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On the robustness of unit root tests in the presence of double unit roots
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CENTRE FOR DyNAMIC MODELLING IN ECONOMICS.
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ABSTRACT. We examine some of the consequences on commonly used
unit root tests when the underlying series is integrated of order two rather
than of order one. It turns out that standard augmented Dickey-Fuller type of
tests for a single unit root have excessive density in the explosive region of the
distribution. The lower (stationary) tail, however, will be virtually unaffected
in the presence of double unit roots. On the other hand, the Phillips-Perron
class of semi-parametric tests is shown to diverge to plus infinity asymptotically
and thus favoring the explosive alternative. Numerical simulations are used
to demonstrate the analytical results and some of the implications in finite
samples.

KEYWORDS: Unit root tests, Dickey-Fuller test, Phillips-Perron test, I(1) versus
1(2).
JEL CurassiricaTion: C12, C14, C22.

1. INTRODUCTION

It seems to be well recognized that most economic time series have properties that
mimic those characterizing unit root (integrated) processes. For the majority of time
series a characterization in terms of integration of order one, I(1), seems appropri-
ate. However, some variables like prices, wages, money balances, stock-variables etc.,
appear to be smoother than normally observed for variables integrated of order one;
such series are potentially integrated of order 2 whereby double differencing is needed
to render the series stationary. The differenced series are therefore I(1); for instance,
if the series are log-transformed, the growth rates will be integrated of order one. By
now, there is a growing literature focusing on the complications implied by double
unit roots. This literature is not only concerned with univariate testing for I(2),
(Hasza and Fuller (1979), Dickey and Pantula (1987), Sen and Dickey (1987), Shin
and Kim (1999), and Haldrup (1994a)), but it also focuses on the rather complex dy-
namic interactions occurring in I(2) cointegrated models (compare Johansen (1995,
1997), Kitamura (1995), Choi, Park, and Yu (1997), and Haldrup (1994b)). In Hal-
drup (1998) recent advances in the theoretical and empirical literature on 1(2) are
reviewed.
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In the present paper, our attention is directed towards univariate testing for the
order of integration, and there is mainly one particular problem we want to study.
This concerns the behavior of standard univariate tests for a single unit root when
double unit roots appear to be present in the data generating process. There are some
problems in connection with unit root tests and the possibility of additional unit roots.
The null hypothesis in conventional unit root testing typically looks like Hy : ay = 1
in the model y; = ayy;_1+v; where «; is the autoregressive root at frequency zero and
vy 18 a general (possibly autocorrelated) process. Usually a single unit root is assumed
under the null. However, it is known from the work of Dickey and Pantula (1987)
and Pantula (1989), that the null-distribution of traditional augmented Dickey-Fuller
tests will be affected in the presence of two unit roots, and hence their suggestion is
to test for 1(2) against I(1) rather than following the opposite procedure of testing
I(1) prior to testing for I(2). This recommended sequence of testing will lead to
similar test statistics and hence will have a size that can be controlled by choice of
the significance level. (Dolado and Marmol (1997) study this testing sequence when
the underlying series is fractionally integrated. However, fractional integration is
beyond the assumptions of the present study where integer orders of integration are
assumed).

Notwithstanding, in many applied papers researchers follow the opposite route or
examine only the level of the series, simply ignoring that I(2)-ness might be a pos-
sibility. Our paper examines in more detail analytically as well as numerically, the
likely consequences of following this reverse route of testing. In so doing, we extend
the analysis of Dickey and Pantula (1987). Since at least one unit root will be present
when the series is either I(1) or I(2), the potential problem is that of similarity with re-
spect to a nuisance parameter, that is, the question of whether an additional unit root
is present or absent under the null. It turns out that, regardless of which determinis-
tic components are included in the auxiliary regression, the augmented Dickey-Fuller
tests will tend to reject the null at a fraction very close to the nominal significance level
when the I(1) critical values are used and the test is one-sided against the stationary
alternative. However, the distribution mass is concentrated much more heavily in the
upper tail compared to the Dickey-Fuller I(1)-distribution. As a consequence, when
testing against the explosive alternative the Dickey-Fuller test will tend to reject a
unit root too often in favor of explosiveness. The implications for the Phillips-Perron
class of semi-parametric tests appear to be even more dramatic. We show that the
semi-parametric test based on the Dickey-Fuller t-statistic asymptotically will have
positive support and will tend to plus infinity as the sample size grows. Hence, by
allowing an explosive alternative, the test will always reject the unit root hypothesis
in the limit in favor of explosive behavior.

The paper proceeds as follows. In sections 2 and 3 the data generating mechanism
is described and some summary results on the behavior of test statistics in the pres-
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ence of a single unit root are provided. Next, in section 4, the properties of the test
statistics are derived under the maintained assumption of double unit roots and the
implied analytical findings are examined numerically. Finally, section 5 concludes.
All proofs can be found in a technical appendix.

2. THE DATA GENERATING MECHANISM
As a starting point, consider the data generating mechanism

(1—a1L)(1 — asL)y, = uy t=12,..,T (1)

where initially the sequence {u;} is assumed to be i.i.d.(0,02). Slackening of this
simplifying requirement will be made where appropriate. In particular, we may re-
quire u; to follow the general regularity conditions of Phillips (1987), Assumption
2.1. The equation (1) can also be extended to allow for deterministic components
like a constant and a trend in the data generating process. However, because such a
generalization will have no implications for our findings, we exclude this possibility
to simplify the presentation.

The above autoregressive model has been analyzed under a number of different
settings and in particular the presence of unit roots has attracted much attention.
When a7 =1 and | o |< 1, y; is integrated of order one whilst a; = ap = 1 implies
the presence of double unit roots, I1(2). We want to focus on the behavior of test
statistics which are designed to test for a single unit root in order to see how these
statistics behave (under the null) in the presence of an additional unit root.

In the subsequent sections we will first summarize (for the matter of reference)
some well-known properties of Dickey-Fuller and Phillips-Perron tests when a single
unit root is present; next we will examine the two classes of tests in the presence of
double unit roots.

3. BEHAVIOR OF THE TEST-STATISTICS WHEN A SINGLE UNIT ROOT EXISTS.

3.1. Dickey-Fuller tests. As a benchmark, assume that s = 0 and a; = 1, that
is, y; follows a random walk. For this situation a number of authors (White(1958),
Fuller (1976), Dickey and Fuller (1979), and Phillips (1987)) have reported the lim-
iting distributions of the normalized least squares estimator, T'(&; — 1), and the
t—statistic of Hy : a; = 1 based on the regression

Ayt = (641 — 1) Yi—1 + ﬂt. (2)

The t—statistic for a; is defined as t,, = (a; — 1)/[su(X, %2 |)~/?] where s2 =
T-'S°T 42 In practical situations we would also like to include deterministic com-
ponents in the auxiliary regression which for the most relevant cases would then read:

Ay, = Bo+ (61— 1)y + Uy (3)
Ay, = [o+ Gt + (@ — 1)y 1 + 7. (4)
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Under the above conditions the following distribution results will apply for the re-
gression model (2):

-1

T —1) = < /01W(r)dW(r)> ( /Olvv(r)?d(r)) (5)
fe = (/01W(r)dW(r)> (/01W(r)2d(r)>1/2 (6)

where W (r) is a standard Brownian motion on C[0, 1], i.e. the space of continuous
functions on the unit interval, and "= " signifies weak convergence (in distribution).
The distributions (5) and (6) are known as the Dickey-Fuller distributions.

For the regressions (3) and (4) the asymptotic distributions take a similar form,
however, in place of W (r), the Brownian motion expressions should be replaced by
appropriately demeaned and detrended Brownian motions. In particular,

Wir) = W(r) — fi(r) (/Olfi(S)fi(S)’d8>1 [ Hsws)as  (ori=0.1) (@

where for the case with a constant in the model ¢ = 0, and fo(r) = 1, whilst for the
trend case ¢ = 1 and fi(r) = (1,7)".

When slackening the i.i.d. assumption about wu;, Phillips (1987) and Phillips
and Perron (1988) showed that under rather weak regularity conditions, the relevant
distributions become

1 1 -1
T@ -1) = ( [ waw ) + A) ( / wm?am) (8)
o 1 1 —1/2

= — < | weawe) + >\> ( / W(r)2d(r)> (9)

with A = (02 — 02)/20% 02 = limp o, T'E [ZtT:l uf] 02 = limy_o, T'E[S%] (the

long-run variance), and Sy = Y., u;. It can be easily seen that when o? = o2,

which applies for martingale difference sequences, for instance, then the resulting

distributions are (5) and (6). The generalization to the case with constant and trend
follows naturally given (7).

The situation with 02 # o2 is naturally of interest in practice because the limiting
distributions will then depend upon nuisance parameters. However, in the case where
y; follows an AR(p) process, estimation of a p’th order autoregression will remove the
influence of the nuisance parameters such that the distribution results (5) and (6)
will hold, and even in the case where MA terms are present, it is sufficient to let the
order of the autoregression, k, grow with the sample size according to k = o(T'/3),
see Said and Dickey (1984). Hence, by this approach the nuisance parameter problem
is solved in a fully parametric way.
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3.2. Phillips-Perron tests. Phillips (1987) and Phillips and Perron (1988) have
suggested a semiparametric way of adjusting the above statistics. In particular, they
suggest the statistics Z, and Z;, which are constructed from the regression (2):

Zo = T(an—1) - (5~ 5, T—sztl (10)
Zo = (suffe, = g5le? = TN 0 (1)

=1

where s2 and s? are consistent estimates of the population equivalents o2 and o2
The asymptotic distributions of the above statistics are again given in (5) and (6)
with the appropriate redefinitions for the cases with deterministic components. How-
ever, it should be noted that for the latter situations y; needs to be replaced by the
appropriately demeaned and detrended series in the regression (2) as well as in the
expressions (10) and (11).

Estimates of the long-run variance 0% and o2 can be obtained in various ways. It
is commonplace to use the variance estimator

1 T
Su=0u= 2.1 (12)

whereas a number of choices exist with respect to the estimator of 02, see e.g. Andrews
(1991) and Newey and West (1994). The one we will be using here is a kernel estimator
based on the sample autocovariances and can be written as

T
:82212 + = Zw‘rl Z Uty (13)
T t=1 T: t=7+1

In the present context we will use the Bartlett kernel which is the one Phillips (1987)
used in his original paper defining the Z, and Z; statistics. This is given as w,; =
1 —7/(l + 1) where [ defines the bandwidth parameter which should increase with
T at an appropriate rate to ensure consistency. Of course, other kernels could be
equally interesting to examine, see e.g. Andrews (1991), and Perron and Ng (1996).
However, as argued by Newey and West (1994), the choice of bandwidth parameter
appears to be more important than the actual choice of kernel.

4. BEHAVIOR OF THE TEST-STATISTICS WHEN DOUBLE UNIT ROOTS EXIST.

4.1. Augmented Dickey-Fuller tests. Notice that we can rearrange the equa-
tion (1) to yield

Ay, = (o + ag — arop — 1)y 1 + oAy + . (14)
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Inspired by this representation we can focus on the various augmented Dickey-Fuller
regressions

Ay, = (= Dy +5Ay1 + W (15)
Ay, = Bo+ (= 1D)ye1 + YAy 1 + Uy (16)
Ay, = Bo+ Bt + (@ — 1Dy +FAyr1 + s (17)

Observe that both when a single and double unit roots are present, (o« — 1) = ay +
ays — ajag — 1 = 0. Assume now that oy = as = 1 and u; is a non i.i.d. sequence
which is stationary. In this situation one of the authors, Haldrup (1994a), shows
that based upon the regression (15) for instance, the statistics will have the following
distributions:

T@-1) = D‘1{</01W( VAW (r )) (/1 W(r) dr> (18)
5 ([ weawe) + A)W( *}
te = O%D—l/z{< >< )1/2 (19)
5 (f W)W () + >\> (f 1 W(r)2dr> o Wu)?}

with D = (fol W(r)%lr) (fol W(r)2dr> — 2W(1)*. In the above expressions we use the
notation

W(r) = /0 " W(s)ds. (20)

The distributions for the detrending cases (16) and (17) follow naturally by use of (7)
and the definition (20) which also applies to the appropriately corrected Brownian
motions Wy(r) and Wi(r). Again, the influence from nuisance parameters can be
removed by increasing, (at an appropriate rate in T'), the number of lags of the
differenced series in the auxiliary augmented Dickey-Fuller regression.

Obviously, the distribution of the usual Dickey-Fuller t,—statistic as displayed in
(19) will be different from the I(1) Dickey-Fuller distribution (9) and similarly for the
demeaning and detrending counterparts. Hence the rejection probability of a test for
a single unit root, which is based on the augmented Dickey-Fuller regression (using
I(1) critical values), is likely to be different from the significance level in the presence
of an additional unit root. One might coin this possibility ” size-distortion” although
it appears to be a slightly misleading notion given that standard unit root tests are
designed to test for a single unit root and do not encompass double unit roots in the
maintained hypothesis. Hence the proper notion is that of robustness of the tests
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with respect to the possible presence of an additional unit root. Since a unit root will
always be present under the null, even when the series is 1(2), we will nevertheless in
some cases refer to the size of the tests (with the reservations just given).

Dickey and Pantula (1987) conducted a small scale Monte Carlo experiment to
study the potential problems described above. For a sample of 50 observations they
found that the unit root null was rejected in favor of the stationary alternative in
slightly more than 5 % of the cases at a nominal 5 % level. More specifically, the
actual rejection frequencies ranged from 5.5% to 7.7% depending upon the value of
a stationary root that was also allowed in the data generating process. However,
because the influence of stationary roots will be absent asymptotically, the observed
differences in the rejection frequencies made by Dickey and Pantula can be attributed
to small sample distortions of the test. The finding that the rejection probability
exceeds the nominal size for this one-sided alternative is, of course, a very surprising
result because one would require that a test for a single unit root would clearly
indicate non-stationarity rather than stationarity when indeed two unit roots are
present. In Table 1, we have extended Dickey and Pantula’s study and examine for
various sample sizes the rejection frequencies against both a stationary one-sided and
an explosive one-sided alternative. Also, we allow for deterministics in the auxiliary
regression. The experimental design is chosen such that it corresponds to the data
generating mechanism (14) with oy = ay = 1 and u; ~ n.i.d.(0,1); the statistic of
interest is the Dickey-Fuller t—ratio, t, associated with each of the regressions (15)
through (17).

Table 1 about here

The simulations demonstrate that, the size distortions from using the Dickey-
Fuller lower tail critical values are very minor. As indicated by the Dickey-Pantula
study, there is indeed a minor excessive rejection rate of the Dickey-Fuller test at the
5% level when no deterministics are included in the auxiliary regression, but this is
nothing seeming to be of any practical relevance. The same applies in the model with
a constant plus trend. The rejection rate when a constant (but no trend) is accounted
for, is just below the 5% nominal level. Hence, Table 1 shows that the lower tail of
the augmented Dickey-Fuller test statistic is virtually the same (or is only slightly
affected) regardless of whether one or two unit roots exist. Note that small sample
distributions can also be affected by the existence and magnitude of other stationary
roots in the model.

As can also be seen from Table 1, the upper tail is somewhat differently affected
with a larger concentration of density leading to fairly big size distortions when
testing against the explosive alternative. This reflects the fact that in finite samples
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at least, I(2) processes have properties that mimic those of explosive processes. The
explanation why the rejection frequencies in the upper tail appear to be smaller
when a trend is included in the auxiliary regression (compared to the case with only
a constant) may be due to the trend effectively diminishing the stochastically trending
I(2) component.

In Figure 1 the above results are visualized for the three cases depending upon the
treatment of deterministic components. The asymptotic density function (7" = 500)
of t, is displayed for the case of both a single and double unit roots. Hence the relevant
limiting distributions correspond to (9) and (19) (and their demeaning/detrending
equivalents) for A = 0. As seen, the upper tail is definitely affected by the presence of
double unit roots, whereas the lower tail hardly changes. Hence, as long as one tests
against a one-sided stationary alternative, the risky consequences of testing I(1) prior
to testing for I(2) are rather limited which is opposed to the general conception. It
does not change the fact, however, that a proper testing procedure where the size of
the test can be controlled against both stationary and explosive alternatives is the
one where 1(2) is tested against I(1) rather than taking the reverse route, c.f. the
suggestions of Dickey and Pantula (1987) and Pantula (1989).

Figure 1 about here

4.2. Phillips-Perron Tests. As we shall now see, the Phillips-Perron class of
tests appears to behave much differently compared to the augmented Dickey-Fuller
tests. Observe that these statistics, (defined in (10) and (11)) are based on the
regression (2) and the associated least squares coefficient and its t-ratio for a zero
coefficient null. It can be shown that when a; = ay = 1, the following limiting results
will apply, see also Dickey and Pantula (1987) and Nabeya and Perron (1994):

Theorem 1. For the regression model Ay, = (&3 — 1)y, 1 +u; with the data generat-
ing mechanism A®y; = u; where u; satisfies the general conditions of Phillips (1987),
(Assumption 2.1), then for T — oo

(6 -1) = [ Woryd) Wy 1)
1 -1/2
T2, s s ([ Vira) ([ W ATy (22)

where V(r) = {W(r) — $(Jg W(r)2dr) "W (1)W(r)} .
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As for the augmented Dickey-Fuller tests, when the regression is extended by
constant and trend as in (3) and (4), then the underlying asymptotic distributions
can be written in terms of the demeaned and detrended Brownian motions, and hence
the expressions will be qualitatively similar. As opposed to the limiting results (8) and
(9), the above statistics will have no nuisance parameters appearing in the limiting
distributions. This is of no practical relevance, however, because it is obvious that the
regression model (2) (as well as (3) and (4)) are inadequate in the present situation as
the residual u; will be highly serially correlated; in fact, 4; will be integrated of order
one and hence the various statistics will suffer from a standard spurious regressions
problem, see Phillips (1986). This is why a; — 1 = O,(T™!), rather than O,(T~?)
as in (18), and it is also the spurious regression phenomenon that makes t,, have a
non-degenerate asymptotic distribution. Nevertheless, in ignoring the possibility of
I(2), the Phillips-Perron tests are constructed from the quantities t,,, and T(q; — 1).
In Gonzalo and Lee (1998) (section 4.3, page 138-140) a similar kind of problem with
misspecified dynamics is analyzed within a multivariate context using I(2) variables.

Note that we cannot use the result (21) as a general way of solving nuisance
parameter problems. One might think that by taking the cumulative sum of an 1(1)
series, hence becoming 1(2), one could use (21) as the relevant nuisance parameter
free distribution under the null hypothesis. However, such a ’test’ is inconsistent since
under the alternative 7'(&; — 1) will be bounded as well, c.f. (8).

As a benchmark, assume that o? and o2 are known figures that we need not
estimate; hence the adjustment of the statistics given in (10) and (11) becomes rather
trivial. Because T2 y2 , = O,(T?) it can be seen that asymptotically the
influence from the adjustment terms will vanish. Therefore, the limiting results in
(21) and (22) will apply to (10) and (11) (apart from a scaling parameter of the
latter distribution). Observe that since the limiting distributions have only positive
support, asymptotically the test statistics will never reject the unit root null in favor
of the stationary alternative. In the limit, because t; — +o00, a single unit root will
always be rejected in favor of the explosive alternative even though a unit root is
known to exist under the null.

Let us now examine how the Phillips-Perron tests behave if nuisance parameters
are estimated according to (12) and (13). We shall consider the two cases where
either [ is fixed or [ increases with 7" in a particular way. First, assuming [ to be a
fixed number, the following can be shown.

Theorem 2. Under the assumptions of Theorem 1, and considering the bandwidth
parameter | to be fixed, then for T — oo

T7's2 = o (/01 V(r)zdr> (23)
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T = o1+ 1) ( /OIV(r)er> (24)
Zo = T(G1—1)+0y(1) (25)
TPL S s +11)1 =(/ 1 Vir)r) o [ WeyRary Ay (20)

Hence, according to (25) and (26), the qualitative results obtained, compared to
when 02 and o2 are known, will continue to hold. However, because it is required that
[ — oo at a controlled rate as T — oo for the estimators s* and s2 to be consistent
(in the I(1) case) we need to focus on the behavior of the statistics for I — oo. In
the original application of the above statistics to I(1) series, consistency requires that
I = o(T"/*), see Phillips (1987). But in the present situation weaker requirements are
needed to obtain non-degenerate distributions.

Theorem 3. Under the assumptions of Theorem 1, and requiring that [ — oo such
that + — 0 for T — oo, that is, | = O(T"~%) for somee: 0 <e <1

(T) ' = o2 ( / 1 V(r)2dr> (27)

T2 7, = %( /01V(7")2dr>_1/2( /OIW(T)%)WWQ)? (28)

As seen, asymptotically, (I/T)"? Z, will have the same limiting distribution as
T~2t,, depicted in (22). In finite samples we will thus expect that, by increasing I,
the entire distribution is shifted less towards the explosive region than would otherwise
be the case. The explanation behind the limiting result (28) is that in the expression
for Z;, see (11), the second term is annihilated asymptotically because (s* — s2) /s
will diverge at the rate [ whilst (7721, y2 |)'/? will diverge at rate T; the result
follows by the assumption {/T — 0 for [, T — oo. Of course, the qualitative results
depicted in Theorem 3 will also apply when deterministic components are allowed in
the model.

To describe the finite sample distributions, the descriptions above are inadequate
as lower order terms can play a role, especially when [ increases with the sample
size without stating precisely the exact value of [ to be chosen. As a reference case,
consider the situation where [ is fixed. In this case the expression for T-Y27, consists
of two components with off-setting effects as can be seen from

T2, 1 (T7'* = T7's2) 4 & _
T-1/24 )(T I/Qtal) - ﬁ T-1/2¢ (T 4Zyt2—1> 12

t=1

T_I/QZt - (
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The first term appears to be O,(I7*/2) and will always have positive support. The
second term is O,(I/2/T) and will have negative support. The question is which term
is likely to dominate when [ increases for a fixed sample. This is also a question of
practical relevance because there is only little guidance in the literature concerning
the actual choice of the truncation parameter in finite samples, although theoretical
rules for the rate in T follows from the asymptotics.

A small scale Monte Carlo experiment has been conducted in order to examine
the quantitative implications of the above theoretical results. We only focus on the
case with no deterministic terms because the qualitative implications will be the same
when constant and trend are allowed for. In Table 2 the finite sample distributions
of the Z; test for a range of sample sizes and choices of the truncation parameter
have been calculated with a data generating mechanism given by a double unit root
process. The implications that follow from the analytical results are confirmed in the
simulations. That is, the divergence of Z; towards infinity with 7" but at a reduced
rate when [ increases as well. Although the distributions have some concentration
of density in the negative region for increasing values of [, the concentration is only
of moderate size and the practical implications are that it is very unlikely that the
Phillips-Perron test will lead to acceptance of stationarity. Rather, the test will
indicate explosiveness when double unit roots exist as predicted by the asymptotic
theory.

Table 2 about here

5. CONCLUSION
In this paper we have examined the robustness of Dickey-Fuller and Phillips-Perron
tests for a unit root. In particular, we have analyzed the implications of testing for
I(1) when the series is really I(2). This is frequently seen in empirical studies where
[(2)-ness is ignored as a likely alternative to the I(1) process. The results also have
implications for following a route of testing where I(1) is tested prior to testing for
[(2). It was found that when the underlying series is doubly integrated, it is likely to
give rise to excessive rejection of the unit root null in favor of the explosive alternative
because the test statistic will have a non-similar distribution caused by the extra unit
root. However, as concerns the augmented Dickey-Fuller test, the lower tail remains
almost identical regardless of whether a single or two unit roots are present in the
series. Therefore, as long as one tests against a one-sided stationary alternative, the
risky consequences of testing I(1) prior to testing for 1(2) are rather limited which is
opposed to the general conception in the literature. It remains necessary, though, to
consider also the possibility of an extra unit root; both when testing against one-sided
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and two sided alternatives. Otherwise one might get the wrong impression that the
series is I(1) or explosive when in fact it is 1(2).

Hence our recommendation is to consider seriously the possibility of 1(2) in unit
root testing. The preferred testing strategy is to test I(2) against I(1) prior to testing
I(1) against I(0). In so doing a test with a controllable size against both a one and
two-sided alternative will result.

6. TECHNICAL APPENDIX

Proof of results reported in section 4.
The following two lemmas will show useful throughout:

Lemma 4. Suppose that {y,} is a random sequence generated according to (1) with
a; = ay = 1 and with {u}$° satisfying the regularity conditions of Phillips (1987),
(Assumption 2.1), then as T' — oo

a) T3 yip = o [} W(s)ds = oW (r)

b) T_l/sz[TT] = UW(T)

¢) TS y; = o® [y W(r)dr

d) T2 Ayp = o Jg W(r)*dr

e) TS0, ye1Aye = o [ W(r)W (r)dr = ZW(1)?

Proof. The results (a), (b), (¢), (d), and the first limiting result in (e) can be
directly deduced from Lemma 2.1 of Park and Phillips (1989). The last equality sign
associated with (e) can be proven along the following lines:

The general conditions to ensure that T=Y2Sip,) = T2 Y u; = oW(r) are
assumed to hold, see Herrndorf (1984) and Phillips (1987). Note that since y =
yi—1 + Ay, squaring and summing over T will yield

M=

T
T_3Zyt—lAyt = T

t=1 t

T
2T*329t71Ayt = 7°
=1

T
(W7 — ey — Ay) =T (4 — v Ay + yiy — Ay}) &
1 t=1

Wi +viq— Ayp) &

M=

t

Il
—_

e 1, _ g 1 o
Y e = (T T A= T 01 = GO
t=1 t=1

by (a) and (d) of Lemma 4.

Lemma 5. Under the conditions of Lemma 4
a) TG, = o {W(r) — 3(Jfo W(r)2dr) " W)W (r)} = oV (r)
b) T7's2 =TS a7 = o [§ V(r)dr
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c) T1s> = o?(1+1) (fol V(r)%lr) for a fixed value of |
d) (T~ s* = o (Jy V(r)%dr) for I=0(T"~),0 < £ < 1.

Proof. First we need to find the limiting distribution of T(a; — 1). It follows
straightforwardly from (¢) and (e) of Lemma 4, that

T T
T@—-1) = (T y) (T yly)
t=1 =1
1, 1= —
= ([ Wr) W) (A1)
0
Now, turning to (a), the least squares residuals from (2) are given as 4, =
Ay; — (@ — 1)y,_; which by appropriate scaling yields T-/24, = T~2Ay;, — T(a; —
1)T—3/2y,_;. The required result follows from the sub-results (a) and (b) of Lemma
4, and (A1).
Also, (b) follows immediately from (a).
Result (¢) can be shown along the following lines:

l
T_182 = T_ISZ + 2T_2 Z ((1 ) Z utut T)
T=1 t=7+1

! T
= T2 4272y (1 S ) S (3 Adin,
=1 I+1/ 2 \ia
1 - T
+2r 2y <1 _ ) R (A2)
=1 l + 1 t=7+1
where we have exploited that 4, = > Aty—;11 + U—r. Now, since

T T

Z Z A@t_iJrl@t_T - Op(T) (A?))
t=r+1i=1

it is seen that for fixed bandwidth [, the second term in (A2) is going to vanish
asymptotically. Hence we have

l
e - ey (1o )(T S i )+ 0

t=7+1

= / (T’)Zdr—%—Z o / V(r)*dr

= l+102 V(r
0
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This proves (¢).

Turning to (d), the proofs where [ increases with T' can be shown along the
following lines. We note that because Y\ _, (1 - 1+L1) = O(l) and £ = o(1), the
second term in (A2) is Op(%). Thus

l T T
)t = Ty (1= ) Y (A )

i=1

= o)+, + 2y (1- 1) (T? > )

t=7+1

1
= ‘72/ V(r)*dr, for [, T — oo and [ = O(T"%),0 < e < 1
0

Proof of Theorem 1.

The result (21) has already been shown in (Al). The limit (22) can be seen by
appropriate scaling of the t—statistic defined as to, = (@1 — 1)/[su (X, y2 1)V,
ie. T7V%t, =T(a, —1)/[T~V2s,(T~* XL y? )~'/?]. The result then follows from
(c) of Lemma 4, (b) of Lemma 5, and (A1).

Proof of Theorem 2.
The results (23) and (24) of Theorem 2 are already shown in Lemma 5. (25)
follows as

. L - e 1o
Zo = T(a —1)—§(T L2 — TN T Syt )T
t=1

= T(a@ - 1)+ o0,(1)

by use of Lemma 4 and Lemma 5, whereas (26) is given as

T2 1 (T 's? =T 1s2) 4
—1/2 _ u —1/2, \ _ _* u —4 2 \—1/2
T Zt - ( T,l/gs )(T tal) 2T T,l/QS (T ;yt—l)
T_1/28u B
= (G (T 5,) + 0y(1)
s o ([vera) [ Weranem oy
2(0+1)2 \Jo nar o

Proof of Theorem 3
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Appropriate normalization of (10) yields

(Z/T)I/QZt _ T2, 124 _ 1 (T—ISQ _ T_182> (T2 in )—1/2
(T1) % s (T Vs b oot

From this expression it follows from Lemma 4 and Lemma 5 that

1

—1_.2 —1_.2 _
W(T s“ =T Su) = Op(l)

T
(T2 yia)? = Oy(T)
t=1

Thus, given the assumption that [ grows at a slower rate than T, see also Perron and
Ng (1994), section 4,

~1/24
wrrez = | T

- cu —1/24
Tl)71/2 s) T =ty +op(1)

1

= 3 ( / 1 V(T)qua)l/g ( W))W (1)
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7. 'TABLES AND FIGURES

Table 1. Rejection frequencies of augmented Dickey-Fuller t—test for a single
unit root when two unit roots exist. The tests are against one-sided stationary

and explosive alternatives at 1, 5, and 10 % levels and for sample sizes
T = 25, 50, 100, 250, and 500.

Stationary alternative Explosive alternative

T 1% 5% 10% 1% 5% 10%

no deterministics

25 .013 .055 .103 .025 115 .202
50 .012 .054 .100 .032 124 .209
100 .011 .055 .100 .036 127 212
250 .012 .053 .100 .037 131 222
500 .010 .051 .099 .039 .136 223
constant
25 .013 .048 .086 .263 414 1495
50 012 .047 .085 272 420 .500
100 .012 .047 .085 .268 418 .496
250 .012 .048 .086 275 419 1494
500 .012 .046 .086 274 416 487

constant and trend

25 018 .073 125 139 244 311
20 018 072 129 149 .248 310
100 018 .070 121 156 251 308
250 017 072 128 150 .246 307
500 016 .065 119 155 .250 309

Note: The simulations are based on 25,000 Monte Carlo replications.
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Table 2. Empirical fractiles for the Z; test when the underlying process is
generated according to A%y, = g;, with g, ~n.i.d.(0,1), t =1,2,...T.

Empirical fractiles

T 1 1% 25% 5% 10%  50% 90%  95%  97.5% 99%

50 0 -39 -28 -10 .65 8.52 18.04 21.01 2395 2691
o0 4 -9 -7 -56 -15 403 9.01 10.67 1235 14.34
50 8 -1.15 -95 -7 -42 318 741 895 1048 12.29
50 12 -1.20 -1.04 -87 -56 283 6.83 842 10.00 1191
50 DF -2.62 -2.25 -1.95 -1.61 -.52 .91 1.31 1.66  2.08

100 0 -24  -14 A7 1.19 12,57 26.64 30.79 34.68 38.66
100 4 -69 -49 -33 .17 5.75  12.62 14.59 16.63 18.78
100 8 -92 -69 -53 -11 439 995 1142 13.24 15.03
100 12 -1.06 -84 -64 -29 376 863 10.08 11.79 13.40
100 DF -2.60 -2.24 -1.95 -1.61 -.51 .90 1.29 1.64 2.03

500 0 -07 .07 71 2.86 2856 59.98 69.00 77.17 87.14
500 4 -.25 -16 14 1.11 12.83 27.02 31.32 3499 39.60
500 8 =37 =25 -04 .69 9.60 20.30 23.59 26.46 29.80
500 12 -47  -32 -15 AT 8.04 17.03 19.84 2234 25.16

500 DF -2.58 -2.2% -1.95 -1.62 -.51 .89 1.28 1.62  2.00

Note. "DF” indicates the Dickey-Fuller fractiles (in the presence of one unit root)

for a given sample size. This is the distribution of reference by which the Z;
fractiles should be compared.
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—— DF with no determ. q
--- I(2)—distribution
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Figure 1: Asymptotic density functions of ¢, in the presence of a single and double
unit roots. These correspond to (9) and (19) for A = 0. Three cases are displayed: no
deterministics, constant, and constant plus trend. The plots are drawn from 250000
Monte Carlo replications and a normal density kernel was used for smoothing.





