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Abstract

Few micro-level empirical papers have addressed the impact of the patent system on industry

structure. Using �rm-level patent data for public and private �rms in plant biotechnology, we

develop a measure of patent enforceability. Duration models show that patent statistics are a useful

predictor of the timing of merger activity. We �nd that patent enforceability is an important factor

in�uencing the likelihood of mergers. Mergers in plant biotechnology may be partially motivated

by the enforcement of patent rights when �rms have overlapping technologies; some of the merger

activity may be explained by attempts to avoid mutually blocking technology, as exempli�ed in the

case of Roundup Ready corn.
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1 Introduction

In complex knowledge markets, new products are often the result of cumulative innovation, or de-

pend on a system of complementary technologies (Scotchmer 1991). More generally Mowery (1983)

has shown that it is impossible for �rms to fully internalize R&D spillovers. In the case of plant

biotechnology, the range of technologies necessary to market a new product are rarely controlled

by a single �rm (Rausser 1999). As a case in point, the production of Roundup Ready corn relies

on nine patented technologies, controlled at one point by �ve independent �rms. Consolidations in

the 1990s reduced that control to two �rms, but also generated costly litigation� some of which is

still pending.

In a market with zero transaction costs, one would expect the control of valuable complementary

assets to agglomerate either through direct control or via costless arms-length transactions. But, in

reality overlapping patent rights and fragmented control of mutually blocking technologies can beget

an anti-commons, in which resources are under-utilized and innovation is inhibited (Heller 1998,

Heller and Eisenberg 1998). Over the last two decades, the plant biotechnology sector as undergone

continual restructuring in the form of mergers and acquisitions. Many purchased entities have later

been spun o¤ as separate �rms, or sold to other �rms. Industry insiders have claimed that an

important motivation behind this restructuring is the control of the patent rights necessary for

producing various products, such as Roundup Ready corn (Rausser 1999).

In this paper we attempt to assess the role that patent rights have played in the consolidation of

the plant biotechnology industry in the 1980s and 1990s. We �nd that �rms with more enforceable

patent portfolios are more likely to engage in consolidation, whether as acquirers or as targets;

however, enforceability increases the likelihood of spino¤s rather than complete acquisitions of

targets.
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One obstacle in the assessing the quantitative impact of fragmented patent control on the be-

havior of �rms has been the di¢ culty in developing appropriate ways to characterize the patent

holdings of �rms, including their legal enforceability. A second obstacle arises from the di¤erent

forms of the agglomeration of control: cross-licensing, patent pooling, acquisition of corporate as-

sets, or wholesale merger. In light of this, our empirical study makes two main contributions: we

use patent data as explanatory variables for mergers; and, we apply a measure of patent enforce-

ability to �rms�patent portfolios. These explanatory variables are used to estimate hazard rates

for consolidation in plant biotech. We consider both wholesale mergers and partial acquisitions.

It is well recognized in the literature that patent rights have consequences for the �rm beyond

simple R&D incentives. Firms may patent �strategically,� when there are concerns about hold-

up (Grindley and Teece 1997, Hall and Ziedonis 2001), and bargaining may break down when

broad patents are enforced in technology areas that require many actors (Merges and Nelson 1994).

Firms may also change the areas in which they do research and patent in order to avoid the

threat of litigation (Lerner 1995). Litigation behavior itself has been studied in several papers

(Waldfogel 1995, Lanjouw and Lerner 1998, Lanjouw and Schankerman 2001, Marco 2005).

However, few empirical papers have sought to examine the impact of patent rights on indus-

try structure, although there is a developed theoretical literature on licensing and entry (Meurer

1989, Reinganum 1989, Scotchmer 1991, Choi 1998), and empirical work on local spillovers (Ja¤e,

Trajtenberg, and Henderson 1993). Additionally, anti-trust consequences of licensing are explicitly

recognized by the US Department of Justice and Federal Trade Commission in their Antitrust

Guidelines for the Licensing of Intellectual Property (1995).

Branstetter and Sakakibara (2002) examine the relationship between R&D spillovers and the

incentives to participate in research consortia in Japan. They �nd that the level of R&D spillovers
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is positively correlated with the rate of consortia patenting. This result is consistent with our

claim that higher technological overlap creates incentives for integration. They also �nd that the

productivity of research consortia are weakly negatively correlated with the degree of competition

among members. That is, research productivity is higher if �rms are complementary.

Danzon, Epstein, and Nicholson (2004) study mergers in the pharmaceutical and biotech in-

dustries. They �nd that imminent patent expirations are a motivation for acquisition. Hall and

Ziedonis (2001) touch on entry in the semiconductor industry following the 1980s�strengthening

of U.S. patent rights. They note that because of stronger patent rights, specialized research �rms

may have been able to enter more easily. In contrast, industries with poorly de�ned property rights

may �nd contracting over patent rights less desirable. Under such circumstances they may turn

to various forms of less-than-arms-length transactions, including patent pools, cross-licenses, joint

ventures, or consolidation.

2 Plant biotechnology

The plant biotech sector is a useful case study because of the history of consolidation activity

(Oehmke, Wolf, and Raper 2005, Brennan, Pray, Naseem, and Oehmke 2005). Through dozens

of mergers, acquisitions and strategic alliances, there has been a dramatic change in control over

intellectual assets. At the time that many of these acquisitions and mergers took place, the recorded

control premia were surprising. Kalaitzandonakes (1998) has o¤ered a number of explanations for

the large di¤erence between prior market capitalizations and acquisition prices, illustrating the

potential value of intellectual property (IP).

The process of consolidation of IP began in earnest in August of 1996 with the announced

purchase of Plant Genetic Systems (PGS) for $730 million, made when PGS�s prior market capital-
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ization was $30 million. According to AgrEvo, $700 million of the purchase price was assigned to

the valuation of the patent-protected trait technologies owned by PGS. The acquisition of Holden�s

Foundation Seeds by Monsanto may have been even more surprising. Here, a privately owned

company, Holden�s, with gross revenues of only $40 million, was acquired for a purchase price of

$1.1 billion. Holden�s germplasm is widely disbursed throughout the industry and at least one of

its elite lines is present in most commercial corn pedigrees.

In the case of Monsanto�s acquisition of DeKalb Genetics, Monsanto paid not only a control

premium of 122% for the 60% of DeKalb that they did not already own, but also indemni�ed

DeKalb against any disapproving regulatory action. DuPont acquired the 80% of Pioneer that

it did not already control for $7.7 billion. In this instance the control premium was only 14%

while the initial premium paid for 20% of Pioneer (purchase price of $1.7 billion) was signi�cantly

higher. These examples of consolidation allow premiums paid to be readily estimated because the

companies in question were publicly traded.

Figures 1 and 2 tell the story of consolidation in the plant biotech sector. The frequency of

acquisitions is presented in �gure 1 as a histogram (with corresponding kernel density) over the

period January 1984 to April 2000. The merger �wave� is readily visible. As shown in �gure 2,

the concentration of agricultural patent holdings actually fell for the �rms in our sample through

most of the period, even during a period of signi�cant consolidation. Each data point is a monthly

measurement of the Her�ndahl-Hirschman Index (HHI) of the ownership of patents in our sample

(based on simple counts).1 There is a trough in the mid-1990�s, and since that time concentration of

patent holdings has risen. The concentration of patent holdings is important to antitrust authorities,

especially in the context of a consolidating industry. The fact that concentration continued to fall

even during the beginning part of the merger wave indicates that new patents were being issued
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disproportionately to smaller and/or non-merging �rms.

Changing and uncertain intellectual property rights a¤ect plant biotech in much the same

way as biotechnology in general. First, many layers of patented technology are necessary for

production and those layers may be owned by di¤erent �rms (King and Schimmelpfennig 2005).

Second, new technologies embodied by biotechnology patents are frequently ill-de�ned, which leads

to uncertainty over patent scope and validity. To be sure, following the landmark Supreme Court

ruling in the matter of Diamond v. Chakrabarty (447 U.S. 303, 1980), utility patents for plant-

related invention are now more secure (Lesser 2005) but nevertheless numerous patent interferences

and expensive intellectual property alleged infringements and disputes have arisen over the last

decade.

Uncertain and overlapping patent rights in the midst of signi�cant merger activity suggest an

interesting link between industry concentration and the control of patent rights (U.S. Department

of Justice 1995). It may be that uncertainty in patent rights causes a breakdown in arms-length

contracting that provides incentives for consolidation. For example, Lerner, Tirole, and Strojwas

(2003) �nd that some patent pools are formed to settle bargaining problems created by overlapping

patent rights. Further, the competitive consequences of patent rights consolidation depends upon

the characteristics of the merged portfolios.

Beard and Kaserman (2002) discuss the trade-o¤ between antitrust policy and incentives for

innovation in the context of cross-licensing. They note that encouraging innovation is now an

explicit policy goal of antitrust enforcement (U.S. Department of Justice 1995). Further, they

argue that the use of cross-licensing to concentrate ownership (or use) of intellectual property may

be necessary to foster innovation, in much the same way that the monopoly patent right is necessary

to foster innovation. Antitrust authorities need to assess these same incentives when evaluating
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mergers.

Utilizing patent data a¤ords us three main bene�ts. First, we are able to investigate explicitly

the role of intellectual property holdings in mergers. Second, we are able to include private (patent-

holding) �rms in the sample. And last, we are able to make use of patent indices, like generality,

originality, and enforceability, in investigating the role such factors play in consolidation.

Section 3 presents the empirical models used to investigate the in�uence of patent holdings on

merger decisions. We utilize hazard estimation in order to investigate the timing of when a �rm

becomes a target or an acquirer. In Section 4, we describe the merger and patent data used in

the study. We present our patent enforceability measure, as well as variables designed to capture

the similarity of patent portfolios. In Section 5, we estimate a duration model measuring the rate

at which �rms pursue acquisitions in plant biotechnology. We also estimate a parallel duration

model� this one on the rate of being acquired. In Section 6, we present our concluding remarks.

Our results show that patent statistics are a useful predictor of merger activity; mergers in

plant biotechnology appear to consolidate the more enforceable patent portfolios. However, some

of the merger activity may be explained by attempts to reduce spillovers by �rms who can credibly

threaten to enforce property rights, suggesting a Coasian explanation.

3 Methodology

Qualitative choice models are commonly used to examine the determinants of mergers (see Werden,

Froeb, and Tardi¤ (1996) for a survey). Hall (1988) describes the econometric issues that arise in

applying qualitative choice models to the market for corporate control. Two critical issues are that

the market for corporate control has buyers and sellers who are ex ante indistinguishable, and the

empirical obstacles of de�ning the choice set. In the merger market, the set of choices is equal
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to the number of possible participants in the market (i.e., all �rms). Because Hall uses a large

inter-industry sample, she uses sampling in order to reduce the choice set for each �rm.2

Danzon, Epstein, and Nicholson (2004) study mergers in the pharmaceutical and biotech indus-

tries from 1988-2001 using a multinomial logit approach. They rely primarily on �nancial measures

as merger determinants, but they also consider �excess capacity� based on patent expirations.

Qualitative choice methods su¤er from the problem that they are inherently static. Tremblay and

Tremblay (1988), in their analysis of the beer industry, account for this problem by estimating the

probability of merger year by year.

Previous studies have applied duration models to mergers (Wheelock and Wilson 2000, Dick-

erson, Gibson, and Tsakalotos 1998, Jaggia and Thosar 1995), leveraged buyouts (Van de Gucht

and Moore 1998), and divisional spin-o¤s (Ravenscraft and Scherer 1991). Ravenscraft and Scherer

(1991) note that duration analysis is appropriate when: (1) events occur at di¤erent times, (2)

the probability of events may be changing over time, and (3) observations are censored. Duration

analysis uses valuable information about the timing of events that logit analysis is not able to cap-

ture. In our empirical analysis, a duration model is employed to investigate the timing and factors

in�uencing the merger decision.

We employ patent data because the anecdotal evidence in the plant biotech industry is that

patent rights are important considerations in mergers (Rausser 1999). Thus, an essential element of

any analysis of plant biotech mergers is direct measurement of IP holdings. An additional bene�t of

this approach is that patent data are publicly available for all �rms, regardless of whether they are

publicly or privately held. Most merger analysis restricts itself to publicly held �rms due to data

constraints. By including private �rms we are unable to employ �nancial data that is only available

for publicly held �rms.3 Regardless, the inclusion of private �rms is rare in merger studies (and
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most other �rm-level studies), and the use of patent data relaxes this constraint to some degree.

Our duration analyses examine the probability that a �rm will make an acquisition, or be

acquired, in the plant biotech sector. In both the acquirer estimation and the target estimations,

we model this probability as a hazard function that depends upon individual �rms�patent portfolio

characteristics and overall industry environmental variables, as well as the duration of the spell.

The two models are fundamentally similar, so we will outline the methodology using the probability

of acquisition. In essence, a �rm will choose to make an acquisition in the next small interval of

time when the value of doing so exceeds the reservation value (the status quo). Of course, the value

of an acquisition to any particular �rm is dependent upon the choice set of possible targets.

In this formulation, the choice of target is irrelevant. Our interest is only in whether a �rm

chooses to make an acquisition at all. Because the choice set is (almost) the same for all �rms, the

only distinguishing characteristics for the timing of a merger are the characteristics of the potential

acquirer. The choice set varies slightly among �rms because for any �rm j, the set of choices does

not include j. Accordingly, the probability that �rm j will make an acquisition is dependent only

on its own characteristics and the characteristics of the market (represented, for example, by the

concentration of patent ownership). If an industry is typi�ed by a highly attractive acquisition set,

then this will show up in the intercept term.

Following the accelerated failure time metric for survival analysis, we assume that the time to

failure (acquisition) can be written as

ln tj = xj� + zj ; (1)

where tj is the time until failure for subject j, xj is a vector of covariates, � is a vector of coe¢ cients,

and zj is a disturbance term with probability density function f(�) and cumulative distribution

function F (�):
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The survival function, S(t); gives the probability that the �rm will have survived t periods

without an acquisition, or 1�F (t). The hazard function is de�ned as h (t) = f(t)
S(t) . For our analysis,

we utilize the lognormal distribution.4 The implied survival function is

S(tj) = 1� �
�
ln(tj)� xj�

�

�
; (2)

where � is the cumulative distribution function for the standard normal, and zj is distributed nor-

mally with mean zero and standard deviation �. The ancillary parameter � is estimated alongside

�: The lognormal distribution generates a hump-shaped hazard function, so that there is positive

duration dependence for small t and decreasing duration dependence for large t:

Estimation involves an application of maximum likelihood methods where the censored obser-

vations are incorporated (Cleves, Gould, and Gutierrez 2004), viz.:

lnL =
X

uncensored

ln f(tj) +
X

censored

lnS(tj)�
X
all

lnS(t0j) (3)

where t0j is the time that the subject enters the sample.

Estimating the equation for the survival of targets is similar, where we assume that �rms

voluntarily become targets. Since the choice of acquirer is (almost) the same for all �rms at a given

time, the only distinguishing characteristics are those of the potential target. Thus, we model

the probability of becoming a target at time t as a function of the �rm�s characteristics and the

characteristics of the market.

4 Data

In order to estimate Equation 3 for acquirers and targets, we require a set of �rms in the market,

actual acquisition dates, and patent portfolio data for each �rm over time. In this section, we
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describe the data sources and the variables used in each model. Table 1 gives a brief description of

the variables used for all the estimations.

4.1 Sample

Following Gra¤, Rausser, and Small (2003) and Marco and Rausser (2002), we track a sample of

non-Japanese5 plant biotech �rms for control changes over the 1984-2000 period. Beginning with

their sample of �rms, we obtained merger dates by searching Lexis/Nexis�Mergers and Acquisitions

�le. Firms remain in the sample if and only if they are patenters. Thus mergers are tracked only

between patent-holding �rms.

The sample was augmented with additional plant biotechnology mergers found in Lexis/Nexis

from January 1984 to April 2000 involving one of the sample �rms. If the sample �rm is purchased

by a non sample, or �outside,��rm, then the merger is included and the outside �rm is added to

the sample. This is necessary in order to track the parent patent portfolio. On the other hand, if

the sample �rm purchases an outside �rm, then that merger and target are added only if the target

is deemed to be an plant biotechnology �rm. For example, while Dow Chemical is involved in

agricultural chemicals, if it purchases an electronics �rm, that merger and target are not included

in the sample. The purpose in de�ning the sample this way is to remove as much subjectivity as

possible from the process. Unfortunately, some discretion is necessary to separate the sample set

from its complement, while simultaneously keeping the sample a feasible size.

In total we researched plant biotechnology merger histories for 98 parent �rms.6 Joint ventures

are considered to be subsidiaries of a single parent when the equity stake of the parent exceeds 50%.

For instance, Agrevo began as a joint venture between Hoechst (60%) and Schering (40%). The

Agrevo patents are assigned to Hoechst. Using this methodology, our sample identi�es over 70%
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of the top plant biotech companies as de�ned by the U.S. Department of Agriculture�s Economic

Research Service.7

The sample consists only of patent-holders. Because we are interested in the consolidation of

technology companies, we do not examine mergers among non-patent-holders. The sample includes

98 parent �rms engaged in 44 transactions, including 33 �mergers� (acquisitions of independent

�rms) and 11 �spino¤s�(acquisitions of subsidiaries).

4.2 Merger spells

Firms are included in the sample as long as they have an active patent portfolio. Thus, a �rm

remains in the sample until the earliest of: (1) the date it is acquired, (2) seventeen years after the

issuance of its last patent, or (3) the end of the sample period (April 2000).

The beginning of a �rm�s spell is assumed to be the month in which it applies for its �rst patent,

or January, 1984, whichever is later. When a �rm makes an acquisition, its spell has ended, and

the following month it begins a new spell with its merger history augmented by one. The ensuing

duration analysis is one where subjects (�rms) are subject to �multiple failures.�8 Multiple failures

generate econometric issues similar to those that arise in panel data. We account for dependence

across spells by clustering errors at the parent �rm level, across spells. We account for potential

�occurence dependence�(Cameron and Trivedi 2005) by including the merger history as a regressor.

Acquisitions are de�ned to be performed by parent �rms; i.e., if a subsidiary makes an acquisi-

tion, we classify that as an acquisition by the parent. Parents are assumed to have a patent portfolio

consisting of the current patents of all their subsidiaries. This assumption is necessary because it

is impossible ex ante to distinguish fully integrated subsidiaries from stand alone subsidiaries.

Companies formed by a �merger of equals�are considered to be new entities, e.g., Novartis was
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formed by the merger of Ciba Geigy and Sandoz. Distinguishing mergers of equals from acquisitions

necessitates some subjectivity. When the management and control of the new company appears

to be a combination of the merging partners, and the partners are of roughly equal size, then the

merger is of equals. The distinction makes a di¤erence only in classifying the merger history of the

�rm and in clustering error terms. A merger of equals becomes a new parent �rm with a merger

history of zero. Clustering of error terms in the estimation is done on the basis of the parent

�rm. Because the structure and patent portfolio in the merged �rm is radically di¤erent from the

unmerged partners, it is reasonable to assume that the new �rm�s behavior is independent from

the two former �rms. Additionally, in these cases it is impossible to distinguish one of the merging

partners as the �parent.�

Finally, a name change is not considered to be a new entity, e.g., ELM becomes Savia. So,

Savia retains the merger history of ELM.

The duration data yield 137 spells for 98 parent �rms.

4.3 Patent characteristics

We obtained data on the patent portfolios of sample �rms and identi�able subsidiaries from Mi-

cropatent using company name searches.9 The data consist of 94,976 US patents issued by the 98

�rms in the sample between the years of 1975 and 1998. For each �rm, and for each measurement

date we calculated the variables found in table 1, with descriptive statistics presented in table 2.

Using discrete measurement times is a necessary limitation of using time-varying covariates

in duration analysis (Ravenscraft and Scherer 1991). In our sample, time-varying explanatory

variables are measured monthly, and merger dates are recorded monthly. Each measurement cor-

responds to a new record for that �rm in that spell. The probability that a �rm will make an
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acquisition at any time between tn�1 and tn is a function of the �rm�s characteristics at time tn�1,

where tn�1 is a measurement date.

Some patent statistics, including some patent citation data, as well as the originality and gen-

erality indices were taken from the NBER Patent Citations Data File (Hall, Ja¤e, and Trajtenberg

2001). The generality index was �rst proposed by Trajtenberg, Ja¤e, and Henderson (1997), and

is de�ned by Hall, Ja¤e, and Trajtenberg (2001) as

Generalityi = 1�
niX
j

s2ij

where sij is the proportion of citations from class j received by patent i (out of ni patent classes).

The higher the generality index, the broader the impact of the particular patent has been, as

measured by patent classi�cation. Originality is de�ned similarly using backward citations rather

than forward citations, and is a measure of the technological breadth of patents cited.

All of the explanatory variables are calculated using �rms��live� patent portfolios as of the

measurement date. In the analysis, a patent is alive from the application date until 17 years after

the issue date. Because we use the application date, the portfolio includes patents that are �in

the pipeline,� i.e., those whose applications have been �led, but have not yet been issued. This

is appropriate since �rms will base their decisions on in-process technology as well as developed

technology. Note, however, that we are not tracking patent applications but only granted patents;

the application date is used only for the purposes of dating the technology. Applications that do

not lead to granted patents are not included. Once a �rm acquires a target, the target�s portfolio

is absorbed by the parent.
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4.4 Patent enforceability

One important explanatory variable measures the average �enforceability�of a �rm�s patents. For

an individual patent, enforceability is de�ned as the predicted probability that a court would rule

the patent valid and infringed. Our metric of enforceability is based on the average enforceability

for a �rm�s current patent portfolio.

Patent enforceability is related to the ability of �rms to appropriate patent value, or to threaten

to block use of a technology. If patents are not enforceable, then competitors can infringe with

impunity. Firms in plant biotech claim that one of the reasons that they engage in mergers is

because of overlapping or mutually blocking property rights (Rausser 1999).

One should note that it is not necessarily optimal for the patenting authority to issue only

perfectly enforceable patents. As the patenting area matures, uncertainty will be resolved and

patents will become either more enforceable or less enforceable based on court precedents. For

�rms, poor enforceability not only reduces patent value, but also reduces the ability to transact at

arms length.

The calculation of the enforceability measure is based largely on Marco (2004). The initial

sample of patents used in that paper comes from a dataset of over 400,000 corporately owned

patents, issued between 1965 and 1995 collected by Case Western Reserve University and the NBER.

Adjudication data are from the US Patents Quarterly (USPQ) (Allison and Lemley 1998, Henry

and Turner 2006). It is important to note that adjudicated patents are a subset of all litigated

patents, since most �led cases will be settled prior to a court decision. Thus, the selection equation

accounts for selection into verdicts and not selection into lawsuits. The adjudication data include

published decisions on validity or infringement from 1970-1997. In contrast to Marco (2004), we

include only patents issued since 1975 because that range aligns with the patent sample for plant
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biotech �rms.

Our �nal sample of adjudicated patents includes 212 patents facing a validity decision, and 232

facing an infringement decision. These patents were matched with unlitigated patents in order to

estimate the selection equations. Matching was done on the basis of corporate ownership and the

date of grant (the grant week).

Patent characteristics are from Micropatent and the NBER Patent Citations Data Files. The

variables used are de�ned in table 1, and summary statistics for adjudicated patents and matched

patents are available in table 3.

The estimation strategy involves a selection-corrected probit estimated via maximum likelihood

(Marco 2004, Van de Van and Van Pragg 1981). For patent i the probability of winning in court

(whether on validity or infringement) is based on the latent �strength�of the case,

w�i = xi� + "i (4)

where "i is distributed normally and xi is a vector of observable characteristics. Only the dichoto-

mous outcome w is observed, so that

wi = 1 if w�i > 0;

wi = 0 if w�i � 0;

where w = 1 is a win.

A win or loss is only observed if a particular patent is litigated through trial on that issue. We

assume that patents are adjudicated based on a latent �contentiousness,�given by

y�i = zi
 + ui (5)

where ui is distributed normally and zi is a vector of observable characteristics. The observed
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selection mechanism is

yi = 1 if y�i > 0;

yi = 0 if y�i � 0;

where y = 1 indicates that an adjudication is observed.

If there is no correlation between "i and ui; then equation 4 can be estimated using a standard

probit. However, if "i and ui are correlated (as in the present case), such that � = corr("i; ui) 6= 0;

then the probit estimate of � will be biased.

The log-likelihood function of the probit estimator with sample selection is given by

L =
X
wins

ln [�2 (xi�; zi
; �)] +
X
losses

ln [�2 (�xi�; zi
;��)] +
X
not

selected

ln [1� � (zi
)] (6)

where �2 is the bivariate cumulative normal distribution function and � is the cumulative standard

normal distribution function (Stata 2003). Estimation is implemented via maximum likelihood.

The speci�cation follows the reduced form approach of Lanjouw and Schankerman. The win

rate equation is modeled as

P (win) = f(court; citation; scope; technology; other)

for both validity and infringement, where the independent variables are given in Table (1). Since a

potential selection bias exists, the selection equation is modeled as

P (selection) = g(citation; scope; technology ; other):

Because the court variables describe the court setting, they cannot be used as explanatory

variables for selection into adjudications. Additionally, because the explanatory variables for the

selection equation are a subset of those in the win rate equation, there are no exclusion restrictions.
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Ideally, one would use variables in the selection equation that do not in�uence the win rate. Elimi-

nating patent characteristics from the win rate equation is not possible on theoretical grounds; so,

the model is identi�ed on the basis of the non-linearity in the probit (Puhani 2000). Citation and

scope variables are associated with patent value, uncertainty, and the likelihood of encountering a

dispute. These factors are important determinants of win rates and the probability of litigation in

the theoretical literature (Lanjouw and Schankerman 2001, Waldfogel 1995). Technology dummies

account for �xed e¤ects in di¤erent technology areas.

We treat validity decisions and infringement decisions as independent for the purposes of estima-

tion; Marco (2004) �nds evidence that estimating validity and infringement separately is preferred

to aggregation. The results of the estimation are given in table 4. We refer the reader to Marco

(2004) for a detailed description of the individual parameter estimates. Note that while the signs

are similar across types of rulings (validity v. infringement), the magnitudes of the coe¢ cients are

signi�cantly di¤erent (as con�rmed by a Wald test).

The �tted probabilities of validity and infringement in table 5 provide evidence on the credibility

of the results. For both validity and infringement rulings, the predicted probability of selection is

much higher for adjudicated patents (approximately two to one). For adjudicated patents, the

predicted win rate for winners is higher than the predicted win rate for losers. This is true whether

the predictions are conditional on selection or not.

The conditional and unconditional predicted probabilities of winning demonstrate the Priest-

Klein hypothesis (Priest and Klein 1984) viz., that in common circumstances, observed win rates

will be biased towards 50% relative to the population win rate. This e¤ect is seen in two ways.

First, conditional probabilities tend to be closer to 50% than unconditional probabilities. Second,

adjudicated patents tend to have win rates closer to 50% than matched patents on average. The
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exception is patents that are adjudicated on infringement and found �not infringed.�The predicted

unconditional win rates for these patents is about 50%, slightly lower for the conditional win rates.

A patent is only enforceable if a court will �nd it both valid and infringed. Therefore, we

interpret the predicted probability of validity and infringement as a measure of �enforceability:�

Enforceability = Pr(patent is valid and infringed) = Pr(valid) � Pr(infringed):

The calculation implicitly assumes that the probabilities of validity and infringement are inde-

pendent. An alternative speci�cation would be to directly estimate a probit model of the joint

probability of validity and infringement �ndings. However, some court decisions do not rule on

both matters, so we are able to increase the sample size by estimating them separately. Addition-

ally, it is inappropriate to aggregate the two types of adjudications because selection into validity

decisions is signi�cantly di¤erent from selection into infringement decisions; so, the selection equa-

tions should be disaggregated.

Using the above methodology, we calculate enforceability for each patent within the plant

biotech sample. The estimates correct for self-selection, so they are not conditional on litigation.

Because we are predicting outside the original sample of adjudicated patents, we do not assert that

this measure of enforceability is a precise estimate that the patent would win in court if it were to

be adjudicated. Our concern is that we �nd a measure that is associated with the ability of the

�rms to protect their intellectual property when aggregated across the entire portfolio. So long

as our enforceability measure is correlated with the ability to protect intellectual assets, then it is

appropriate to use it as a regressor.

18



4.5 Data summary

The duration data yield 137 spells for 98 parent �rms: 44 acquisitions, of which 33 are full ac-

quisitions, and 11 are partial acquisitions, or acquisitions of spino¤s. The remaining spells re�ect

exits from the sample due to inactive patenting or truncation at the end of the sample period.

Because independent variables are measured at monthly intervals, the dataset comprises 11,778

monthly observations for the 137 spells (indicating an average spell length of 86 months). The

descriptive statistics for the variables for the duration models are presented in table 2. Note that

the maximum number of previous transactions is six. This �rm is Monsanto, which acquires six

�rms in the sample before it is acquired.10 Also, the maximum duration is 16 years, which re�ects

�rms that are not engaged in a transaction during the entire sample period.

5 Estimation

The estimates are presented in table 6.11 The table presents the estimation of equation 3 for the

lognormal distributional assumption. The hazard of making an acquisition is presented in column

1, and columns 2 to 4 present the hazard of being a target, based on di¤erent ways of de�ning

target transactions.

For each estimation, we present the coe¢ cients in two ways, �rst as time ratios, and then as

incremental e¤ects. Time ratios give the proportional change in the time until failure from a one

unit change in the covariate. A time ratio of 1.10 implies that the time until failure increases

by 10% as the covariate increases by one unit (the impact on the hazard rate would be in the

opposite direction). The incremental e¤ect is presented for signi�cant coe¢ cients for the purposes

of comparing the relative impacts across di¤erent covariates. We examine a one interquartile

increase in the covariate, from the 25th percentile to the 75th percentile. Because many of the

19



covariates exhibit skewed distributions, the interquartile range provides a better comparison than

the standard deviation.

5.1 Acquirers

Three independent variables have statistically signi�cant coe¢ cients in the acquirer model: market

share of patents, the agricultural intensity (percentage agricultural patents), and enforceability.12

These explanatory variables show that �rms with, large, enforceable, and ag-intensive patent port-

folios tend to be more likely to acquire. The incremental e¤ects show that ag-intensity and en-

forceability have similar e¤ects on the time to acquisition: an interquartile increase lowers the time

until acquisition by about half (ag-intensity) to two-thirds (enforceability). The e¤ect of portfolio

size is larger with an interquartile increase leading to a 90% reduction in the time until acquisition.

An interesting negative result is that of portfolio age. It is widely established in the merger

literature that diverse, established �rms tend to buy young specialized �rms. In our sample the

age of the patent portfolio does not appear to a¤ect the hazard of acquisition. However, it is

important to distinguish between the age of the �rm and the age of the patent portfolio. While the

two are likely to be correlated, there are exceptions. First, an old �rm can pursue a new research

program that would reduce its portfolio age. Second, through merger a �rm can reduce (or increase)

its portfolio age. Nonetheless, new entrants in any high tech industry are bound to have young

portfolios.

5.2 Targets

The parallel analysis for acquirer duration is the hazard of becoming a target, which is also reported

in table 6. The classi�cation of mergers is slightly di¤erent for the target analysis because it

is necessary to distinguish between spino¤s and whole �rm acquisitions. Once a �rm is wholly
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acquired, its patents are absorbed into the patent portfolio of the parent, and the �rm is o¤ the

market as a separate entity. Because of this, a �rm is subject to acquisition by merger only once,

making the hazard estimation one of single failure. In contrast, �rms can engage in spinning o¤

assets multiple times, making the hazard estimation for spino¤s one of multiple failures, as in the

acquirer model. One can imagine that the market for the control of assets, including wholly owned

subsidiaries, is di¤erent from the market for entire �rms.

Unfortunately, di¤erent �rms handle post merger patenting in multiple fashions. While some

maintain independent patenting by the subsidiary, some absorb the R&D activities of the new

subsidiary into those of the parent, making the entities inseparable. It is impossible to delineate ex

ante between the two approaches from observable data. Thus, we assume that all patents are owned

and controlled by the parent alone, and the parent�s characteristics make it attractive as a target of

whole acquistion or as a target of partial acquisition. We accomodate for this by estimating three

target models. The �rst target model (column 2) treats all merger events identically. The other

two models (columns 3 and 4) distinguish mergers of independent �rms from spino¤s.

For the aggregated target model, merger history, market share, and self-citations have statisti-

cally signi�cant coe¢ cients. An increase in acquisition history tends to shorten the spell duration

and increase the hazard rate of becoming a target. This e¤ect arises primarily from the tar-

get/merger estimation (column 3), where one additional prior acquisition decreases spell duration

by 40%.

The impact of market share on target survival time is predictable. The size of the patent

portfolio, as measured by the share of patents, has opposite e¤ects for mergers and spino¤s. The

e¤ect is to lengthen survival time for mergers and to shorten survival time for spino¤s. This result

is quite intuitive because large �rms are more likely to be the targets of spino¤s rather than whole
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acquisitions, relative to small �rms. These e¤ects cancel out when observing the aggregate target

model.

For targets overall, the e¤ect is opposite that of acquirer survival time, so larger �rms are

less likely to be targets. However, market share a¤ects mergers and spino¤s di¤erently. A one

interquartile increase in market share increases merger survival by three-fold. In contrast, larger

�rms are more likely to engage in spino¤s as targets: a one interquartile increase in logged market

share decreases spino¤ survival by 95%.

The average self-citation intensity enters negatively on survival time, for aggregate targets. Self-

citations are an indication of cumulative research. Those �rms with a high propensity for cumulative

research show a shorter surival time, or a larger hazard of being acquired. An interquartile increase

in self-citations leads to a 40% decrease in survival time. This e¤ect is not measured with precision

for mergers or spino¤s separately.

The e¤ect of HHI appears to be important for spino¤s only, and the magnitude of the incremental

e¤ects is very large. Part of the reason for this magnitude is the fact that spino¤s were not observed

until after 1990, when the HHI for agricultural patents had already fallen from its peak. The positive

correlation of HHI with survival time indicates that spino¤s become less likely as the concentration

of agricultural patents increases. This result is not surprising when one considers the fragmentation

in the control of patent rights. More spino¤s represent a reshu­ ing of assets, so that the control

of certain technologies can agglomerate. The incentives for agglomeration will naturally be higher

when fragmentation is higher.

The coe¢ cient for ag-intensity is statistically signi�cant only for spino¤s, although the direction

of the e¤ect is consistent across target speci�cations. As in the acquirer model, the e¤ect is to

shorten the survival time (by 40% for an interquartile increase in ag-intensity). Recall that the
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covariates for spino¤s are the values of the parent �rm, so that ag-intensity is important for the

target parent, and not necessarily for the subsidiary that changed hands. Thus, the result shows

that large, ag-intensive �rms were more engaged in the reorganizing of assets than smaller, less

ag-intensive �rms.

The coe¢ cient for enforceability is statistically signi�cant for target spino¤s, but it is not

signi�cant in the target merger estimation or in the target aggregate model. The e¤ect of higher

enforceability is to lower survival time, or to increase the hazard of engaging in a spino¤. A Wald

test veri�es that the enforceability coe¢ cient is signi�cantly lower for spino¤s than it is for mergers.

5.3 Comparison of acquirers and targets

Figure 3 graphs the observed and predicted cumulative number of transactions over the sample

period. The predicted number of transactions is calculated using the �tted cumulative hazard.

The �rst panel shows the aggregate acquirer estimation, and the second and third panel graph the

target merger and spino¤ estimations, respectively. A very close �t is found for all models. The

spino¤model shows the greatest divergence from the observed number of transactions only because

the discrete number of spino¤s from year to year is very small, whereas the predicted number of

transactions is continuous. Similar results can be found from goodness of �t tests (Marco and

Rausser 2007).

Wald tests show that the coe¢ cient for enforceability for target spino¤s is smaller than the time

ratio for acquirers, which is in turn smaller than the time ratio for target mergers; all di¤erences

are statistically di¤erent from zero at the �ve percent con�dence level. The interpretation is that

a more enforceable patent portfolio increases the hazard of engaging in a target spino¤ relative to

(a) an acquisition, and (b) a target merger. Similarly, higher enforceability increases the hazard
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of making an acquisition relative to being a target of a merger. Consequently, a more enforceable

patent portfolio makes a �rm more likely to be the target of a spino¤ relative to being the target

of a merger.

6 Conclusion

In an industry where intellectual property is a critical part of enterprise value, �rms with low

enforceability face a serious challenge. Since their portfolios are not as easily protected, their in-

tellectual property may spill-over into the commons. Other �rms may �borrow� this technology

in their own research and development or commercialized products. Firms with high enforceabil-

ity posess a greater threat to exclude other �rms from using their intellectual assets. However,

high enforceability may exacerbate the anti-commons. One logical consequence is that �rms with

mutually blocking technologies may consolidate in some way, reducing fragmentation.

Anecdotal evidence in the plant biotechnology industry suggests that many of the mergers

were rooted in con�icts about overlapping patents. In fact, a handful of mergers, including Mon-

santo/Calgene and Monsanto/DeKalb, were completed in the midst of patent infringement suits.

We can infer from the survival models that consolidation of patent rights is correlated with con-

solidation activity, at least in terms of acquisitions and spino¤s. We �nd that �rms with more

enforceable patent portfolios are more likely to engage in corporate control transactions, on both

the buy-side and the sell-side. On the buy-side, enforceability increases the likelihood of all types

of acquisitions, and on the sell-side enforceability makes �rms more likely to spin-o¤ subsidiaries.

With respect to mergers, we �nd that large, ag-intensive, enforceable �rms tend to be buy small

diversi�ed �rms. So, the evidence is that enforceability is more likely to consolidate IPRs in spino¤s

than in mergers. The di¤erence between spino¤s and mergers suggests a Coasian interpretation,
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in which less drastic forms of consolidation (spino¤s versus mergers) are a consequence of easier

contracting over property rights.

Our analysis demonstrates that there is a strong association between measureable characteristics

of patent rights and the consolidation behavior of plant biotechnology �rms. The results are broadly

consistent with the theoretical literature about property rights as well as the anecdotal evidence

in the plant biotechnology sector. But, much of the theory was previously untested, in part due to

the obstacles involved in accurately measuring the strength of patent rights and the fragmentation

of control. We show that the e¤ects of enforceability are statistically signi�cant, and also that they

are quantitatively as important as other measured factors in explaining consolidation choice in the

sample.
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Notes

1The HHI for patents is the sum of the squares of �rms�market shares of sample patents, so that

the index can vary between 10,000 (all patents owned by a single �rm) and close to zero (patents

are di¤usely held by many �rms). Brennan, et al. (2005) present a similar computation in terms

of pre and post merger HHI for USDA �eld trials instead of for patents.

2See McFadden (1973) for a discussion of the cost of sampling in the context of qualitative

choice.

3Further research is necessary to determine whether the exclusion of private �rms or the exclusion

of certain �nancial data (or patent data) is the more onerous restriction. Nonetheless, throughout

the paper we attempt to proxy for some traditional explanatory variables using patent data; e.g.,

�rm size is replace by patent portfolio size.

4Across all acquirer and target speci�cations, no distribution dominated according to the Akaike

Information Criterion (AIC). The Bayesian Information Criterion (BIC) weakly preferred the ex-

ponential distribution. However, semi-parametric Cox estimates showed a hump-shaped hazard

function, consistent with a lognormal or log-logistic distribution. Estimates using other distribu-

tional assumptions, and graphs of the Cox hazards are provided in a technical appendix available

on AgEcon Search (Marco and Rausser 2007). The marginal e¤ects of the regressors� especially

those of enforceability� are broadly consistent across di¤erent distributional speci�cations.

5Japanese �rms do not engage in mergers during the sample period. In general, they are unlikely

to engage in mergers for reasons that are particular to their corporate structure. Our results�

especially those of enforceability� are robust to whether or not they are included in the sample.
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6For the complete list of �rms, please see the technical appendix (Marco and Rausser 2007).

7See http://www.ers.usda.gov/data/AgBiotechIP, table 11, �Top 100 patent holders, U.S. and

non-U.S., companies only (excluding subsidiaries).�Despite the title, the ERS list includes some

universities and government agencies. For instance, the top two patentees listed are the U.S.

Department of Agriculture, and the University of California at Berkeley. We exclude from this list

non-�rms as well as Japanese �rms. Our sample identi�es 70% of the residual �rms.

8See Cleves, Gould, and Gutierrez (2004), chapter 6 and Cameron and Trivedi (2005), chapter 19

for discussions of multiple failures, or multiple spells, in hazard estimation. Marco (2007) provides

an application to patent citations, where an individual patent is subject to multiple citations by

other patents. Other examples in the literature include unemployment spells, births, heart attacks.

9Company name searches are bound to introduce some error, for at least two reasons. First,

unknown subsidiary patenters will not be observed. Second, typographical errors at the patent

o¢ ce will make some patents unobservable. So, our data are likely to be a subset of the true

population of patents owned by our sample �rms.

10Interestingly, Monsanto was later spun out; but, this transaction is outside our sample period.

11Estimation was performed with Stata, using the Newton-Raphson method.

12Previous merger history and the HHI are signi�cant in the exponential and Weibull speci�ca-

tions. See the technical appendix (Marco and Rausser 2007).
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Figure 1: Frequency of Plant Biotechnology Mergers
0

2
4

6
8

N
um

be
r o

f M
er

ge
rs

1985 1990 1995 2000
Year

Epanechnikov kernel, 0.5 kernel bandwidth.



Figure 2: Concentration of Patents in Sample
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Figure 3: Cumulative number of transactions, predicted v. observed
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Table 1: Variables used in estimations

Prior Positive Indicates there was a prior positive legal decision
Prior Negative Indicates there was a prior negative legal decision
Appeal Decision was made in an appellate court.
Defensive The case was "defensive," i.e., the patent holder was the defendant.

Pre­1983 decision Decision was made prior to 1983.
Age Age at the time of decision, from application date.
Number of IPCs The number of four digit international patent classes to which the

patent was assigned.
Number of Claims Number of claims in the patent.
Backward Number of previous patents cited (citations made).
Forward Number of citations received by subsequent patents, normalized by

year of observed life.
Self citations Proportion of backward citations made to patents owned by the same

entity.
Patent delay Delay (in years) between patent application and patent grant.

Originality Originality index as described by Hall, Jaffe, and Trajtenberg.
Generality Generality index as described by Hall, Jaffe, and Trajtenberg.
Pre­1983 application Patent application was made prior to 1983.
1983­1989 application Patent application was made from 1983­1989.
Technology dummies Technology classifications, as described by Hall, Jaffe, Trachtenberg.

History Number of previous transactions within the sample by firm prior to the
current spell (on either the buy or sell side).

HHI Ag. HHI at time t  calculated based on the market share of agricultural
patents held within the sample.

Share Firm's share of all patents issued by firms in the sample at time t.

Pct. Ag. The proportion of firms' patents that are agricultural at time t .
Agricultural patents are defined as those assigned to international
patent classes A01, C07H, C07K, C12M, C12N, or C12Q.

Age Firm's average patent age (from application date) at time t .
Forward Firm's average forward citations at time t.
Self citations Firm's average backward citations at time t.
Originality Firm's average originality at time t.
Generality Firm's average generality at time t.
Enforceability The average across a firm's portfolio at time t of the estimated

probability of validity and infringement.

Duration estimation

Enforceability estimation



Table 2: Summary statistics: duration models

Variable Obs. Mean Std. Dev. IQR Min Max
All spells 137

Previous mergers 0.7 1.1 1.0 0.0 6.0
Duration (years) 7.3 5.6 9.3 0.1 16.2

All spells ending in mergers 88
Previous mergers 0.8 1.3 1.0 0.0 6.0
Duration (years) 5.4 4.3 6.3 0.1 15.2

Monthly observations 195
HHI (all patents) 697 26 11 676 840
HHI (ag patents) 888 97 172 701 1038

All observations 11778
Share 1.7 3.0 2.3 0.0 16.1
Ag intensity 16.7 23.8 15.8 0.0 100.0
Age 6.4 3.3 5.1 0.0 15.5
Forward citations/year 0.6 0.5 0.3 0.0 9.7
Self citation 10.0 9.0 13.9 0.0 50.0
Originality 29.8 13.4 15.3 0.0 82.0
Generality 29.3 13.9 15.6 0.0 75.0
Enforceability 61.6 14.5 22.0 16.8 96.4

137 spells. 11778 monthly observations.
Indices and proportions reported on a 1­100 scale.
HHI reported on a 1­10,000 scale.
IQR = Interquartile range



Table 3: Summary statistics: enforceability estimation

Variable Obs. Mean Std. Dev. IQR Min Max
All spells 137

Previous mergers 0.7 1.1 1.0 0.0 6.0
Duration (years) 7.3 5.6 9.3 0.1 16.2

All spells ending in mergers 88
Previous mergers 0.8 1.3 1.0 0.0 6.0
Duration (years) 5.4 4.3 6.3 0.1 15.2

Monthly observations 195
HHI (all patents) 697 26 11 676 840
HHI (ag patents) 888 97 172 701 1038

All observations 11778
Share 1.7 3.0 2.3 0.0 16.1
Ag intensity 16.7 23.8 15.8 0.0 100.0
Age 6.4 3.3 5.1 0.0 15.5
Forward citations/year 0.6 0.5 0.3 0.0 9.7
Self citation 10.0 9.0 13.9 0.0 50.0
Originality 29.8 13.4 15.3 0.0 82.0
Generality 29.3 13.9 15.6 0.0 75.0
Enforceability 61.6 14.5 22.0 16.8 96.4

137 spells. 11778 monthly observations.
Indices and proportions reported on a 1­100 scale.
HHI reported on a 1­10,000 scale.
IQR = Interquartile range



Table 4: Estimation of the probability that a patent will be found valid or infringed

COURT Prior positive .741 *** .965 ***
( .286) ( .231)

Prior negative ­ .735 ** ­ .384
( .319) ( .274)

Appeal ­ .126 ­ .248
( .197) ( .195)

Defensive ­ .691 ** ­ .457
( .334) ( .317)

Pre­1982 decision ­ .612 ­ .408
( .410) ( .438)

Age at decision .030 ­ .117 ***
( .034) ( .031)

SCOPE Number of IPCs .384 * ­ .080 .221 ­ .318 **
( .232) ( .142) ( .224) ( .149)

Number of claims .080 .195 ** .295 * .252 ***
( .183) ( .088) ( .150) ( .091)

CITATIONS Backward ­ .085 ** .049 ­ .072 .030
( .037) ( .036) ( .045) ( .036)

Backward squared .001 * ­ .000 .002 .000
( .001) ( .001) ( .001) ( .001)

Forward ­ .088 .763 *** ­ .141 .928 ***
( .208) ( .130) ( .192) ( .119)

Forward squared .003 ­ .042 *** .010 ­ .057 ***
( .014) ( .010) ( .015) ( .009)

Generality ­1.102 ** .256 ­ .712 .408
( .544) ( .303) ( .563) ( .313)

Originality .992 ** ­ .771 ** .704 ­ .412
( .483) ( .321) ( .463) ( .299)

Self citations ­ .372 .368 ­ .525 .092
( .452) ( .303) ( .513) ( .350)

OTHER Patent Delay ­ .059 ­ .005 .131 ** .032
( .056) ( .035) ( .058) ( .055)

Pre­1983 application .494 1.031 ** 1.643 *** .917 ***
( .817) ( .437) ( .584) ( .348)

1983­1989 application 1.149 .229 1.022 ** .068
( .720) ( .432) ( .505) ( .338)

Chemical ­ .207 ­ .201 .121 ­ .085
( .328) ( .214) ( .333) ( .231)

Computers .186 ­ .204 ­ .228 .194
( .441) ( .304) ( .362) ( .265)

Drugs/Medical ­ .315 .131 ­ .075 .225
( .349) ( .280) ( .358) ( .322)

Electronics ­ .248 .015 .315 .087
( .317) ( .224) ( .349) ( .238)

Mechanical ­ .057 ­ .342 ­ .534 ­ .201
( .402) ( .237) ( .344) ( .232)

Constant .460 ­1.880 *** ­ .335 ­1.982 ***
(1.445) ( .571) (1.126) ( .523)

Log­likelihood ­336.0 ­337.1
Wald statistic 46 60
     p­value .0027 .0000
LR test (independence) .42 0.12
     p­value .5181 .7298
Obs. 424 464

Standard errors in parantheses. * p<.1; ** p<.05; *** p<.01.

Validity Infringement
Pr(win) Pr(selection) Pr(win) Pr(selection)



Table 5: Predicted probabilities of validity and infringement

Type of decision Obs. Conditional Unconditional Pr(Selection)
Validity

Adjudicated Patents 212 .623 .710 .636
(.017) (.015) (.017)

Valid 132 .723 .794 .650
(.017) (.014) (.021)

Not Valid 80 .457 .571 .612
(.027) (.024) (.029)

Matched Patents 212 .701 .830 .359
(.013) (.010) (.013)

Infringement
Adjudicated Patents 232 .590 .614 .687

(.017) (.017) (.018)
Infringed 137 .710 .732 .686

(.018) (.018) (.022)
Not infringed 95 .417 .444 .687

(.024) (.024) (.029)
Matched Patents 232 .599 .660 .309

(.014) (.014) (.014)

Standard errors in parantheses.

Pr(Win)



Table 6: Hazard of engaging in a transaction

TR FX TR FX TR FX TR FX
History .85 .66 *** .66 .59 * .59 .99

(­1.02) (­2.61) (­1.90) (­ .04)
HHI Ag. 1.02 1.02 1.01 1.03 *** 288

(1.45) (1.19) ( .75) (3.66)
Share (log) .62 *** .09 1.19 * 2.3 1.26 ** 3.2 .51 *** .04

(­3.63) (1.75) (2.37) (­2.79)
Pct. Ag. .96 *** .50 .99 1.00 .97 ** .59

(­5.09) (­1.34) (­ .99) (­2.26)
Enforceability .95 *** .33 .99 1.01 .86 *** .03

(­2.72) (­ .63) ( .45) (­3.32)
Age .99 .93 1.01 .88

(­ .15) (­ .96) ( .20) (­1.42)
Generality .99 1.00 1.01 1.00

(­ .45) ( .23) ( .86) (­ .08)
Originality .99 1.00 1.00 .98

(­ .76) (­ .04) (­ .10) (­ .65)
Forward 1.06 .91 1.01 .33

( .13) (­ .43) ( .07) (­1.30)
Self citations 1.00 .96 * .60 .98 1.00

(­ .16) (­1.73) (­1.11) (­ .13)
Constant .00 .00 .07 .00 *

(­ .97) (­ .78) (­ .34) (­1.85)
Year dummies YES YES YES YES
Dist. Parameter 1.45 *** 1.12 .89 .98

(3.54) ( .85) (­ .52) (­ .09)
AIC 245 208 170 92
BIC 452 415 376 298
Log­likelihood ­95 ­76 ­57 ­18
Chi­squared 591 157 780 35480
p­value .00 .00 .00 .00
Obs. 11732 11760 11771 11760
Subjects 86 86 86 86
Spells 125 97 86 97
Failures 44 44 33 11

Robust standard errors are clustered by firms.

Acquirer

All results assume the lognormal distribution, and are presented in the accelerated failure time metric as time ratios.

Incremental effect ("FX") indicates the proportional impact on the time to failure from an interquartile increase in the independent
variable (from 25th percentile to 75th percentile).

Z­statistics in parantheses. * p<.1; ** p<.05; *** p<.01.

Target­­­Merger Target­­­SpinoffTarget
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The four distributions chosen for the survival estimates are intended to cover a range of paramet-

ric survival estimation, since they cover constant (exponential), monotonic increasing or decreasing

(Weibull), and hump-shaped (lognormal and log-logistic) hazard functions. Figure 1 graphs the

hazard function from semi-parametric Cox proportional hazards estimation. The baseline hazard

estimates indicate a hump-shaped hazard function, which supports the lognormal or log-logistic

parameterizations. The AIC results do not strongly support any single parameterization across all

the models, and the BIC generally supports the exponential distribution. It can be seen in tables

3 to 6 that the time ratios across distributional assumptions are broadly similar.

Figure 2 shows a standard goodness of �t test for survival analysis, as described in Box-

Ste¤ensmeier and Jones (2004). The test is based on the cumulative Cox-Snell residuals from

the regression using the lognormal distribution. Using the residuals as the analysis time, the in-

tegrated hazard rate is estimated from the non-parametric Kaplan-Meier survival function. The

integrated hazard is plotted against the cumulative Cox-Snell residuals. A perfect �t would lie

along the 45 degree line. Although the �t is not perfect, there is not serious cause for concern.

The �t is best for the target/merger model. The target/spino¤ model has larger error due to the

infrequency of events, and the acquirer model has more error toward the right hand side of the

distribution. All four distributions yield similar graphs, so there is little evidence to support one

distribution over another.

Table 1 lists the sample of �rms used in the analysis. Table 2 replicates the primary analy-

sis excluding Monsanto. The results remain essentially unchanged, except that the coe¢ cient on

acquisition history for is sensitive to Monsanto�s inclusion in the Acquirer model. Tables 3 to 6

compare the original distributional speci�cation (lognormal) to three other distributions: exponen-

tial, Weibull, and log-logistic. The time ratios� especially for enforceability� are very consistent

1



across speci�cations. No one speci�cation is preferred by the Bayesian information criterion (BIC)

and Akaike information criterion (AIC) jointly, although the exponential is preferred by the BIC

alone.

References

Box-Steffensmeier, J. M., and B. S. Jones (2004): Event History Modeling: A Guide for

Social Scientists. Cambridge University Press, New York, NY.
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Figure 1: Semi-parametric Hazard Estimation
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Figure 2: Goodness of �t
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Table 1: Firms used in sample

Advanced Genetic Sciences Lubrizol Corp
Advanced Polymer Systems Mallinckrodt Group Inc
Agracetus Corp Marion Merrell/Merrell Pharmaceuticals
AgrEvo/AgrEvo USA Co Merck & Co
Agribiotech Inc MGI Pharma Inc
Agri­Diagnostics Associates Mogen International NV
AgriDyne Technologies Inc Monsanto Co
Agrigenetics, LP Mycogen Corp
Agritope Inc Nordisk Gentofte
Allelix Inc/Allelix Biopharmaceuticals Northrup King Co
American Cyanamid Co Novartis AG
American Maize Products Novo Corp
Amoco Co Novo­Nordisk A/S
Asgrow Seed Company NPS Pharmaceuticals Inc
Astra AB Nunhems Seeds
AstraZeneca PLC Ortho Pharmaceutical Corp
Aventis, Inc/Aventis CropScience Pasteur Merieux
Bayer Corporation Pfizer Inc
Biosource International Inc Pharmacia & Upjohn Inc
Biosys Inc Pharmacia Inc
Biotechnica International Inc Pioneer Hi­Bred International
Calgene Inc Plant Genetics Inc
Cargill, Inc Plant Genetics Systems
Celanese Corp Plant Science Institute
Chevron Corp ProdiGene Inc
Ciba­Geigy, Ltd Rhone­Poulenc SA
Continental Grain Co Rorer Group, Inc
Copley Pharmaceutical Inc Savia, SA de CV
Corn States Hybrid Sandoz AG
Crop Genetics International Corp Scotts Company
DeKalb Genetics Corp Sepracor Inc
Delta & Pine Land Co Shell Oil Company
DNA Plant Technology/Bionova Sungene Technologies Corp
Dow Chemical (Dow Agrosciences) Syntro Corp
Du Pont (E I) De Nemours Systemix Inc
Ecogen Inc Thermo Ecotek Corp
Ecoscience Corp Tosco Corp
Empresas La Moderna/ELM Transgene SA
Epitope Inc Unilever PLC
Escagenetics Corp Union Camp Corp
Espro Inc Union Carbide Corp
FMC Corp United AgriSeeds, Inc
Genencor International Upjohn Company
Harris Moran Seed Company W R Grace & Company
Helena Chemical Co Westvaco Corp
Hoechst AG Weyerhaeuser Company
Imperial Chemical Industries Wilbur­Ellis Company
International Paper Co Yissum Research Development Co
Limagrain Group/Limagrain Genetics Zeneca PLC
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Table 2: Hazard of engaging in a transaction (excluding Monsanto)

TR FX TR FX TR FX TR FX
History 1.24 .71 ** .71 .63 .93

( .74) (­2.11) (­1.56) (­ .26)
HHI Ag. 1.03 * 155 1.01 1.01 1.03 *** 214

(1.77) (1.09) ( .66) (3.72)
Share (log) .56 *** .06 1.19 * 2.3 1.26 ** 3.2 .52 *** .04

(­3.28) (1.70) (2.32) (­2.85)
Pct. Ag. .95 *** .48 .99 1.00 .97 ** .58

(­4.32) (­1.39) (­1.03) (­2.37)
Enforceability .94 ** .27 .99 1.01 .86 *** .04

(­2.46) (­ .69) ( .38) (­3.35)
Age 1.03 .93 1.01 .87 * .49

( .33) (­1.07) ( .10) (­1.68)
Generality .99 1.00 1.01 1.00

(­ .74) ( .20) ( .84) ( .08)
Originality 1.00 1.00 1.00 .98

(­ .26) (­ .08) (­ .11) (­ .89)
Forward 1.07 .90 1.01 .33

( .15) (­ .46) ( .04) (­1.32)
Self citations 1.01 .96 * .58 .98 .99

( .40) (­1.77) (­1.16) (­ .26)
Constant .00 .00 .14 .00 *

(­1.41) (­ .68) (­ .24) (­1.73)
Year dummies YES YES YES YES
Dist. Parameter 1.51 *** 1.14 .90 .94

(3.02) ( .98) (­ .46) (­ .35)
AIC 217 207 169 90
BIC 423 413 375 296
Log­likelihood ­80 ­75 ­57 ­17
Chi­squared 649 370 951 47230
p­value .00 .00 .00 .00
Obs. 11546 11568 11579 11568
Subjects 85 85 85 85
Spells 118 96 85 96
Failures 38 43 32 11

Robust standard errors are clustered by firms.

Z­statistics in parantheses. * p<.1; ** p<.05; *** p<.01.

Acquirer Target Target­­­Merger Target­­­Spinoff

Incremental effect ("FX") indicates the proportional impact on the time to failure from an interquartile increase in the independent
variable (from 25th percentile to 75th percentile).
All results assume the lognormal distribution, and are presented in the accelerated failure time metric as time ratios.
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Table 3: Hazard of becoming an acquirer

TR FX TR FX TR FX TR FX
History .76 ** .76 .82 * .82 .85 .89

(­2.57) (­1.69) (­1.02) (­ .43)
HHI Ag. 1.02 ** 40 1.03 ** 112 1.02 1.02

(2.09) (2.35) (1.45) (1.46)
Share (log) .66 *** .13 .61 *** .09 .62 *** .09 .60 *** .08

(­3.31) (­3.20) (­3.63) (­2.89)
Pct. Ag. .96 *** .54 .96 *** .49 .96 *** .50 .95 *** .47

(­5.59) (­4.62) (­5.09) (­4.26)
Enforceability .96 * .44 .95 * .36 .95 *** .33 .95 ** .29

(­1.76) (­1.85) (­2.72) (­2.52)
Age 1.03 1.02 .99 .97

( .36) ( .17) (­ .15) (­ .34)
Generality 1.00 1.00 .99 .99

( .06) ( .10) (­ .45) (­ .60)
Originality .99 .99 .99 .99

(­ .81) (­ .95) (­ .76) (­ .59)
Forward 1.00 .92 1.06 1.15

(­ .01) (­ .20) ( .13) ( .29)
Self citations 1.01 1.01 1.00 1.00

( .48) ( .40) (­ .16) (­ .07)
Constant .00 .00 .00 .00

(­1.33) (­1.58) (­ .97) (­1.00)
Year dummies YES YES YES YES
Dist. Parameter .81 * 1.45 *** .86

(­1.91) (3.54) (­1.32)
AIC 250 249 245 247
BIC 449 456 452 453
Log­likelihood ­98 ­97 ­95 ­95
Chi­squared 15754 595 591 671
p­value .00 .00 .00 .00
Obs. 11732 11732 11732 11732
Subjects 86 86 86 86
Spells 125 125 125 125
Failures 44 44 44 44

Robust standard errors are clustered by firms.

Log­logistic

Z­statistics in parantheses. * p<.1; ** p<.05; *** p<.01.
Incremental effect ("FX") indicates the proportional impact on the time to failure from an interquartile increase in the
independent variable (from 25th percentile to 75th percentile).
All results are presented in the accelerated failure time metric as time ratios.

Exponential Weibull Lognormal
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Table 4: Hazard of becoming a target

TR FX TR FX TR FX TR FX
History .69 *** .69 .72 *** .72 .66 *** .66 .73 ** .73

(­3.48) (­3.35) (­2.61) (­2.08)
HHI Ag. 1.02 ** 41.3 1.02 * 20.1 1.02 1.01

(2.30) (1.84) (1.19) ( .69)
Share (log) 1.12 1.09 1.19 * 2.3 1.16

(1.34) (1.17) (1.75) (1.42)
Pct. Ag. .99 .99 .99 .99

(­1.07) (­1.01) (­1.34) (­1.13)
Enforceability .98 .99 .99 .98

(­ .75) (­ .73) (­ .63) (­ .83)
Age .95 .97 .93 .92

(­ .74) (­ .49) (­ .96) (­ .86)
Generality 1.00 1.00 1.00 1.00

( .09) ( .01) ( .23) ( .32)
Originality 1.01 1.01 1.00 1.00

( .67) ( .72) (­ .04) (­ .03)
Forward .90 .94 .91 .79

(­ .33) (­ .19) (­ .43) (­ .80)
Self citations .97 ** .63 .98 .96 * .60 .97

(­2.18) (­1.50) (­1.73) (­1.19)
Constant .00 * .00 .00 .04

(­1.65) (­1.29) (­ .78) (­ .27)
Year dummies YES YES YES YES
Dist. Parameter 1.21 1.12 .61 ***

( .96) ( .85) (­2.73)
AIC 198 199 208 210
BIC 397 405 415 417
Log­likelihood ­72 ­71 ­76 ­77
Chi­squared 11481 530 157 232
p­value .00 .00 .00 .00
Obs. 11760 11760 11760 11760
Subjects 86 86 86 86
Spells 97 97 97 97
Failures 44 44 44 44

Robust standard errors are clustered by firms.
All results are presented in the accelerated failure time metric as time ratios.

Exponential Weibull Lognormal Log­logistic

Z­statistics in parantheses. * p<.1; ** p<.05; *** p<.01.
Incremental effect ("FX") indicates the proportional impact on the time to failure from an interquartile increase in the
independent variable (from 25th percentile to 75th percentile).
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Table 5: Hazard of becoming a target (mergers)

TR FX TR FX TR FX TR FX
History .61 *** .61 .74 ** .74 .59 * .59 .70

(­3.61) (­2.11) (­1.90) (­1.64)
HHI Ag. 1.02 * 28.5 1.01 1.01 1.01

(1.70) (1.42) ( .75) ( .61)
Share (log) 1.31 *** 3.7 1.19 ** 2.3 1.26 ** 3.2 1.22 * 2.6

(3.18) (2.17) (2.37) (1.86)
Pct. Ag. .99 1.00 1.00 1.00

(­ .86) (­ .72) (­ .99) (­ .82)
Enforceability 1.00 1.00 1.01 1.00

(­ .12) (­ .03) ( .45) ( .03)
Age .98 1.02 1.01 1.01

(­ .25) ( .42) ( .20) ( .21)
Generality 1.01 1.00 1.01 1.01

( .56) ( .35) ( .86) ( .76)
Originality 1.01 1.01 1.00 1.00

( .55) ( .88) (­ .10) ( .13)
Forward .88 .96 1.01 .96

(­ .49) (­ .17) ( .07) (­ .20)
Self citations .96 ** .60 .98 .98 .99

(­2.38) (­1.40) (­1.11) (­ .74)
Constant .00 .01 .07 .64

(­1.17) (­ .81) (­ .34) (­ .07)
Year dummies YES YES YES YES
Dist. Parameter 1.67 .89 .44 ***

(1.58) (­ .52) (­2.96)
AIC 165 164 170 169
BIC 364 371 376 375
Log­likelihood ­55 ­54 ­57 ­56
Chi­squared 8471 1419 780 2119
p­value .01 .00 .00 .00
Obs. 11771 11771 11771 11771
Subjects 86 86 86 86
Spells 86 86 86 86
Failures 33 33 33 33

Robust standard errors are clustered by firms.

Exponential Weibull

All results are presented in the accelerated failure time metric as time ratios.

Lognormal Log­logistic

Z­statistics in parantheses. * p<.1; ** p<.05; *** p<.01.
Incremental effect ("FX") indicates the proportional impact on the time to failure from an interquartile increase in the
independent variable (from 25th percentile to 75th percentile).
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Table 6: Hazard of becoming a target (spino¤s)

TR FX TR FX TR FX TR FX
History .98 .96 .99 1.24

(­ .08) (­ .15) (­ .04) ( .59)
HHI Ag. 1.03 * 172 1.03 1.03 *** 288 1.05 *** 2100

(1.84) (1.55) (3.66) (4.58)
Share (log) .52 ** .04 .57 .51 *** .04 .41 *** .01

(­2.13) (­1.60) (­2.79) (­2.77)
Pct. Ag. .97 .97 .97 ** .59 .95 ** .47

(­1.33) (­1.12) (­2.26) (­2.43)
Enforceability .87 ** .04 .88 * .06 .86 *** .03 .82 *** .01

(­2.20) (­1.71) (­3.32) (­4.27)
Age .89 .91 .88 .86

(­ .87) (­ .83) (­1.42) (­1.38)
Generality 1.00 1.00 1.00 1.01

(­ .08) (­ .06) (­ .08) ( .22)
Originality .98 .98 .98 .98

(­ .41) (­ .43) (­ .65) (­ .65)
Forward .32 .37 .33 .21

(­1.19) (­ .99) (­1.30) (­1.26)
Self citations 1.00 1.00 1.00 .98

( .04) ( .04) (­ .13) (­ .45)
Constant .00 .00 .00 * .00 **

(­ .82) (­ .70) (­1.85) (­2.47)
Year dummies YES YES YES YES
Dist. Parameter 1.16 .98 .58 **

( .64) (­ .09) (­2.16)
AIC 94 96 92 91
BIC 293 303 298 297
Log­likelihood ­20 ­20 ­18 ­17
Chi­squared 5558 1274 35480 2072
p­value .12 .00 .00 .00
Obs. 11760 11760 11760 11760
Subjects 86 86 86 86
Spells 97 97 97 97
Failures 11 11 11 11

Robust standard errors are clustered by firms.
All results are presented in the accelerated failure time metric as time ratios.

Exponential Weibull Lognormal Log­logistic

Z­statistics in parantheses. * p<.1; ** p<.05; *** p<.01.
Incremental effect ("FX") indicates the proportional impact on the time to failure from an interquartile increase in the
independent variable (from 25th percentile to 75th percentile).
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