The utility of rodent models of autism spectrum disorders

Lázaro, MT
Golshani, P

Current Opinion in Neurology, 28(2)

01-01-2015

Purpose of review This review discusses the ways that rodent models of autism spectrum disorders (ASDs) have been used to gain critical information about convergent molecular pathways, the mechanisms underlying altered microcircuit structure and function, and as a screen for potential cutting edge-treatments for ASDs. Recent findings There is convergent evidence that impaired developmental pruning of connections may be a common finding among several mouse models of ASDs. Recent studies have uncovered impaired autophagy by pathological mTOR activation as a potential contributor to microcircuit dysfunction and behavior. ASD-related disinhibition and exaggerated synaptic plasticity in multiple distinct circuits in cortex and reward circuits in striatum also contribute to social dysfunction and repetitive behaviors. New exciting molecular therapeutic techniques have
reversed cognitive deficits in models of ASD, indicating that mouse models could be used for preclinical translational studies of new treatments. Summary Rodent models of ASDs coupled to new emerging technologies for genome editing, cell-specific functional and structural imaging, and neuronal activity manipulation will yield critical insights into ASD pathogenesis and fuel the emergence of new treatments.

Copyright Information:
All rights reserved unless otherwise indicated. Contact the author or original publisher for any necessary permissions. eScholarship is not the copyright owner for deposited works. Learn more at http://www.escholarship.org/help_copyright.html#reuse
The utility of rodent models of autism spectrum disorders

Maria T. Lázaro and Peyman Golshani

Purpose of review
This review discusses the ways that rodent models of autism spectrum disorders (ASDs) have been used to gain critical information about convergent molecular pathways, the mechanisms underlying altered microcircuit structure and function, and as a screen for potential cutting edge-treatments for ASDs.

Recent findings
There is convergent evidence that impaired developmental pruning of connections may be a common finding among several mouse models of ASDs. Recent studies have uncovered impaired autophagy by pathological mTOR activation as a potential contributor to microcircuit dysfunction and behavior. ASD-related disinhibition and exaggerated synaptic plasticity in multiple distinct circuits in cortex and reward circuits in striatum also contribute to social dysfunction and repetitive behaviors. New exciting molecular therapeutic techniques have reversed cognitive deficits in models of ASD, indicating that mouse models could be used for preclinical translational studies of new treatments.

Summary
Rodent models of ASDs coupled to new emerging technologies for genome editing, cell-specific functional and structural imaging, and neuronal activity manipulation will yield critical insights into ASD pathogenesis and fuel the emergence of new treatments.

Keywords
mouse, social, translation, treatment

INTRODUCTION
Autism spectrum disorders (ASDs) are developmental disorders characterized by deficits in social interactions and language, as well as repetitive and restrictive behaviors. Autism is clinically heterogeneous, and often accompanied by one or more comorbidities, including intellectual disability, hyperactivity, sensory processing abnormalities, motor deficits, and seizures. The cause of ASDs is complex and has been attributed to genetic factors as well as poorly understood non-genetic causes (reviewed in [1]). Large-scale next-generation sequencing studies from large cohorts of ASD patients and controls have found highly validated de-novo and inherited genetic changes implicating dozens of susceptibility genes contributing to the disorders [2–5]. With increasing size of sequencing cohorts, this list of validated causative gene mutations is expected to increase to include several hundred genes [2]. However, identification of causative genetic changes is only the first essential step for understanding how each genetic change alters downstream molecular cascades, perturbs brain development and function, and ultimately leads to autism-related behaviors. Rodent models incorporating this growing list of genetic changes are one of the prime methods used to dissect the effects of gene mutations on neuronal anatomy, connectivity, physiology, and behavior. In this article, we review many of the more recent advances made in the field using mouse models of ASDs and discuss ways these models could be used to study ASD pathogenesis and find new treatments (Table 1).

WHY USE MOUSE MODELS
Mouse model systems have long been used to provide mechanistic insights into the cause of disease and have been instrumental in the discovery of pharmacologic therapies for human illness. Because
KEY POINTS

- Rodent models of ASDs are useful for unraveling the molecular pathways associated with ASD-related gene mutations.
- Rodent models of ASDs can help us find convergent microcircuit changes associated with the disorder.
- Rodent models of ASDs may be useful for preclinical behavioral studies before testing drugs in humans.

To better understand the core pathological mechanisms leading to ASD, it is critical to comprehend the biological function of a given gene and its protein product, and to find convergent pathways among the many genes. The best example of a molecular pathway that was identified and dissected using mouse models involves the PI3K-mammalian target of rapamycin (mTOR) signaling cascade wherein mutations in Tuberous Sclerosis Complex 1 and 2 (TSC1, TSC2), and Neurofibromatosis 1 (NF1) and PTEN genes all cause syndromes that include ASD-related behaviors. Multiple studies in these mouse models have shown the beneficial effects of the mTOR inhibitor rapamycin in ameliorating anatomical, physiological, and behavioral deficits [16–21]. Parallel studies in mice and humans have also shown that other seemingly unrelated ASD-associated proteins can also be incorporated into the canonical mTOR pathway. One example is the loss of FMR1 that causes Fragile X syndrome; the lack of FMR1 also upregulates mTOR activation, leading to elevated cap-dependent translation and impaired plasticity in Fragile X mice [22].

Mouse models have also been extremely useful in helping us discover autism-related changes in cortical circuit connectivity during brain development.
Table 1. Table demonstrating each ASD model, and associated ASD-related behaviors, functional disruptions, and response to treatments.

<table>
<thead>
<tr>
<th>Model</th>
<th>ASD-related behaviors</th>
<th>Functional disruptions</th>
<th>Treatment</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>15q11–13dup</td>
<td>Decreased sociability</td>
<td>Spine pruning deficits in Purkinje neurons</td>
<td>None</td>
<td>Piochon et al., 2014 [27]</td>
</tr>
<tr>
<td></td>
<td>Increased vocalizations in pups</td>
<td>Enhanced LTD</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Reduced vocalizations in adults</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Behavioral inflexibility</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Increased grooming</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hyperactivity</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Anxiety</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16p11.2del</td>
<td>Reduced sociability</td>
<td>Alterations in dopaminergic pathways in MSNs</td>
<td>None</td>
<td>Portmann et al., 2014 [29**]</td>
</tr>
<tr>
<td></td>
<td>Repetitive behaviors</td>
<td>Decreased striatal and nucleus accumbens volume</td>
<td>Decreased sensitivity to risperidone</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hyperactivity</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BTBR</td>
<td>Reduced sociability</td>
<td>Decreased inhibition</td>
<td>Diazepam</td>
<td>Gogolla et al., 2014 [38]</td>
</tr>
<tr>
<td></td>
<td>Repetitive grooming</td>
<td>Alterations in multisensory integration</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Increased vocalizations in pups</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Altered vocalizations in adults</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FMR1</td>
<td>Altered social behavior</td>
<td>Spine pruning deficits</td>
<td>mGluR antagonists</td>
<td>Bear et al., 2004 [42]</td>
</tr>
<tr>
<td></td>
<td>Increased vocalizations</td>
<td>Delayed inhibitory maturation and inhibitory function</td>
<td>BK-Ca channel openers</td>
<td>Patel et al., 2014 [24]</td>
</tr>
<tr>
<td></td>
<td>Stereotypies</td>
<td>Altered developmental synchrony</td>
<td>Prenatal bumetanide</td>
<td>Patel et al., 2013 [36]</td>
</tr>
<tr>
<td></td>
<td>Repetitive behaviors</td>
<td>Delayed inhibitory maturation</td>
<td>Goncalves et al., 2013 [37]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Anxiety</td>
<td>Enhanced LTD</td>
<td>Tyzio et al., 2014 [39]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hyperactivity</td>
<td>Increased dendritic and cortical excitability (BK-Ca channels)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cognitive deficits</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mecp2</td>
<td>Altered sociability</td>
<td>Excessive spine pruning</td>
<td>Levodopa</td>
<td>Jiang et al., 2013 [26]</td>
</tr>
<tr>
<td></td>
<td>Decreased vocalizations</td>
<td>Altered inhibition</td>
<td>Dopa-decarboxylase inhibitors</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Increased grooming</td>
<td>IGF1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nlgn3</td>
<td>Altered sociability</td>
<td>Alterations in dopaminergic pathways (Nac)</td>
<td>None</td>
<td>Rothwell et al., 2014 [28]</td>
</tr>
<tr>
<td></td>
<td>Repetitive behaviors</td>
<td>Impaired inhibition onto MSNs</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Inflexibility</td>
<td>Decreased perisomatic inhibition</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PTEN</td>
<td>Decreased sociability</td>
<td>Decreased LTD</td>
<td>None</td>
<td>Takeuchi et al., 2013; Garcia-Junco-Clemente et al., 2013 [42,53]</td>
</tr>
<tr>
<td></td>
<td>Increased grooming</td>
<td>Decreased intrinsic excitability (SK channels)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TSC1</td>
<td>Decreased sociability</td>
<td>Cerebellum</td>
<td>Rapamycin/mTOR</td>
<td>Bateup et al. 2013 [33]</td>
</tr>
<tr>
<td></td>
<td>Inflexibility</td>
<td>Decreased inhibition</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Increased grooming</td>
<td>Decreased LTD</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Increased pup calls</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TSC2</td>
<td>Decreased sociability</td>
<td>Deficits in developmental spine pruning and autophagy</td>
<td>Rapamycin/mTOR</td>
<td>Tang et al., 2014 [23**]</td>
</tr>
<tr>
<td></td>
<td>Increased grooming</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
(Table 1). Tang et al. [23**] made an important advance in our understanding of cortical connectivity by showing that the developmental pruning of cortical dendritic spines is defective in TSC2 knockout mice. In addition, they were able to further dissect the cause of this pruning impairment by mating their knockout animals to mice with impaired autophagy and showing that the blockade of autophagy mediates the specific spine pruning phenotype as well as the social impairment in these animals. Interestingly, rapamycin could no longer rescue the pruning deficits in the TSC2 knockout mice when they were bred with mice with impaired autophagy. This discovery of an entirely novel molecular mechanism downstream of mTOR, which links changes in cortical connectivity with impaired social behavior, was made possible by the creative use of mouse genetic models [23**]. Similar to findings in the TSC2 model, electrophysiological studies in the FMRI model of Fragile X syndrome show a developmental deficit in the pruning of connections between L5A cortical neurons, suggesting that deficits in developmental pruning may extend across multiple models of ASD [24]. Similar deficits in pruning induced by loss of chemokine receptor Cx3cr1 in microglia also induce deficits in social interactions and an increase in repetitive behaviors, providing convergent evidence that pruning deficits could directly contribute to abnormal autism-related behaviors [25]. Excessive dendritic spine pruning in cortical neurons later in life, as seen in the MECP2 duplication syndrome mouse, also strongly correlates with onset of behavioral abnormalities, indicating that spine density needs to be precisely controlled for proper motor, cognitive, and social function [26]. Impaired developmental pruning of connections in autism models is not limited to cortical pyramidal neurons, but has also been observed at the climbing fiber-Purkinje cell synapse in the 15q11–13 duplication model, suggesting that impaired developmental pruning of connections may extend to other circuits across the brain, contributing to a global deficit [27].

In addition to identifying new molecular mechanisms contributing to ASD-related changes in connectivity, mouse models of ASD have also been highly effective for localizing the precise circuit abnormalities causing specific ASD-related behaviors. A prime example of this was a recent study by Rothwell et al. who showed that cell type-specific deletions of the autism-related NLGN3 gene in dopamine (D1) receptor-positive nucleus accumbens (NAc) neurons (Drd1+ neurons) [but not in D2 receptor positive neurons (Drd2+ neurons) or cerebellar neurons] was sufficient to induce a motor phenotype [28]. Furthermore, they showed that this deletion impaired inhibition onto Drd1+ medium spiny neurons (MSNs) of the NAC [28]. This suggests that ASD-related genetic changes can result in highly specific changes onto distinct microcircuit elements within specific subcortical structures. Another study in the mouse model of 16p11.2 deletion syndrome used single-cell transcriptomics to discover an increase in number of striatal Drd2+ neurons, and decrease in the number of Drd1+ neurons in the deep cortical layers. In this model, excitatory input onto striatal MSN in the NAc shows decreased NMDA/AMPA ratios and decreased probabilities of release as assayed by paired pulse ratios. Behaviorally, the mice show hyperactivity, circling, deficits in movement control, and a lack of habituation [29**]. Together, both studies highlight the importance of striatal reward circuits for understanding repetitive behaviors and motor control in autism.

These findings are somewhat at odds with findings in the TSC1 model that found that cerebellar dysfunction was key for all ASD-related behaviors in this model. Specifically, deletion of TSC1 in cerebellar Purkinje cell resulted in abnormal social interactions, repetitive behaviors, and abnormal vocalizations [17]. These findings supported earlier histological work implicating the cerebellum in autism [30–32]. They also highlight the importance of unbiased screens in searching for circuits inducing ASD-related behaviors. Further studies in multiple models would be needed to understand the complex interactions of the multiple cortical, cerebellar, and subcortical regions in mediating abnormal motor and nonmotor behaviors [17]. A mouse model for 15q11–13 duplication syndrome, which in humans causes autism, intellectual disability, and seizures, also shows profound changes in cerebellar physiology, as well as both motor and

<table>
<thead>
<tr>
<th>Model</th>
<th>ASD-related behaviors</th>
<th>Functional disruptions</th>
<th>Treatment</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ube3a</td>
<td>Decreased sociability</td>
<td>Decreased synaptic pruning</td>
<td>ASOs</td>
<td>Meng et al., 2014 [56**]</td>
</tr>
<tr>
<td></td>
<td>Decreased vocalizations</td>
<td>Decreased excitatory neurotransmission</td>
<td></td>
<td>Piochon et al., 2014 [27]</td>
</tr>
<tr>
<td></td>
<td>Repetitive behaviors</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ASOs, antisense oligonucleotides; ASD, autism spectrum disorder; MSNs, medium spiny neurons.
social behaviors, providing convergent evidence of cerebellar disorder in autism [27].

Loss of inhibition seems to be a convergent theme among many ASD models. There is a specific loss of inhibition in the hippocampus of TSC1 mice [33], and a massive loss of parvalbumin neuron-specific inhibition in the hippocampus of NLGN3 R451C mice [34**]. In contrast, inhibition from cholecystokinin-positive (CCK+) basket cells was strongly increased through loss of tonic endocannabinoid signaling, suggesting highly precise cell-type-specific changes to perisomatic inhibition in the NLGN3 R451C model [34**]. In the FMR1 knockout mouse, there is a delayed developmental switch of excitatory to inhibitory chloride reversal potential [35], and a reduction of excitation onto fast-spiking cortical interneurons, which ultimately reduces inhibitory output [36]. These alterations correlate with delayed developmental desynchronization of network activity in the Fragile X mouse model, suggesting that alterations in synaptic connectivity directly impact network synchrony and potentially activity-dependent circuit development [37]. In the BTBR model of autism, an inbred mouse strain with severe social deficits and repetitive behaviors, loss of inhibition leads to abnormal multisensory integration in the insular cortex [38]. In both the BTBR and Fragile X models, there is diminished oxytocin-dependent decrease of intracellular chloride at birth, leading to excitatory GABAergic responses. Treatment of pregnant females with bumetanide, a blocker of the Na-Cl-K co-transporter NKCC1, prevented these pathological changes and improved autism-related behaviors; these findings will need to be replicated in larger studies [40].

These changes in inhibition will likely not only impact basal synaptic transmission but also alter synaptic plasticity. For example, TSC1 [33] and PTEN models [41] show a loss of metabotropic receptor-dependent long-term depression (LTD) in the CA1 and dentate gyrus regions of the hippocampus, respectively, whereas the FMR1 model of Fragile X and the Ube3a knockout model of Angelman syndrome both show an enhancement of mGluR-dependent LTD [42–44]. In the FMR1 model, mGluR-dependent LTD pathologically persists in the absence of protein synthesis [45]. This suggests that either diminished or excessive plasticity could result in abnormal circuit function. The Fragile X studies led to the mGluR theory of Fragile X syndrome that posited that many of the physiological and behavioral deficits in Fragile X arise from increased mGluR signaling [42]. This led to several studies that showed mGluR5 inhibition rescues cognitive deficits, auditory hypersensitivity, aberrant dendritic spine density, overactive ERK, and mTOR signaling [46,47] or social behavioral deficits [48] in FMR1 knockout mice. Unfortunately, these findings have not translated to successful treatment of individuals with Fragile X in clinical trials. This may require more careful selection of patients and outcome measures [49].

Changes in connectivity are functionally translated into alterations in neuronal output by engaging intrinsic ion channels. In the PTEN mouse model of autism, adult single copy deletion leads to diminished intrinsic excitability of L2/3 visual cortical neurons through increased expression of calcium-activated small conductance (SK-type) potassium channels. This decreased intrinsic excitability in turn leads to decreased visual cortical response magnitudes without altering selectivity [50**]. Conversely, in the FMR1 model of Fragile X, there is decreased expression of dendritic BK-type calcium-activated potassium channels, which increases dendritic excitability and heightens sensitivity to incoming somatosensory inputs [51]. Therefore autism-related changes in intrinsic excitability can dramatically alter sensory responses and may respond to pharmacological interventions [51,52].

New discoveries using optogenetic and DREADD (Designer Receptors Exclusively Activated by Designer Drugs)-based interventions in wild-type mice have greatly improved our understanding of specific circuit elements driving social and nonsocial behaviors. Increasing excitatory activity in the medial amygdala, for example, inhibits social behaviors such as aggression and mating behaviors, whereas increasing inhibitory neuron activation in the same structure promotes social behaviors, and inhibits repetitive self-grooming behavior [53**]. Similar but not identical effects were observed when activating or inhibiting amygdala projections within the ventral hippocampus, highlighting the importance of this projection for regulating social behavior [54]. Future studies in mouse models of autism can focus on dissecting microcircuit changes in the medial amygdala or determine whether pharmacological or cell-specific treatments in the medial amygdala can be used to treat social behavioral dysfunction in these models.

THE UTILITY OF RODENT MODELS:

TESTING NEW-GENERATION TREATMENTS

Mouse models can also enable us to test a new generation of rationally designed treatments for
ASDs. A remarkable example is the use of antisense oligonucleotides (ASOs) against the nuclear-localized long noncoding RNA, UBE3A antisense transcript (UBE3A-ATS), which silences the paternal copy of UBE3a in a model of Angelman syndrome. This treatment caused sustained unsilencing of paternal UBE3a, both in vitro and in vivo, and improved cognitive deficits in the mouse model of the disorder [55**]. Although many details remain to be worked out on timing and mode of delivery of the ASOs, this approach shows the essential role of mouse models for serving as an intermediate pre-clinical step for the development of novel human therapeutics.

CONCLUSION

The utility of rodent models for autism will increase nonlinearly with improvements in emerging transgenic, genome editing, cellular functional imaging, and activity modulation techniques [8,56,57]. These techniques will allow us to genetically perturb highly specific neuronal subpopulations and follow activity patterns in these cells and their connected neighbors before, during, and after potential treatments, over months, as rodents interact with other animals [58]. Mouse models will complement the results obtained in other in-vitro models such as induced pluripotent stem cell-derived cultured neurons [59]. Most importantly, understanding of basic neuron circuit function at the most fundamental level will likely yield the most impact for understanding ASDs in the long run.

Acknowledgements

We would like to thank Ben Huang and Matt Shtrahman for comments on the manuscript and Sophia Vrontou for helpful discussions.

Financial support and sponsorship

This work was supported by NIMH T32 Neurobehavioral Genetics Training Grant and NSF graduate student fellowships to M.L., and NIMH RO1MH10198–1, Circuit Dynamics Grant from the Simons Foundation to P.G.

Conflicts of interest

There are no conflicts of interest.

REFERENCES AND RECOMMENDED READING

Papers of particular interest, published within the annual period of review, have been highlighted as: ■ of special interest □ of outstanding interest

33. Bateup HS, Johnson CA, Beneficio CL, et al. Excitatory/inhibitory synaptic imbalance leads to hippocampal hypersensitivity in mouse models of tuber-
34. Foldy C, Malenka RC, Sudhof TC. Autism-associated neurilgin-3 mutations
509.
35. He G, Nomura T, Xu J, Contractor A. The developmental switch in GABA
polarity is delayed in fragile X mice. J Neurosci 2014; 34:446–450.
Fmr1 in regulating glutamate release onto neocortical fast-spiking inhibitory
909.
during delivery attenuates autism pathogenesis in rodent offspring. Science
40. Lemonnier E, Degrez C, Phelpe M, et al. A randomised controlled trial of
precedes appearance of morphological defects in a Pten conditional knock-
4743.
42. Bear MF, Huber KM, Warren ST. The mGluR theory of fragile X mental
43. Huber KM, Gallagher SM, Warren ST, Bear MF. Altered synaptic plasticity in
a mouse model of fragile X mental retardation. Proc Natl Acad Sci U S A 2002;
99:7746–7750.
44. Pignatelli M, Piccinin S, Molinaro G, et al. Changes in mGlu5 receptor-
dependent synaptic plasticity and coupling to Homer proteins in the
hippocampus of Ube3a hemizygous mice modeling Angelman syndrome.
45. Nosyreva ED, Huber KM. Metabotropic receptor-dependent long-term de-
pression persists in the absence of protein synthesis in the mouse model of
46. Michalò A, Sidirov M, Ballard TM, et al. Chronic pharmacological mGlu5
47. Michalò A, Bruña A, Ristenucci C, et al. Chronic metabotropic glutamate
receptor 5 inhibition corrects local alterations of brain activity and improves
Mavoglurant restores social behaviour in Fmr1 knockout mice. Behav. Brain
Res 2013; 239:72–79.
trials in fragile X syndrome. Psychopharmacology (Berl) 2014; 231:1237–
1250.
This study identifies overexpression of SK-type calcium-activated potassium
channels as a potential mechanism for decreased excitability and visual respon-
siveness in the PTEN model of autism. The study highlights the importance of
intrinsiconchannelsfor corticalfunction.
neocortical and sensory hypersensitivity in Fmr1(-/-) mice. Nat Neurosci 2014;
17:1701–1709.
52. Garcia-Junco-Clemente P, Chow DK, Tring E, et al. Overexpression of
calcium-activated potassium channels underlies cortical dysfunction in a
53. Hong W, Kim DW, Anderson DJ. Antagonistic control of social versus
repetitive self-grooming behaviors by separable amygdala neuronal subsets.
This article demonstrates that activation of excitatory neurons in the medial
amygdala inhibits social interaction behaviors and promotes self-grooming,
whereas activation of inhibitory medial amygdala neurons inhibits repetitive beha-
viors and promote social behaviors. The study may lead to experiments in ASD
model animals to determine how these distinct neuronal types are pathologically
activated or silenced.
54. Felix-Ortiz AC, Tye KM. Amygdala inputs to the ventral hippocampus bidir-
targeting a long noncoding RNA. Nature 2014. [Epub ahead of print]
This study uses a cutting-edge molecular treatment to increase expression of
Ube3a in a model of Angelman syndrome. The treatment has potential for
translation to human patients.
1179.
57. Rickgauer JP, Deisseroth K. Tank DW. Simultaneous cellular-resolution
optical perturbation and imaging of place cell firing fields. Nat Neurosci
2014; 17:1816–1824.
59. Shcheglovitov A, Shcheglovitova O, Yazawa M, et al. SHANK3 and IGF1
restore synaptic deficits in neurons from 22q13 deletion syndrome patients.