- Main
Effect of van der Waals interactions on the chemisorption and physisorption of phenol and phenoxy on metal surfaces
Published Web Location
https://doi.org/10.1063/1.4962236Abstract
The adsorption of phenol and phenoxy on the (111) surface of Au and Pt has been investigated by density functional theory calculations with the conventional PBE functional and three different non-local van der Waals (vdW) exchange and correlation functionals. It is found that both phenol and phenoxy on Au(111) are physisorbed. In contrast, phenol on Pt(111) presents an adsorption energy profile with a stable chemisorption state and a weakly metastable physisorbed precursor. While the use of vdW functionals is essential to determine the correct binding energy of both chemisorption and physisorption states, the relative stability and existence of an energy barrier between them depend on the semi-local approximations in the functionals. The first dissociation mechanism of phenol, yielding phenoxy and atomic hydrogen, has been also investigated, and the reaction and activation energies of the resulting phenoxy on the flat surfaces of Au and Pt were discussed.
Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.
Main Content
Enter the password to open this PDF file:
-
-
-
-
-
-
-
-
-
-
-
-
-
-