Link between gut‐microbiome derived metabolite and shared gene‐effects with hepatic steatosis and fibrosis in NAFLD
- Caussy, Cyrielle;
- Hsu, Cynthia;
- Lo, Min‐Tzu;
- Liu, Amy;
- Bettencourt, Ricki;
- Ajmera, Veeral H;
- Bassirian, Shirin;
- Hooker, Jonathan;
- Sy, Ethan;
- Richards, Lisa;
- Schork, Nicholas;
- Schnabl, Bernd;
- Brenner, David A;
- Sirlin, Claude B;
- Chen, Chi‐Hua;
- Loomba, Rohit;
- Consortium, Genetics of NAFLD in Twins
- et al.
Published Web Location
https://aasldpubs.onlinelibrary.wiley.com/doi/epdf/10.1002/hep.29892Abstract
Previous studies have shown that gut-microbiome is associated with nonalcoholic fatty liver disease (NAFLD). We aimed to examine if serum metabolites, especially those derived from the gut-microbiome, have a shared gene-effect with hepatic steatosis and fibrosis. This is a cross-sectional analysis of a prospective discovery cohort including 156 well-characterized twins and families with untargeted metabolome profiling assessment. Hepatic steatosis was assessed using magnetic-resonance-imaging proton-density-fat-fraction (MRI-PDFF) and fibrosis using MR-elastography (MRE). A twin additive genetics and unique environment effects (AE) model was used to estimate the shared gene-effect between metabolites and hepatic steatosis and fibrosis. The findings were validated in an independent prospective validation cohort of 156 participants with biopsy-proven NAFLD including shotgun metagenomics sequencing assessment in a subgroup of the cohort. In the discovery cohort, 56 metabolites including 6 microbial metabolites had a significant shared gene-effect with both hepatic steatosis and fibrosis after adjustment for age, sex and ethnicity. In the validation cohort, 6 metabolites were associated with advanced fibrosis. Among them, only one microbial metabolite, 3-(4-hydroxyphenyl)lactate, remained consistent and statistically significantly associated with liver fibrosis in the discovery and validation cohort (fold-change of higher-MRE versus lower-MRE: 1.78, P < 0.001 and of advanced versus no advanced fibrosis: 1.26, P = 0.037, respectively). The share genetic determination of 3-(4-hydroxyphenyl)lactate with hepatic steatosis was RG :0.57,95%CI:0.27-0.80, P < 0.001 and with fibrosis was RG :0.54,95%CI:0.036-1, P = 0.036. Pathway reconstruction linked 3-(4-hydroxyphenyl)lactate to several human gut-microbiome species. In the validation cohort, 3-(4-hydroxyphenyl)lactate was significantly correlated with the abundance of several gut-microbiome species, belonging only to Firmicutes, Bacteroidetes and Proteobacteria phyla, previously reported as associated with advanced fibrosis. Conclusion: This proof of concept study provides evidence of a link between the gut-microbiome and 3-(4-hydroxyphenyl)lactate that shares gene-effect with hepatic steatosis and fibrosis. (Hepatology 2018).
Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.