safety

Administration (NHTSA)-sponsored assessment of reduced visibility crash causes with

the development of a Perception-Decision-Response (PDR) framework [32].

The application of the BR model to CAS highlights the importance of understanding and

modeling target, background and weather characteristics toward proximate vehicle

detection.  It serves as an illustration on how human sensing parameters can be applied to

highlight input sensitivities and particular data needs to help focus subsequent

experimental efforts.  This example also illustrates the effects of atmospheric conditions.



17

4.2  Problem Formulation.  The LVNM forward collision warning sensing system should

yield the basic outputs of distance to the obstacle xod and detection and response time tod,,

which would in turn be translated to the net longitudinal stopping distance d via

d x t v
od od

= − , (9)

where d is the net longitudinal stopping distance and v is the average vehicle speed during

the target acquisition.

However, d is also a function of many detection-specific parameters which must be made

explicit.  These parameters are universal, as they can, in a unified manner, describe a

variety of obstacle detection sensing systems, including human detection.

This detection function can generally be written as:

P a x f SCR p a
p x

p x
d e od sensor n o

o

b
=















, , ,
( )
( ) (10)

atmospheric extinction ae; obstacle-descriptive parameters (area ao, range x, target

signature distribution po(x)); background-descriptive parameters (background signature

spatial distribution pb(x)); and sensor and sensor processing parameters (sensor noise

distribution pn, false alarm probability pfa, signal to clutter threshold design point SCR).

4.3  Use of the Bailey-Rand Contrast Model.  In this example, the BR model is applied to

Òget in the ballparkÓ in determining Pd  and also to understand sensitivities to input

parameters.  The example utlizes the modeled first-order effects of luminance contrast,

plus the representation of atmospheric phenomenology.
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In abstracting the LVNM target for the BR model, the LVNM target must be recognized

to be static (and also therefore not subject to any companion tracking model such as

described in Section 3.2).  However, it is certainly not circular, nor the surround to

clutter-free; moreover, considerably more spatial, spectral and temporal description is

necessary to capture the early vision process.  The BR model is a first-principles method

to Òget in the ballparkÓ.  As a note, altough the clutter-free background assumption is not

the case with most roadways, it can be envisioned to be true in certain constrained-area

surrounds.  (The highway scene, sans other vehicles, certainly has less local clutter than

many natural backgrounds.)  Once more, this assumption is made to Òget in the ballparkÓ.

Note also that there is no explicit driver search model in the BR formulation; rather, each

1/3 s BR glimpse is assumed to be independent.   Various investigators have debated the

independent glimpse assumption for the battlefield surveillance task [10,25], but aside

from investigating overt head dwell and gaze abduction behavior at intersections, there are

very few field experiments on which to build driver visual search models [14].  We expect

that with the presence of a LVNM collision warning signal, the driver will contain any

alerted search within the lane directly ahead; however, this is not necessarily the search

pattern for most normal driving.

In applying the BR model to the LVNM case, we substitute the following parameter

values into Eq. 1:

In determining CT:

D = 2.26 m (4 m2  target)

In determining CR:
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The L0 and Lb quantities are target and background luminance, respectively.  Given the

same insolation, they equate to first order to R0 and Rb, the target and background

reflectances.  Substituting readily available values for R0 and Rb yields a value for C0

[11,12]

SGR = 1.4, a typical value for clear skies and desert conditions [11].  Values for desert

floor reflectivity are near those for asphalt reflectivity [12], and the environment is nearly

clutter-free, similar to unobscured road surfaces. Variations due to SGR are typically due

to different sky conditions (e.g., clear vs. diffuse) and terrestrial surface reflectivities (e.g.,

snow vs. desert vs. forest canopy).  The range of SGR values is 0.2 (clear sky, snow

surface), to 25 (diffuse sky, forest canopy surface).

Using the BR input values for the ranges considered (x = 90 - 160 m), CT (90 m) = 0.033,

and CR /CT > 1.  For a singular 1/3 s glimpse, Pd = 1.0 at a typical V = 10,000 m [9].  This

confirms intuition:  a visually unimpaired and alerted human performs well in an

unobscured direct line-of-sight detection task over relatively short ranges.

It is more interesting to study the effect of x/V, the ratio of detection distance to visibility,

on Pd  as it allows us to determine the effects of weather obscuration.  This is because V

corresponds to the atmospheric extinction due to environmental obscurants as fog and

rain (along with SGR).
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Figure 1.  BR-Derived Detection Probabilities Expressed as a Function of the Ratio

of Detection Distance to Visibility.

In Figure 1, the x/V parameter of the BR model was varied at a fixed range x = 90 m, and a

greatly reduced V (or equivalently, an increased x/V up to x/V = 1) was shown to result in

considerable degradation in human detection performance.  It can be concluded that the

human Pd will diminish rapidly under extremely obscured or inclement conditions --

and that some obscurant penetrating system as millimeter wave or laser radar is needed

as a vision enhancement under these conditions.

The rain rate required to elicit this value of V can be determined by substituting empirical

rain rate-extinction relationships into the Beer-Lambert or KoschmeiderÕs Law previously

shown in Eq. 4.  The empirical expression to determine a under moderate/widespread rain

conditions is:

a = 0.36r0.63 (12)
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where r is the rain rate expressed in mm/h [11].

With T(λ) = 0.98, r = 2.9 mm/h.  Interstingly, with x/V = 1 (corresponding to V = 1 and

Pd = 0.51), r = 2.1 mm/h. Both these rain rates fall within the definition for the common

condition of moderate/widespread rain [9,10].  Hence, for the analyzed LVNM case, PdÕs

can begin to fall off dramatically with small variations in even moderately inclement

weather.

This result points to the potentially frequent need for human vision augmentation in a

LVNM crash avoidance system.  Moreover, the augmenting device should be some type

of a rain-penetrating sensing system.  The results also begin to clarify the value of the

human detection probability component in a LVNM crash avoidance benefits assessment.

It follows that better human vision models -- which exist and can be adapted within the

benefits assessment framework -- would yield higher confidence answers.

5.0  Conclusions

Of the three perception-acquisition models investigated Ð the Bailey Rand Contrast

Model, the Doll-Schmieder Model and Visual Performance Model Ð the BR model is the

ÒbestÓ for short-term application into SmartAHS due to a combination of believability

and its low computational complexity.  However, a logical progression and continued

checking of computational complexity of salient aspects of the other listed candidate

models is recommended in a carefully constructed longer term program to gradually build

up the human vision aspects of SmartAHS.  Additionally, incorporation of perception-

tracking models is recommended, starting first with the already-explored longitudinal

component and progressing to yet-to-be-explored lateral tracking.
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Human vision models are applicable to SmartAHS only because of the impending driver-

assist uses.  One such use in CAS was illustrated, and the need to supplement human

detection with driver-assist detection technologies in inclement weather was highlighted.

To more fully explore this and the potential ramifications of weather and configuration on

Caltrans work zone conspicuity, especially in the context of the originally planned scope of

this MOU 284, further elaboration on an probably not-for-SmartAHS tool – the Visual

Performance Model – is suggested.  This is precisely the focus of the follow-on MOU 328.
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7.0  Glossary

abductive:  the angular range that eyeses move during visual search, measured from the
median axis of the body

achromatic:  not related to color (e.g., black-white images)
chromatic-achromatic independence:  referring to the theory that black-white and

color-opponent vision channels separately constitute human detection channels
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cognitive:  refers to tasks of which the human is aware or passes judgement
color gamut:  the full representation of color space allowable by the medium
color-oppenent:  red-green and blue-yellow compoents of the theory of chromatic-

achromatic independence
luminance:  a measure of light in the visual spectrum, synonymous with Òphotometric

brightnessÓ [lumen per steradian and sqare meter, or nit]
macular:  relates to high acuity vision in the most sensitive part of the human retina
photoabsorption:  absorption of photons (light) by the retina
preattentive:  refers to tasks of which the human is unaware
psychophysical:  relating physical parameters (such as various visual stimuli) to mental

processing (such as detection cognition)
saccade:  quick, smooth eye movement (such as a glimpse)
visual multiplexing:  the fusion of spatio-temporal neural processes




