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Dynamic Modeling and Lateral Control of Articulated Vehicles 

Chieh Chen and Masayoshi Tomizuka 

Department of Mechanical Engineering 
University of California at Berkeley 

Abstract 

A control oriented dynamic modeling approach for  articulated vehicles is  proposed. A generalized coordinate 
system is introduced to describe the kinematics of the vehicle. Equations of motion of a tractor-semitrailer 
vehicle are derived based o n  the Lagrange mechanics. Experimental studies are conducted to validate the 
eflectiveness of this modeling approach. Two nonlinear lateral control algorithms are designed for  a tractor- 
semitrailer vehicle. The baseline steering control algorithm is designed utilizing input-output linearization. 
To prevent jackknifing and furthermore reduce tracking errors of the trailer, braking forces are independently 
controlled on  the inner and outer wheels of the trailer. The coordinated steering and braking control 
algorithm is designed based on  the multivariable backstepping technique. Simulations show that the trailer 
yaw errors under coordinated steering and independent braking force control are smaller than those without 
independent braking force control. 
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Executive Summary 

This report summarizes and concludes the research results on lateral control of Commercial Heavy Vehicles 
in Automated Highway Systems (AHS) conducted in the multi-year PATH project MOU129-242: Steering 
and Braking Control of Heavy Duty Vehicles. Under this project, dynamic modeling of single unit as well 
as articulated heavy vehicles was done. Several linear and nonlinear control techniques were designed for 
the lateral guidance. Extensive simulation studies were conducted t o  verify the effectiveness of the control 
strategies. The next stage of this research, the experimental validation, will be continued under the path 
project MOU 313: Lateral Control of Commercial Heavy Vehicles. 

The work done under MOU 242 is reported in two parts. Part  I of the report “Modeling and Control of 
Articulated Vehicles” is presented here. The second part “Lateral Control of Single Unit Heavy Vehicles”, 
which is concerned with the robustness and performance specification and the design of lateral controllers 
for Singleunit heavy vehicles, is presented in another separate report. 

In this report, two types of dynamic models of tractor-semitrailer vehicles are utilized for the analysis 
and design of lateral controllers. The first type of dynamic model is a complex simulation model. The 
second type of dynamic models are two simplified control models, which are derived from the complex 
nonlinear model. This modeling approach utilizes Lagrangian mechanics and has an advantage over the 
Newtonian mechanics formulation in that  this complex model eliminates the holonomic constraint at the 
fifth wheel (linking joint) by choosing the generalized coordinates. Since there is no constraint involved 
in the equations of motion, it is easier to design control algorithms and solve the differential equations 
numerically. The effectiveness of this modeling approach is shown by comparing the experimental results 
of a tractor-semitrailer vehicle with the simulation results of the complex tractor-semitrailer vehicle model. 

Two control algorithms for lateral guidance of tractor-semitrailer vehicles are designed. The first is a 
baseline steering control algorithm and the second is a coordinated steering and independent braking control 
algorithm. In the design of the second control algorithm, we utilize tractor front wheel steering angles 
and trailer independent braking forces to  control the tractor and the trailer motion. The multivariable 
backstepping design methodology is utilized to  determine the coordinated steering angle and braking 
torques on the trailer wheels. Simulations show that  both the tractor and the trailer yaw errors under 
coordinated steering and independent braking force control are smaller than those without independent 
braking force control. 

.. 
11 



1 Introduction 

This report is concerned with dynamic modeling and lateral control of commercial heavy-duty vehicles for 

highway automation. 

In the past, automatic vehicle control research work for Automated Highway Systems (AHS) have been 
emphasized on passenger vehicles (Fenton 1991, Shladover et. al. 1991, Peng and Tomizuka 1993). Less 
attention, however, has been paid to  control issues of commercial heavy vehicles for AHS. The study of 
heavy vehicles for AHS applications has gained interest only recently (Bishel 1993, Chen and Tomizuka 
1995, Favre 1995, Kanellakopoulos and Tomizuka 1996, Yanakiev and Kanellakopoulos 1995, Zimmermann 
1994). On the other hand, the study of lateral guidance of heavy-duty vehicles is important for several 
reasons. In 1993, the share of the highway miles accounted for by truck traffic was around 28% (Federal 
Highway Administration 1994). This is a significant percentage of the total highway miles traveled by all 
the vehicles in US. According to  Motor Vehicles Facts and Figures (American Automobile Manufactures’ 
Association 1993), the total number of registered trucks (light, commercial and truck-trailer combinations) 
formed approximately 10% of the national figures in 1991 and 30.9% of the highway taxes came from heavy 
vehicles. Also, due to  several economic and policy issues, heavy vehicles have the potential of becoming 
the main beneficiaries of automated guidance (Kanellakopoulos and Tomizuka 1996). The main reasons 
are: 

0 On average, a truck travels six times the miles as compared to  a passenger vehicle. Possible reduction 
in the number of drivers will reduce the operating cost substantially. 

0 Relative equipment cost for automating heavy vehicles is far less than for passenger vehicles. 

0 Automation of heavy vehicles will have a significant impact on the overall safety of the automated 
guidance system. Trucking is a tedious job and automation will contribute positively to  reducing 
driving stress and thereby increase safety. 

Thus commercial heavy vehicles will gain significant benefit from Advenced Vehicle Control Systems 
(AVCS), and may actually become automated earlier than passenger vehicles due to  economical con- 
siderations. 

Due to  the popularity of the tractor-semitrailer type commercial heavy-duty vehicle, we will use i t  as the 
benchmark vehicle in our study. Two types of dynamic models are developed in the study of lateral control 
of tractor-semitrailer vehicles in AHS: a complex simulation model and two simplified control models. In 
this  report, a nonlinear complex model is developed to simulate the dynamic responses of tractor-semitrailer 
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vehicles and will be exploited to evaluate the effectiveness of lateral control algorithms. This simulation 
model consists of three main components: the vehicle sprung mass (body) dynamics, a tire model and 
a suspension model. The main distinction between this complex model and those in the literatures is 
that the vehicle sprung mass dynamics is derived by applying Lagrangian mechanics. This approach h a s  
an advantage over a Newtonian mechanics formulation in that  this modeling approach eliminates the 
holonomic constraint at the fifth wheel of the tractor-semitrailer vehicle by choosing the  articulation angle 
as the generalized coordinate. Since there is no constraint involved in the model, i t  is easier for both 
designing control algorithms and solving the differential equations numerically. Other configurations of 
articulated vehicles, for example the tractor/three trailer combination, can also be modeled with the same 
approach. 

The second type of dynamic models are represented by two simplified lateral control models: one 
for steering control and the other for coordinated steering and differential braking control. These lateral 
control models, which are simplified from the complex model, will be developed. 

A steering control algorithm using input/output linearization is designed as a baseline controller to 
achieve the lane following maneuver in AHS. As safety is always of primary concern in AHS, a coordinated 
steering-independent braking control algorithm is considered to  enhance driving safety and avoid unstable 
trailer yaw motion. This coordinated steering and braking control algorithm utilizes the tractor front wheel 
steering and the braking force at each of the rear trailer wheels as control inputs. Simulation studies using 
the complex vehicle model will be conducted t o  show the performance of the coordinated steering and 
independent braking control strategy. 

The organization of this report is as follows. In section 2, a coordinate system is introduced t o  describe 
the motion of the tractor-semitrailer type commercial heavy-duty vehicles. Based on the coordinate system 
in section 2, the kinetic energy and the potential energy are calculated in section 3. In section 4, a set of 
equations describing the sprung mass dynamics are derived by using Lagrange’s mechanics. In conjunction 
wi th  the equations of the unsprung mass dynamics, the expression of the generalized force corresponding to  
each coordinate is obtained in section 5. To complete the development of the complex model, we present the 
tire model by (Baraket and Fancher 1989) and a simplified suspension model in section 6. Effectiveness of 
this modeling approach is shown in section 7 by comparing the open loop experimental results of a tractor- 
semitrailer vehicle and the simulation results from the complex model. In section 8, the transformation 
relationships between the road reference coordinate and the vehicle unsprung mass reference coordinate 
are explored and will be used t o  obtain control models. In section 9, a steering control model is formulated. 
Based on this model, a baseline steering Controller is designed in section 10. A steering and braking control 
model is formulated in section 11 and the coordinated steering and braking control algorithm is designed 
in section 12. Conclusions of this report are given in the last section. 
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2 Definition of Coordinate System 

2.1 Coordinate System 

Figure 1: Coordinate System to Describe the Vehicle Motion 

A coordinate system is defined to  characterize the motion of a tractor-semitrailer type of articulated 
vehicle. As shown in Fig. 1, X,Y,Z, is the globally fixed inertial reference coordinate. We will obtain 
the expressions of vehicle kinetic and potential energies with respect to this reference coordinate. X,Y,Z, 
is the tractor’s unsprung mass coordinate, which has the same orientation as the tractor. The 2, axis 
passes through the tractor’s C.G. The translational motion of the tractor in the X ,  - Y, plane and the yaw 
motion of the tractor along the 2, axis can be described by the relative motion of the  X,Y,Z, coordinate 
with respect to  X,Y,Z,. XslYslZsl is the tractor’s sprung mass coordinate, which is body-fixed at the 
tractor’s center of gravity. Coordinate XslYslZsl h a s  roll motion relative t o  coordinate X,Y,Z,. The 
trailer’s motion can be characterized by describing the articulation angle between the tractor and the 
trailer, or the relative motion of the trailer’s unsprung mass coordinate Xs2Ys2Zs2 with respect to the 
tractor’s unsprung mass coordinate XslYslZsl. Having defined the coordinate systems, a set of state 
variables for the tractor-semitrailer vehicle can be introduced as 

x,, : position of the tractor C.G. in X ,  direction of the inertial coordinate X,Y,Z, 

x n  : velocity of the tractor C.G. in X ,  direction of the inertial coordinate X,Y,Z, 
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yn : position of the tmctor C.G. in Y, direction of the inertial coordinate XnYnZn 

yn : velocity of the tmctor C.G. in Y, direction of the inertial coordinate XnYnZn 

€1 : tractor yaw angle with respect to inertial coordinate XnY,Z, 

il : tractor yaw rate with respect to inertial coordinate X,Y,Zn 

q5 : tractor roll angle 

4 : mte of change of tmctor roll angle 

cf : articulation angle between the tractor and the tmiler 

if : rate of change of the articulation angle between the tractor and the trailer 

With the definition of the s tate  variables, we can calculate the transformation matrices between those 
coordinates. The transformation matrices will be used to obtain the kinematics of the vehicle. The 
transformation matrices between the inertial reference frame and the unsprung mass coordinate are 

and ( ;:) = ( -s2nq coy1 si; coscl ;) (;) (2) 

ku 

The transformation matrices between the unsprung mass coordinate and the tractor's sprung mass coor- 
dinate are 

( + ( o  0 4  1 0  1 -.)(:::) 0 ksl 

and 

(":)=(: kSl 0 -4 : ;)(;) 1 

The transformation matrices between the tractor's sprung mass coordinate and the trailer's sprung mass 
coordinate are 
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and 

2.2 Reference Frame 

Road Centerline 

Figure 2: Three Reference Coordinates 

As shown in Fig.2, three types of reference frames are used to  describe the translational and rotational 
motion of vehicles. They are inertial reference frame X,Y,Z,, vehicle unsprung mass reference frame 
X,Y,Z, and road reference frame XrYrZr. In this report the complex vehicle model is first derived with 
respect to  the inertial reference frame. However, state variables, such as the position and the orientation, 
of a vehicle with respect t o  the inertial reference frame are not what we are concerned with. The complex 
model is transformed so that  it depends only on state variables with respect t o  the unsprung mass reference 
frame. The vehicle model relative to the unsprung mass reference frame does not depend explicitly on the 
position and the orientation of the vehicle. This is widely used in vehicle dynamics t o  predict and analyze 
vehicle handling response, since the side slip angle, yaw rate and lateral acceleration of the vehicle are 
naturally defined in this reference frame. Further, for the lane following manever in automated highway 
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systems, the road reference coordinate O r X r Y r  in Fig.:! is naturally introduced t o  describe tracking errors 
of the vehicle with respect t o  the road centerline. The road reference coordinate O r X r Y r  is such defined 
that the X,. axis is tangent to  the road centerline and the Y, axis passes through the center of gravity of 
the vehicle. By studing the kinematics with respect to  different reference frames, transformations from the 
inertial reference frame to  the unsprung mass reference frame and from the unsprung mass reference frame 
to the road reference frame will be obtained. In the following section, the transformation between the 
inertial reference frame and the unsprung mass reference frame will be studied. It will be used in section 
4 to obtain the complex vehicle model. The transformation between the unsprung mass reference frame 
and the road reference frame will be studied to  obtain control models. 

2.3 Transformation between the inertial reference frame and the unsprung mass reference frame 

Figure 3: Inertial and Unsprung Mass Reference Frames 

From Fig. 3, the vehicle velocity at C.G. with respect to  the inertial reference frame is 

VCG = + k i n  (7) 

where kn is the component of the vehicle velocity along the X ,  axis and y, is the component of the vehicle 
velocity along the Y, axis. The vehicle acceleration at C.G. can be obtained by differentiating Eq. (7), 

aCG = z n i n  + YnJn. 
.. . 

(8) 

On the other hand, the vehicle velocity at C.G. can also be denoted as 

VCG = &iu + y&, 
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where xu is the velocity component along the X ,  axis of the unsprung mass coordinate and y u  is the 
velocity component along the Yu axis of the unsprung mass coordinate. Then the vehicle acceleration a t  
C.G. can be obtained by differentiating Eq. (9), 

where 

and 

~ C G  = xuiu + xu$iu + yUju + yU$ju 
= (zu  - yuil)iu + ( yu  + &il)jul 

d .  
- J ~  = -iliu 
dt 

are used in Eq. (10). By equating Eqs. (7) and (9) and noting the transformation matrix 

we have 

or 

in cos €1 + y, sin €1 = iu 

-xn sin €1 + y, cos €1 = yu .  

Similarly, by equating Eqs. (8) and (10) and using the transformation matrix (l l) ,  we obtain 

(xu - yuil yu + & < I )  ( :u ) = (2, y,) ( :n ) 
Ju J n  

cos €1 -sin €1 ) ( i: ) 
sin €1 cos €1 

= (2, y,) 1 

or 

x,cos €1 + y,sin €1 = xu - yuil (16) 

-$,sin €1 + y,cos e l  = yu + i u 2 1 .  (17) 

Eqs. (13), (14), (16) and (17) will be used to  transform equations of motion from the inertial reference 
frame to  the unsprung mass reference frame. 

7 



3 Vehicle Kinematics 

In this  section, translational and rotational velocities will be calculated for both the tractor and the trailer. 
Then the expressions of kinetic energy and potential energy that  will be used to  derive the vehicle model 
by applying Lagrange’s equations in section 4, are given. Vehicle parameters are depicted in Fig. 4 and 
listed in Table 1. 

Fifth Wheel 

R 

H2 

Pitch Center 

Ti.LG \I 
Figure 4: Schematic Diagram of Complex Vehicle Model 

3.1 Tractor Kinematics 

To facilitate the calculation of the tractor translational velocity, several identities of time derivatives of 
un i t  vectors in each coordinate frame will be established in this section. These identities include the time 
derivatives of the unit vectors along the X ,  Y,  and 2 axis of the unsprung mass coordinate and the sprung 
mass coordinate. Recall that  the angular velocity of the tractor’s unsprung mass coordinate is 
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C m f  

cornering stiffness of semitrailer rear wheel ' c a t  

cornering stiffness of tractor rear wheel C,, 
cornering stiffness of tractor front wheel 

sx f longitudinal stiffness of tractor front wheel 

s x r  longitudinal stiffness of tractor rear wheel 

sx+ longitudinal stiffness of semitrailer rear wheel 

Table 1: Parameters of Complex Vehicle Model 

Thus the derivatives of the unit vectors in the unsprung mass coordinate are 

d .  - dt lu  = Wu/n X iu = i lju 

and 

d z k u  = wUln X ku = 0, (21) 

respectively. Since the sprung mass coordinate has relative roll motion with respect to  the unsprung mass 

coordinate, the angular velocity of the sprung mass coordinate XslYslZsl is 

Wsl/n = Wsl/u +Wu/n 

= $isl + ilk, 

= $isl + 4i1js1 + glksl, 
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where 

k, = 4js1 + kSl 

is used in (22). Then the derivatives of the unit vectors in the sprung mass coordinate are 

Translational Velocity at Tractor C.G. 

Fron Fig. 4 the position of the tractor C.G can be expressed as 

3.2 Trailer Kinematics 
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Translational Velocitv at the Trailer C.G. 

From Fig. 4, it is easy t o  see tha t  the position vector of the trailer C.G. can be decomposed into three 
components as 

where rCGl/n is the position vector of the tractor C.G., rfw/CG1 is the position vector from the tractor 
C.G. to  the fifth wheel, and rCG2/fw is the position vector from the fifth wheel t o  the trailer C.G. By 
substituting vehicle geometric parameters into (33), we obtain 

Consequently, the velocity vector at trailer C.G. can be obtained by differentiating (34), 
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3.3 Kinetic Energy and Potential Energy 

Kinetic Energy 

The kinetic energy of the tractor-semitrailer vehicle can be obtained by adding the kinetic energy 
component of the tractor and tha t  of the trailer. The kinetic energy of the tractor, which is denoted as 
7’1, can be calculated from the translational velocity of the tractor at C.G. and the angular velocity of the 
tractor’s unsprung mass coordinate, 

Ti = 

By substituting VCGl in (28) and w,1 

Ti = 

Similarly, the kinetic energy of the trailer, denoted as T2, can be obtained from the translational velocity 
at the trailer C.G. and the angular velocity of the trailer’s sprung mass coordinate, or 
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and 

Potential Energy 

The change of the potential energy for the tractor of a tractor-semitrailer vehicle is primarily due to the roll 
motion. However, the change of potential energy for the semitrailer is affected by both the roll and pitch 
motion at the linking joint (fifth wheel). Furthermore, the compliance at  the fifth wheel will be significant 
in describing the roll motion of the trailer. For simplicity, these complicated coupling will not be modeled. 
Instead, the roll motion is approximated as if the articulation angle is zero, tha t  is, the  truck is in straight 
configuration. This approximation for roll motion will be examined by comparing simulation results and 
experimental data  in section 7. Thus the potential energy can be obtained as 

13 



The Lagrangian, L ,  is defined as 

L=Tl+TZ-V  

and will be used to  derive vehicle body dynamics in the next section. 

(47) 

4 Equations of Motion 

In this  section a set of five second-order ordinary differential equations governing the vehicle sprung mass 

will be obtained in two steps. First, the vehicle sprung mass dynamics with respect t o  the inertial reference 
frame X,Y,Z, will be derived by utilizing Lagrange’s equation. Second, since the equations of motion with 
respect to  the unsprung mass coordinate are more meaningful, we will transform the vehicle dynamics from 
the inertial reference frame to  the unsprung mass reference frame. 

Step 1 Vehicle Body Dynamics with respect to  Inertial Reference Frame 

In section 3 we obtain the kinetic energy and potential energy of the tractor-semitrailer vehicle, and the 
Lagrangian is defined as 

L = T l + T 2 - V  

By using Lagrange’s equation, 

we obtain the first dynamic equation 

:4 



where Fg,, is the generalized force corresponding to  the generalized coordinate x,. By using Lagrange's 
equation 

to obtain the third dynamic equation 

where Fgb is the generalized force corresponding to  the generalized coordinate 4. From Lagrange's equation 
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the fourth equation is obtained as 

(55) 

Eqs. (49)’ (51)’ (53)’ (55) and (57) describe the dynamic behavior of the tractor-semitrailer vehicle seen 
from the inertial reference frame X,Y,Z,. 

Step 2 Vehicle Body Dynamics with respect to  the Unsprung Mass Reference Frame 

I n  this step, the vehicle model will be transformed from the inertial reference frame t o  the unsprung mass 
reference frame. Recall in section 2 that  the transformations can be conducted by using 

2, cos €1 + y, sin 61 = x, ( 5 8 )  
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The fourth and fifth dynamic equations can also be obtained from (55) and (57) as 

and 

respectively. Eqs. (62), (63), (64), (65) and (66) constitute the first major component of the complex 
model for the tractor-semitrailer vehicle. The generalized forces on the right hand side of (62), (63), (64), 

(65) and (66) are the other major component of the complex model and will be explored in the next two 
sections. 

5 Generalized Forces 

We have seen in the previous section that  deriving the generalized forces is an important part of the 
modeling. In this and the next sections, we will show how to  obtain generalized forces, which appear on 
the right hand side of the dynamic equations (62), (63), (64), (65) and (66). We notice that the external 
forces acting on the vehicle body are from the tire/road interface and suspensions. Thus to calculate the 
generalized forces, we will derive the expressions for the generalized forces in terms of the longitudinal and 
lateral components of tire forces and the vertical suspension forces. The process of calculating generalized 
forces are derived from the principle of virtual work. Interested readers are refererred to (Greenwood 
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1977, Rosenberg 1977). In the next section, we will show how to  obtain the longitudinal and lateral 
components of tire forces from the tire model and suspension forces from the suspension model. To derive 
the expressions of generalized forces in terms of the tire forces and suspension forces, we define the sign 
conventions, shown in Fig. 5, of tire forces, where Fa; is the longitudinal tire force and Fb; is the lateral 
tire force. The suspension force at the i - th tire is denoted as Fp;, whose direction is perpendicular to  
both Fa; and Fb;. 

Yn 

Figure 5: Definition of Tire Force in the Cartesian Coordinate 

From Fig. 5, the component of the tire force along the X, axis is 



for i = l , . . .  , 4 ,  and is 

for i = 5,6. The position vector of the location, where the external forces Fznl, Fynl and Fpl are acting, 
can be obtained as 

By substituting the transformation matrices in section 2, we obtain the position vector rtl in the inertial 
reference coordinate, 
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and 

respectively. So far we have obtained the position vectors for the external forces. Thus  the generalized 
force Fg,, is 

Substituting (72), (73), (74), (75), (76) and (77) into (78), we obtain 

The generalized force associated with the coordinate yn is 

Substituting (72), (73), (74), (75), (76), and (77) into (80), we obtain 

FgYn = Fynl + Fyn2 + Fyn3 + Fyn4 + Fyn5 + F ~ , ~ .  

The generalized force corresponding to  the coordinate 4 is 

+ Fyni 3 + FPi 3, 
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or we have 

Similarly, the generalized force for the coordinate € 1  is 

and can be calculated as 

The generalized force for the coordinate Ef is 

which can be calculated as 

Expressions for the generalized forces in (79), (81), (83), (85)  and (87) are the second important component 
for the complex model. 
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6 Subsystems : Tire Model and Suspension Model 

6.1 Tire Model 

As discussed in the previous section, the longitudinal and lateral components of the tire forces, Fa; and 
Fb,, and the suspension forces, Fpi, are predicted by the tire model and the suspension model, respectively. 
In this section we will briefly discuss modeling of tire forces and suspension forces. Modeling the tire/road 
interaction force is itself an active area of research. For vehicle dynamic simulations purpose, given the 
road condition and the operating conditions of the tire such as the longitudinal slip ratio, the lateral slip 
angle and the vertical load of the tire, the tire model will predict both traction/braking force and cornering 
force generated by the tire (Fig.6). 

Road Conditons r 1 TractiodBraking Forces 
Longitudinal Slip Ratio I - -1 TIRE FORCE MODEL 
Lateral Slip Angle Cornering Forces 

-1 . 
Normal Force 4 

Figure 6: Tire Force Model 

There are two common approaches to  the tire force modeling. The first is curve-fitting of the experi- 
mental data. This approach can predict a more accurate force traction field. However. the data  depends on 
tire types and it is less portable. One of the most noticeable tire models using data  curve fitting techniques 
is proposed by Pacejka and Bakker (1991). In (Pacejka and Bakker 1991), a set of mathematical equations, 
known as “magic formulae”, are proposed to  predict the forces and moments at longitudinal, lateral and 
camber slip conditions. These formulae and a set of tuning parameters constitute the basis of this  model. 
The second approach is the analytical tire model. One way to  analyze the traction field is to  divide the tire 
contact patch into two zones: the sliding zone and the adhesion zone. Shear stresses in the sliding zone of 
the contact patch are determined by the frictional properties of the tire/road interface. Shear stresses in 
the adhesion zone are determined by the elastic properties of the tire. For example, the cornering stiffness 
C, and longitudinal stiffness C, represent the first order approximation of the tire force elastic properties. 
We adopt the second approach at this stage of research and use the tire model by Baraket and Fancher 
(1989) in the simulation model. This tire model accounts for the influences of tread depth, mean texture 
depth and skid number on the sliding friction of truck tires The structure of this tire model is summarized 
in figure 7. 

To use this tire force model, tire longitudinal slip ratios and lateral slip angles in terms of vehicle states 
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are calculated for typical tractor-semitrailer vehicles. 

x; = w,r-V, 

The longitudinal slip ratio, X;, is equal to 

for braking 
for traction 

where V is the forward velocity, w; is the angular velocity and r is the radius of the i - th wheel. The 
lateral slip angle, a;, is equal t o  
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I PAVEMENT PARAMETERS 

SN40- Skid number 

MD - Mean texture depth [ depth , J TIRE CONDITION 

Gd - Tread groove 

PAVEMENT INFLUENCE 

p xp -Peak data value 

4 s  - Sliding data value 7 , L : ’ + a s I  ’: 

TIRE DATA 

Flatbed 

FRICTION MODEL 

SIMULATION VALUES 

Fz - Vertical load 

V - Vehicle speed 
PROCESSING TIRE DATA 

/ 
Cs - Longitudinal stiffness 

C a - Cornering stiffness 

a/l - Pressure distribution 

’1 

TIRE MODEL 

- ; L L ! E a , <  

I - I PREDICTION OF TRACTION I 
- - . . . . - CI - Slip angle I-x - Longltudlnal force 

Fy - Lateral force 
Sx - Longitudinal Slip 

Figure 7: Comprehensive Tire Model (Baraket and Fancher) 
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6.2 Suspension Model 

By far the majority of commercial vehicle suspensions employ the leaf spring as the vertically compliant 
element. For the sake of simplicity, instead of using experimental suspension data ,  we will adopt a n  
analytical approach t o  model the suspension as the combination of a nonlinear spring and a damper 
element. As shown in Fig. 8, the vertical force acting on the vehicle sprung mass through the suspension 
system is equal to the static equilibrium force plus the perturbation force, which is denoted as F,, from 
the spring equilibrium point. The perturbation force can be modeled as 

where K f l  and K t 2  are parameters of the tractor front spring, K,.l and K , . 2  are parameters of the tractor 
rear spring, K t 1  and K t 2  are parameters of the trailer spring, D f ,  D, and Dt are parameters for dampers, 
and e; is the deflection of the i - th spring from its equilibrium position and is given as 

SPRUNG MASS 

Figure 8: Suspension Model 
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7 Model Verification: Simulation and Experimental Results 

In this section, simulation results of the complex vehicle model will be compared with the open loop 
experimental results obtained from field tests. The test vehicle is a class 8 tractor-semitrailer truck. The 
test truck was operated under fixed speed cruise control and a step steering command was given manually 
by the driver. The radius of curvature of the test track is approximately 80 meters. Measured signals 
for the handling tests include lateral acceleration, yaw rate, roll angle of the sprung mass, articulation 
angle between the tractor and the semitrailer, and the front wheel steering angle. In order to  compare 
the simulation results of the complex vehicle model with the test vehicle, the front wheel steering angle 
which is recorded during experiments is used as the steering input for the simulation model. Furthermore, 
simulations are performed using the test vehicle parameters listed in Tables 2, 3 and 4. Some of the 
parameters are measured values and some are estimated values. Simulation results of the complex model 
and the experimental results of the test vehicle are compared in Figs. 9, 10, 11 and 12, respectively. In 
general, the predicted simulation results agree well with the field test data. We observe that  the predicted 
response of the articulation angle between the tractor and the trailer is slower than the actual response. 
The discrepencies between the predicted responses and the test results may be attributed to: 

1. some unkown vehicle parameters, e.g. the moment of inertia, tire cornering stiffness, the height of 

the roll center and the height of the vertical C.G., 

2. effects of dual tires and tandem axes, which impose nonholonomic constraints on the vehicle motion, 

3. unmodeled dynamics, including roll steer and chassis compliance effect, 

4. sensor calibration errors in instrumentation. 
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Table 2: Parameters for a Tractor-Semitrailer Vehicle 
(Parameters marked with an asterisk are estimated values) 

parameter unit 1 value I parameter I unit I value 

Table 3: Suspension Parameters 

- 

parameter value unit parameter value unit 

I ,  

c1r 143330.0 Nlrad Car 

0.3* m R 13.15* K g  - m2 
N 127120.0 

Cff, 
95340.0 x 4 N Cl t 80312.0 X 4 Nlrad cat 

108960.0 x 4 N Cl, 143330.0 x 4 Nlrad 

Table 4: Tire and Wheel Parameters 
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Figure 9: Step input response with the longitudinal vehicle speed 30 MPH, 
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8 Road reference frame 

/ 
Road Centerline 

Figure 13: Unsprung Mass and Road Reference Coordinates 

In previous sections, the vehicle model was derived with respect to  the unsprung mass reference frame. 
Since one of the objectives for lateral control of automated vehicles is to  follow the road, the description 
of the relative position and the relative orientation of the controlled vehicle with respect to  the road 
centerline need to  be given explicitly. To this end, the road reference coordinate O r X r Y r  in Fig.13 is 
naturally introduced to  describe tracking errors of the vehicle with respect to  the road centerline. The 
road reference frame is defined such that  the X,. axis is tangent to  the road centerline and the Y,. axis passes 
through the vehicle C.G. Once the road reference frame is defined, the vehicle model with respect to the road 
reference frame can be obtained by state  variable transformation from the vehicle model with respect to the 
unsprung mass reference frame. By equating two expressions for the vehicle velocity, one in the unsprung 
mass reference frame and the other in the road reference frame, we obtain the velocity transformation 
equations between the unsprung mass reference frame and th  eroad reference frame. Similarly, by equating 
two expressions for the vehicle acceleration, one in the unsprung mass reference frame and the other in 
the road reference frame, we obtain the acceleration transformation equations between the unsprung mass 
reference frame and the road reference frame. 
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Recall from section 2 that  the vehicle velocity at C.G. can be expressed as 

where x, and y, are velocity components of the vehicle along the X ,  axis and Y, axis of the unsprung 
mass coordinate, respectively. The vehicle acceleration can be expressed as 

where i1 is the yaw rate of the unsprung mass reference frame. 

On the other hand, the vehicle velocity VCG and the vehicle acceleration aCG at C.G. can also be 
obtained in coordinates of the road reference frame X,Y,Z,. From Fig. 13 and by the definition of the 
road reference frame X,Y,Z, such that  the Y, axis always passes through the vehicle C.G., the position of 
the vehicle C.G. with respect t o  the road reference frame X,Y,Z,. is 

rCG/Or = Yrjr, 

then the vehicle velocity with respect to  X,Y,Z, is 

and 

d .  
-J - -i&. 
dt  - 

Substituting (95) into (93), we obtain the vehicle velocity with respect to  the road reference frame as 

VCG/Or = yrjr  - Yridir 

Since the road reference frame X,Y,Z, is moving with velocity 

(95) 

the vehicle absolute velocity is 

where VCG/Or and Vor are given in (96) and (97), respectively. The acceleration in the road reference 
frame coordinates can be obtained by differentiating (98), 
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where (94) and (95) are used in (99). Furthermore, the transformation matrix from the road reference 
frame to the unsprung mass reference is 

cos e,. -sin E,. ) ( ) ( j: ) = ( s in  e,. cos E,. 

If the relative yaw angle E,. is small, (100) can be approximated as 

i, = cosE,.i, - sinE,.jU 
N i, - crju 

and 

j, = sinEri, + coserjU 
N E r i u  + j,. 

Substituting (101) and (102) into (98), we obtain 

Similarly, by substituting (101) and (102) into (99), we obtain 

and 

respectively. By equating Eqs. (90) and (105), we obtain 

and 
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and 

yu - iu i l  N ij, + ?,. id - $ , E r .  (110) 

Substituting (108) into (109) and noting 

i 1  = zr + i d  (111) 

we obtain 

Xu X, - y,.& - & i d  + yrir + y r E r  - i r E r < , .  (112) 

Similarly by substituting (107) into (110) we obtain 

y, = y, - x,.<,. - x+. (113) 

Eqs. (107), (108), (112) and (113) will be used t o  formulate lateral control models in section 9. 

9 Steering Control Model (SIM1) 

The steering control model will be constructed in two steps. First, a 3 d.0.f. (6 states) model is simplified 
from the complex model. Next, the simplified model is transformed with respect to  the road reference 
coordinate, which is discussed in section 8. For the nomenclature of the simplified models, refer to Table 
5. 

9.1 Model Simplification 

The following assumptions are made to simplify the complex model to  one with only lateral and yaw 
dynamics. 

0 The roll motion is negligible. 

0 The longitudinal acceleration x,. is small. 

0 The relative yaw angle E,. of the tractor with respect to  the road centerline is small. 

0 The relative yaw angle ~f of the tractor and the trailer is small. 

0 Tire slip angles of the left and the right wheels are the same. 

0 Tire longitudinal and lateral forces are represented by the linearized tire model. 
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parameter description 

Yr 

relative yaw angle of the tractor w.r.t. road center line Er 

lateral displacement of the tractor C.G. from the road center line 

Ef 
radius of curvature of the road P 

relative yaw angle of the tractor and the trailer 

s tractor front wheel steering angle 

Fl braking force on the trailer left wheel 

F2 

cornering stiffness of tractor rear wheel Car 
cornering stiffness of tractor front wheel Cfff 

semitrailer rear axle track width Tzu3 

relative position between semitrailer’s C.G. to  fifth wheel 0 3  

relative position between tractor’s C.G. to  fifth wheel D l  

distance between joint (fifth wheel) and trailer real wheel axle 13 

distance between tractor C.G. and real wheel axle 12 

distance between tractor C.G. and front wheel axle 11 

semitrailer’s moment of inertia Iz2 

semitrailer mass m2 

tractor moment of inertia I, 1 
tractor mass ml 

lateral slip angle ai 

longitudinal slip ratio Xi 
braking force on the trailer left wheel 

i d  desired yaw rate set by the road and is equal to  5 

cfft 

longitudinal stiffness of semitrailer rear wheel s x t  

longitudinal stiffness of tractor rear wheel S x r  

cornering stiffness of semitrailer rear wheel 

Sxf  longitudinal stiffness of tractor front wheel 

Table 5: Nomenclature of Control Models 
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By using the above assumptions, the complex vehicle model in section 4 can be simplified as 

( m l  + m2)yu - m z ( d l +  d 3 c o ~ c f ) i ' ~  - m2d3coscfi'f 
+(ml  + m2)kuil  + m2d3sincf(il + i f ) 2  
= Fb1 + Fb2 + Fb3 + Fb4 + Fb5 + Fb6, 

and 

where lateral slip angles a f  a,. and at are 

and 

respectively. Substituting Fbi in (11) into the simplified vehicle model (114), (11.5) and (116), we obtain 
the control model (SIM1) as 
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Eq. (118) represents the simplified vehicle model with respect to  the unsprung mass reference coordinate. 

9.2 Control Model wi th respect to the Road Reference Frame 

Recall from section 8 that  state variables with respect t o  the unsprung mass reference frame can be 
transfxmed into state variables with respect to the road reference frame by 

Yu = i r  - ?,E,, (119) 

and 



By the assumptions that  the longitudinal acceleration x r  and the relative yaw angle cr are small, their 
product in (120) can be neglected. Substituting the state variable transformation equations (119) , ( l20) ,  
(121) and (122) into the control model (118), we obtain 

Eq. (123) is the simplified model which will be used to  design the steering control algorithm in section 10 
for the lane following maneuver. 

9.3 Linear Analysis of the Control Model 

The control model (123) can be further linearized by approximating coscj N 1, sinef N c f  and neglecting 
the second order terms. Then the linearized model has the form 

where i d  and Zd are exogenous inputs representing the disturbace effects on curved roads. Two interesting 
properties are observed from this linearized model. 

1. A4 is a symmetric positive definite matrix which contains the inertial information of the vehicle 
system. 
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2. The D matrix can be interpreted as a damping matrix. Each element of the C matrix contains the tire 
cornering stiffness. If the cornering stiffness is small, the vehicle system will become lightly damped 
and more oscillatory. For example, if the vehicle is operated on an icy road, the vehicle stability 
will decrease. We also see that  the vehicle longitudinal velocity x appears in the denominator of the 
damping matrix. Therefore the system damping is inversely proportional to  the vehicle longitudinal 
velocity, which also agrees with our physical experience. 

The first property that  M is a positive definite matrix will be exploited in synthesizing the input-output 
linearizing controller. 

10 Steering Control of Tractor-Semitrailer Vehicles 

10.1 Controller Design 

In this section a steering control algorithm will be designed by applying the input-output linearization 
scheme (Isidori 1995, Nijmeijer 1990). The steering control model developed in section 9 is 

Since the matrix M is positive definite, both M11 and M22 are also positive definite. The control model in 
(125) can be divided into two subsystems: 

MllYr + M12 ( ij ) + @l = cajs 

and 

Notice that  the second subsystem (127) can be rewritten as 
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and 

Note that  

Mll  = T ~ M T  

and 

which is a full rank matrix. By the facts that  the matrix M is positive definite and tha t  the matrix T h a s  
a full rank, we conclude tha t  M I 1  is also positive definite. If I? # 0, we can choose the linearizing control 
law 

With this linearizing control law, the subsystems (126) and (127) become 

yr = v 

and 

Furthermore, by choosing 

= kdyr + kpyr 

the output yr converges t o  zero asymptotically. 
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10.2 Simulation Results 

The simulations are conducted using the complex vehicle model and the vehicle parameters are listed in 
Table 2. The simulation scenario we used is depicted in Fig. 14. The tractor-semitrailer vehicle travels 
along a straight roadway with an initial lateral displacement of 15 cm and enters a curved section with a 
radius of curvature of 450 m at time t = 5 sec. Fig. 15 shows the simulation results of the input-output 
linearization controller at a vehicle speed of 60 MPH. We see that  the lateral tracking error converges to 
zero asymptotically while the yaw angle of the tractor and the relative yaw angle of the trailer are small. 

t=15 sec 

p =450 m 

Figure 14: Simulation Scenario 
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11 Steering and Braking Control Model (SIM2) 

In this  section, the control model developed in section 9 is reformulated to  include the left and right braking 
forces at the trailer as another two control inputs. Recall that  in section 9, the simplified vehicle model 
was obtained as 

and 

By substituting the linear lateral tire model 

{ 
Caraf f o r  i = 1 , 2  

Fbi = Ca,af f o r  i = 3 , 4  

C,,af f o r  i = 5 , 6  

into (139), (140) and (141) and assuming the longitudinal tire forces on the tractor are zero, i.e., Fal = 

Fa;? = Fa3 = Fa4 = 0, we obtain the simplified model as 

where Ad, C(q,q), D and K are the same as in SIM1, (118), and H and U are 

45 



and 

respectively. Eq. (142) is the model with respect to  the unsprung mass reference frame. Parallel to the 
development of SIMl in section 9 and by using the coordinate transformations (119) (120) (121) and (122), 
the steering and braking control model SIM2 with respect t o  the road reference frame is obtained 

Notice that Fa:, and Fa6 in (143) stand for the longitudinal forces at the left and right wheels of the trailer. 
Thus  T is the differential force acting on the trailer. We denote the longitudinal force Fa* < 0 when i t  is a 
braking force and Fa; > 0 when it is a traction force. In fact, the control inputs Fa5 and Fa6 at  the wheels 
of the trailer can only be negative, i.e., we can use only braking instead of traction. This would be a big 
constraint on the control inputs Fa;. However, the differential force T can be both positive and negative. 
Furthermore, the braking forces Fa5 and F,G are determined by the tire force model and are functions of 

the tire slip ratio. Specifically, as shown in Fig. 16, the wheel dynamics are 

where wi is the angular velocity of the wheel, Fai is the braking force generated at the tire/ground interface, 
and T; is the braking torque applied at the braking disk of the wheel. The tire slip ratio is defined as 

x; = 
wir - V 

V 
and the braking force is 

12 Coordinated Steering and Independent Braking Control 

12.1 Controller Design 

In this section, a coordinated steering and braking control algorithm will be designed. Motivated by 
Matsumoto and Tomizuka (1992), we propose to  use not only the tractor front wheel steering input but 
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Moment of Inertia = I, 

Figure 16: Wheel Dynamics 

also the trailer unilateral tire braking to  provide the differential torque for directly controlling the trailer 
yaw motion. The control algorithm will be designed in two steps. In the first step, we assume the differential 
force T is control input. Then the desired steering command bd and the desired differential braking force 
T d  are determined by input/output linearization scheme. By the nature of unilateral braking, if Td > 0, 
we have Fa5d  = -Td and Faed = 0. On the other hand, if T d  < 0, we have Fa5d  = 0 and Fa6d  = Td. In the 
second step, the required braking torques 7 5  and 76 are determined t o  generate the desired braking forces 
Fa5d and Fa6d  by utilizing backstepping design methodologies. 

Step 1 

First, we define the first system output el as the lateral tracking error 

and the second output e2 as the articulation angle between the tractor and the trailer 

e2 = E /  

Differentiating el and e2 twice, we obtain 

The number i in the parenthesis M-'(i) denotes the i- th row of the M-' matrix. For notational simplicity, 
we define 

J = ( ) H 
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If the matrix J is nonsingular, we can choose the control input U as 

This control law cancels the system nonlinearities and inserts the desired error dynamics. T h u s  the closed 
loop system becomes 

Step 2 

In Step 1 we regard T as a real control input; then the desired steering command and the desired differential 
braking forces Td are set in (152). In this step we will 'backstep' to  determine the braking torques r5 and 
76 on the trailer's left and right wheels. Recall that  the wheel dynamics is 

and the tire force is 

where the slip ratio X ;  is defined as 

X ;  = 
w;r - V 

V 

Combining equations ( 154), ( 155) and ( 156), we obtain 

Fa; = CltXi 

= Clt(# ax .  + g y ; )  
= ~lt(-sV + +(-CltXir + Ti>> 

Thus  the equations governing the vehicle dynamics and wheel dynamics are 

(157) 

and 
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Recall that T = Fa6 - Fa5 and both Fa5 and Fa6 are negative. In this unilateral braking scheme, if Td 
determined in (152) is positive, we have Fa5d = -Td and Fa&j = 0. Thus the braking controller will apply 
the brake torque on the trailer left wheel. On the other hand, if Td is negative, we have Fa5d = 0 and 
Fa6d = Td, so the braking controller will apply the brake torque on the trailer right wheel. From Eq. (152) 
in step 1, the control inputs are chosen as 

such that  the error dynamics becomes 

Note that  T is determined by the braking force Fa;, and that braking force Fa; can be adjusted only through 
equation (159), i.e., the braking torque 7; is the actual control input. Therefore, T cannot be simply set to  
Td all the time, and r; must be adjusted so that the difference between Td and T is brought to zero. This 
is the main idea in the backstepping procedure, We define two new variables 771 and 772 as 

and 

respectively. Then we have 

Noting 

and 



we choose 

and 

Then, we obtain 

and 

7i2 + IC2172 = 0, (174) 

where J12 and J 2 2  are the (1,2) and (2,2) elements of the matrix J .  Defining the state vector (21, 22, z3, x4)T 
as ( e l ,  61, e 2 ,  e'2)T and transforming equations (171) and (172) to state space form, we have 

Then the overall system can be rewritten as 

We see that the overall system matrix can be divided by four blocks and the lower off-diagonal block is 
identically zero. Thus  the eigenvalues of the overall system are the union of those of the block diagonal 
matrices. Since each block diagonal matrix is asymptotically stable, the overall system is asymptotically 
stable. 
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12.2 Simulation Results 

We use the same scenario shown in Fig.14. Vehicle longitudinal speed is 26.4 m/s (60 MPH). Figs. 17 
and 18 show the simulation results of the coordinated steering and independent braking control. Notice 
that in implementing this control algorithm, we impose upper and lower bounds on the braking torque 
input to  avoid tire force saturation. Comparison of the steering control designed in section 10 and the 
coordinated steering and independent braking control is shown in Fig. 19, from which we see that  the peak 
trailer yaw errors are reduced from 2.64O to  0.97O. We also observe that  the longitudinal velocity decreases 
when the independent braking control algorithm is activated. As we stated in section 9.3 that the system 
damping is inversely proportional t o  the longitudinal velocity, so a decrease of the longitudinal velocity 
will contribute to  decreases of both tractor and trailer yaw errors. To see the effect caused only by the 
differential forces distribution over the inner and outer tires of the trailer, we assume that  the longitudinal 
controller will give traction force commands on the tractor to  counteract the braking forces on the trailer. 
Simulation results for this scenario is given in Fig. 20 , which shows that the trailer yaw errors is reduced 
from 2.64' to 1.13'. Recall from Table 2 that  the length of the trailer is 9.65 rn. Thus a decrease of 1.51' 
in yaw errors corresponds t o  a decrease of 25.4 c m  in lateral tracking errors of the trailer. 
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13 Conclusions 

Two types of dynamic models of tractor-semitrailer vehicles are utilized for the design and analysis of 
lateral controllers. The first type of dynamic model is a complex simulation model. The  second type of 
dynamic models are two simplified control models, which will be derived from the complex nonlinear model. 
This modeling approach utilizes Lagrangian mechanics and has an advantage over a Newtonian mechanics 
formulation in that  this complex model eliminates the holonomic constraint a t  the fifth wheel (linking joint) 
by choosing the generalized coordinates. Since there is no constraint involved in the equations of motion, it 
is easier to design control algorithms and to  solve the differential equations numerically. The effectiveness 
of this  modeling approach was shown by comparing the experimental results of a tractor-semitrailer vehicle 
and the simulation results of the complex tractor-semitrailer vehicle model. 

Two control algorithms for lateral guidance of tractor-semitrailer vehicles were designed. The first 
was  a baseline steering control algorithm and the second was a coordinated steering and independent 
braking control algorithm. In the design of the second control algorithm, we utilized tractor front wheel 
steering angles and trailer independent braking forces to control the tractor and the trailer motion. The 
multivariable backstepping design methodology developed in (Chen and Tomizuka 1997) was utilized to  
determine the coordinated steering angle and braking torques on the trailer wheels. Simulations showed 
that both the tractor and the trailer yaw errors under coordinated steering and independent braking force 
control were smaller than those without independent braking force control. 
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