Skip to main content
eScholarship
Open Access Publications from the University of California

UCLA

UCLA Previously Published Works bannerUCLA

Optimization of reconstruction and quantification of motion-corrected coronary PET-CT

Abstract

Background

Coronary PET shows promise in the detection of high-risk atherosclerosis, but there remains a need to optimize imaging and reconstruction techniques. We investigated the impact of reconstruction parameters and cardiac motion-correction in 18F Sodium Fluoride (18F-NaF) PET.

Methods

Twenty-two patients underwent 18F-NaF PET within 22 days of an acute coronary syndrome. Optimal reconstruction parameters were determined in a subgroup of six patients. Motion-correction was performed on ECG-gated data of all patients with optimal reconstruction. Tracer uptake was quantified in culprit and reference lesions by computing signal-to-noise ratio (SNR) in diastolic, summed, and motion-corrected images.

Results

Reconstruction using 24 subsets, 4 iterations, point-spread-function modelling, time of flight, and 5-mm post-filtering provided the highest median SNR (31.5) compared to 4 iterations 0-mm (22.5), 8 iterations 0-mm (21.1), and 8 iterations 5-mm (25.6; all P < .05). Motion-correction improved SNR of culprit lesions (n = 33) (24.5[19.9-31.5]) compared to diastolic (15.7[12.4-18.1]; P < .001) and summed data (22.1[18.9-29.2]; P < .001). Motion-correction increased the SNR difference between culprit and reference lesions (10.9[6.3-12.6]) compared to diastolic (6.2[3.6-10.3]; P = .001) and summed data (7.1 [4.8-11.6]; P = .001).

Conclusions

The number of iterations and extent of post-filtering has marked effects on coronary 18F-NaF PET quantification. Cardiac motion-correction improves discrimination between culprit and reference lesions.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View