Skip to main content
eScholarship
Open Access Publications from the University of California

UCLA

UCLA Previously Published Works bannerUCLA

Rectal microbicides: clinically relevant approach to the design of rectal specific placebo formulations

Abstract

Abstract Background The objective of this study is to identify the critical formulation parameters controlling distribution and function for the rectal administration of microbicides in humans. Four placebo formulations were designed with a wide range of hydrophilic characteristics (aqueous to lipid) and rheological properties (Newtonian, shear thinning, thermal sensitive and thixotropic). Aqueous formulations using typical polymers to control viscosity were iso-osmotic and buffered to pH 7. Lipid formulations were developed from lipid solvent/lipid gelling agent binary mixtures. Testing included pharmaceutical function and stability as well as in vitro and in vivo toxicity. Results The aqueous fluid placebo, based on poloxamer, was fluid at room temperature, thickened and became shear thinning at 37°C. The aqueous gel placebo used carbopol as the gelling agent, was shear thinning at room temperature and showed a typical decrease in viscosity with an increase in temperature. The lipid fluid placebo, myristyl myristate in isopropyl myristate, was relatively thin and temperature independent. The lipid gel placebo, glyceryl stearate and PEG-75 stearate in caprylic/capric triglycerides, was also shear thinning at both room temperature and 37°C but with significant time dependency or thixotropy. All formulations showed no rectal irritation in rabbits and were non-toxic using an ex vivo rectal explant model. Conclusions Four placebo formulations ranging from fluid to gel in aqueous and lipid formats with a range of rheological properties were developed, tested, scaled-up, manufactured under cGMP conditions and enrolled in a formal stability program. Clinical testing of these formulations as placebos will serve as the basis for further microbicide formulation development with drug-containing products.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View