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ABSTRACT 

This report models response times and delays for highway incidents, accounting 

for spacing between interchanges and the time penalty for changing directions, enabling a 

response vehicle to reach an incident on the opposite side of the highway. A fundamental 

question in dispatching incident crews is whether to send the closest vehicle that is 

currently available or to wait for another vehicle to become available that is even closer. 

Waiting for a closer vehicle is advantageous because service time is effectively reduced, 

adding to capacity and providing stability at higher levels of utilization. But waiting for a 

vehicle to become available adds uncertainty, which contributes to expected traffic delay. 

As a consequence, any reasonably robust dispatch strategy must provide for a 

hybridization of the two objectives, trading-off greater certainty in response time against 

stability at higher utilization levels. 
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EXECUTIVE SUMMARY 

Incidents - such as collisions, stalls, and dropped loads -- are known to be a major 

source of highway delay. The amount of delay occurring during an incident depends on 

three primary factors: (1) the nature of the incidents, (2) roadway conditions, and (3) 

execution of incident clearance. Clearly, incidents that block more lanes and require 

more equipment to be cleared (e.g., those involving heavy duty trucks), will create more 

delay. The amount of delay will also increase when the roadway operates close to 

capacity and does not have alternatives for diverting traffic (either shoulders or parallel 

roadways). And delay also depends on how quickly the incident can be cleared and the 

actions taken during the incident to ensure smooth traffic flow. 

The focus of this paper falls in the area of incident clearance. For the purposes of 

this paper, clearance time can be divided into four elements, which we call: (1) detection 

time, (2) dispatch time, (3) response time, and (4) service time. The specific focus of this 

paper is on the response time component of the dispatch time, and the contribution of 

dispatching policies to delay. Dispatch time merits special attention because it is one of 

the more controllable elements of clearance time. We consider here policies for 

dispatching mobile emergency crews, such as police officers and freeway-service-patrol 

trucks. The key characteristic is that the crews move around the network instead of 

residing at a stationary base (as is the case for fire crews). 

A fundamental question in dispatching incident crews is whether to send the 

closest vehicle that is currently available or to wait for another vehicle to become 

available that is even closer. Waiting for a closer vehicle is advantageous because 

service time is effectively reduced, adding to capacity and providing stability at higher 
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levels of utilization. But waiting for a vehicle to become available adds uncertainty, 

which contributes to expected traffic delay. As a consequence, any reasonably robust 

dispatch strategy must provide for a hybridization of the two objectives, trading-off 

greater certainty in response time against stability at higher utilization levels. 

In the case of individual beats, expected response time is a linear function of both 

the interchange spacing and the time penalty for changing direction of travel on the 

highway. On the other hand, with rolling beats (either with fixed spacing or Poisson 

process locations), increases in interchange spacing and the direction-change penalty do 

not cause expected response time to increase without bound. Instead, it approaches a 

limit, for which the responding vehicle always reaches the incident from an upstream 

location on the same side of the highway. However, rolling beats, in which the closest 

available vehicle is dispatched to the incident, have the drawback that they become 

unstable more easily. 
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1. INTRODUCTION 

The amount of delay occurring during an incident depends on three primary 

factors: (1) the nature of the incidents, (2) roadway conditions, and (3) execution of 

incident clearance. Clearly, incidents that block more lanes and require more equipment 

to be cleared (e.g., those involving heavy duty trucks) create more delay. The delay will 

also increase when the roadway operates close to capacity and does not have alternatives 

for diverting traffic (either shoulders or parallel roadways). And delay also depends on 

how quickly the incident can be cleared, and the actions taken during the incident to 

ensure smooth traffic flow. 

The incident clearance process can be divided into four elements: (1) detection, 

(2) dispatch, (3) response, and (4) service. Detection time is the time from when the 

incident occurs until the emergency response agency detects the presence of the incident. 

Dispatch time is the time from detection until the time that an emergency crew (or crews) 

is dispatched to the incident. Response time is the travel time for the emergency response 

crew to the scene of the incident. Last, service time is the time required to remove the 

incident and restore traffic once the emergency crew (or crews) has arrived at the scene. 

The specific focus of this paper is on response and dispatch time, and the 

contribution of these to congestion and delay. There already exists a very large literature 

on incident detection, as well as many empirical studies on incident clearance times @am 

and Mannering, 2000, provide a recent review). Dispatching and response to highway 

incidents have received much less attention from an operational perspective. We 

consider here policies for dispatching mobile emergency crews, such as police officers 
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and freeway-service-patrol trucks. The key characteristic is that the crews move around 

the network instead of residing at a stationary base (as is the case for fire crews). 

Dispatching processes and response times for police agencies is a well-studied 

topic in the field of operations research. Police are typically modeled as a spatial 

queueing system in which the servers (police cars) are mobile. The response time 

depends on the density of servers (cars per square mile), their overall utilization (ratio of 

demand to capacity) and the policy for dispatching officers. As the utilization increases, 

a greater percentage of cars are busy at any given time. Effectively, this causes the 

density of cars to decline and the response time to increase. 

The most famous research in this area is the hypercube model developed by 

Larson (1 974), along with related research by the author (e.g., Larson 1972; Larson and 

McKnew, 1982; Larson and Rich, 1987). The hypercube model is a stochastic queueing 

models that accounts for the assignment of patrol cars to districts (or beats), and rules for 

dispatching officers within and across districts. More recently, the spatial queueing 

approach has been extended to systems in which multiple cars must be dispatched (e.g., 

Green (1 984), Green and Kolesar (1 984), Green and Kolesar (1 989), Ittimakin and 

Edward (1 99 1)). 

The design of emergency response systems has also been studied by a number of 

authors, including an extensive series of work through RAND in the 1970s (for example, 

Chaiken and Dormont, 1978; Ignall et al, 1978; Kolesar et al, 1975). One of the notable 

findings to come out of this work is the “square-root” rule for estimating average 

response distance to an incident. By this model, the response distance equals a constant 

multiplied by the square-root of l/p, where p is the density of patrol cars per unit area. 
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Ignall et a1 (1 978) reported that this square-root relationship is even a reasonable 

approximation when the number of busy patrol cars is a random variable. 

With respect to incident dispatching on highways, Nathanail and Zografos (1 994, 

1999, Zografos and Nathanail(l991) and Zografos et a1 (1 993) have evaluated various 

aspects of the incident response and clearance process through analytical models, 

including where to locate response vehicles, which vehicles to dispatch and how to 

manage the process during clearance. Smith (1997) and Anderson and Fontenot (1992) 

examined response times and optimal vehicle positioning along linear roadways, but did 

not consider directional effects and interchanges, as are covered here. 

Our work considers dispatching within the context of incidents that induce delays 

on highways. Travel time models are proposed to account for specific characteristics of 

highways: the side of the highway on which the incident occurs and the side of the 

highway on which the emergency crew is traveling; the location of interchanges at which 

the emergency crew can reverse direction to reach the opposite side; and the linearity of 

the network. In addition, we evaluate the second moment of the clearance time 

distribution because delay can be a quadratic function of the time required to clear an 

incident. 

The remainder of the paper is organized as follows. First, a model is presented to 

illustrate the effects of randomness on incident traffic delay. Next, response time models 

are created for several situations in which emergency crews have different spatial 

distributions and in which incident induced delay may slow response to the scene. 

Lastly, we develop and evaluate a dispatching model that predicts average response time 
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as a function of the rate in which incidents occur, the service time for incidents and the 

number of emergency crews on duty. 

The general methodology of this paper is to utilize analytical models as 

approximations for system performance measures. The purpose in using these models is 

to determine relationships between fundamental system parameters - such as the spacing 

between interchanges and the time to maneuver through an interchange - and system 

performance. In this regard, we simplify the analysis by only considering incidents that 

require a response from a single emergency vehicle, and do not consider multiple levels 

of incident priority. Future research will be needed to understand the complexities of 

these relationships for highway incidents. Furthermore, the actual performance of a 

given highway can only be determined through empirical experiments or possibly 

simulation. Nevertheless, the findings provide building blocks that might be used in 

creating more complex models. 

2. DELAY AND THE DISTRIBUTION OF RESPONSE TIME 

Our objective is to minimize the expected traffic delay at incidents. Individual 

incidents are modeled in the following simplified fashion, based on constant arrival rates 

(see Janson and Rathi, 199 1, for a model with non-constant arrival rates). When an 

incident occurs, queue size begins to grow at the rate rg. When the incident is cleared, the 

queue size declines at the rate rd, until such time the queue dissipates. The clearance time 

is the sum of four values: 
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Incident detection time (time from incident until 

detection) 

Waiting time from incident detection until clearance vehicle is 

dispatched 

Response time from dispatch until arrival 

Service time to clear the incident, subsequent to arrival of response 

vehicle 

Total clearance time = I+W+R+S 

The total traffic delay for an individual incident is then half the product of the maximum 

queue size and the total queue duration, as shown below 

D - - .5 [Trg] [T( 1 + rg/rd)] = .5 T2[rg( 1 + rg/rd)] 

For a given type of incident with known values rg and rd, the expected delay can be 

expressed as: 

E(D) = .5 E[T2][rg(l + rg/rd)] = .5E2(T)[1+C2(T)][rg(l + rg/rd)] (2) 

Where: 

C(T) = coefficient of variation for the total clearance time 

Equation 2 is based on the relationship E[T2] = E2(T)[1+C2(T)]. It demonstrates that with 

constant arrival rates response crews should be dispatched in a way that minimizes the 
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second moment of total clearance time rather than expected total clearance time. 

Alternatively, minimizing the delay can be viewed as minimizing two variables: expected 

total clearance time and minimizing the coefficient of variation of the total clearance time 

(or variance of the total clearance time). Thus queue disciplines such as “shortest- 

service-time-first”, which minimize expected waiting time, might not be the best for 

dispatching response crews as the larger variance will cause E(T2) to increase. 

Illustration 

Consider a simple case with two options for an individual incident. This example 

will only account for delays at the incident in question, and not for any possible effects 

on future incidents. Response vehicle 1 is close to the incident, but is currently busy, 

and response vehicle 2 is further from the incident, but is currently available. Either of 

the vehicles can be dispatched (vehicle 1 has a wait; vehicle 2 has no wait), but a choice 

cannot be revoked once it is made. Parameter subscripts denote the response vehicle, and 

S, rg and rd are assumed to be independent of the vehicle that is dispatched. Thus: 

E(D1) = expected traffic delay if response vehicle 1 is dispatched 

- - .5 E[(I+S+WI+Rl) 2][rg(l + rg/rd)] 

E(D2) = expected traffic delay if response vehicle 2 is dispatched 

- - .5 E[(I+S+R2)2] [rg( 1 + rg/rd)] 

We wish to find a breakeven point at which the expected delays are identical: 
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E[(I+S+WI+R~)~][~, (~  + r,/rd)] - E[(I+S+R2)2][rg(l + rg/rd)] = 0 ( 3 )  

Suppose that service time is independent of the time responding to the incident, and let: 

kl - E(R2)/E(Rl) 

k2 - E(WI)/E(Rl) 

k3 - E(RI)/E(I+S) 

C(Ri) = coefficient of variation for Ri 

- 

- 

- 

C(Wi)= coefficient of variation for Wi 

Whether it is preferable to dispatch the close and busy vehicle, or the distant and 

available vehicle, depends on the magnitude of kl relative to 1+ k2. In the special case 

where C(R1) = C(R2) = 0, Eq. 3 can be solved as a quadratic equation, yielding: 

Eq. 4 defines a breakeven point for k2, indicating the point where the expected delay is 

identical for the two vehicles. The behavior of Eq. 4 is illustrated in Figure 1, showing 

k2* as a function of kl and C(W,). When C(W1) = 0, k2* = kl-1, meaning that the 

expected response time for the more distant vehicle equals the sum of the expected 

response time and wait time for the closer vehicle. However, as more variation is 

introduced, k2* declines, meaning that it is better to dispatch the further vehicle, even 

though the expected arrival time at the scene (summing response time and waiting time) 

is greater. This effect is most pronounced when kl is large, indicating that the response 

time for the further vehicle is large relative to the response time for the closer vehicle. 
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This example demonstrates that uncertainty in waiting time can make it advantageous to 

dispatch a more distant vehicle, even if the expected sum of waiting and response times is 

greater. The implications are further discussed at the end of the paper. 

3. RESPONSE TIMES 

Incident response time is modeled here as a function the distance from the 

response vehicle to the incident, along with their relative direction of travel, the 

positioning of interchanges, and the presence of congestion that may slow incident 

response. We make the following assumptions: (1) The location of an incident is 

randomly and uniformly distributed over the length of a highway, with equal likelihood 

of occurring on either side; (2) Incident locations are independent of the locations of 

responding vehicles; (3) Each incident is served by a single vehicle; (4) Highway 

interchanges are spaced at a constant interval; ( 5 )  Responding vehicles can only change 

direction at highway interchanges. (A vehicle must be on the same side of the highway 

as the incident to clear the incident. Otherwise, the vehicle must change directions at an 

interchange to reach the incident.); (6) Speed of the response vehicle is defined by input 

parameters, equaling one value when the road is uncongested, and another when 

congested (models are provided with and without congestion). 

In this section, we estimate the expectation and coefficient of variation for the 

response time under the following scenarios representing different dispatch strategies: 

(1) Each vehicle responds to incidents within its own beat, and beats are non-intersecting 

(i.e., each location is served by a single vehicle); (2) The closest available vehicle (in 

response time) is dispatched to an incident. Spacing between available vehicles is 
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constant and identical on both sides of the highway. The relative positions of vehicles on 

opposite sides of the highway are random and uniformly distributed, as vehicles are 

constantly in motion; (3) The closest available vehicle (in response time) is dispatched to 

an incident. Available vehicle locations are randomly distributed according to a 

stationary Poisson process. 

We call strategies 2 and 3 “rolling beats”, because the territories served by 

vehicles are not constant. The closest vehicle (in response time) to the incident is 

dispatched, independent of any fixed beat assignment. Strategy 1 produces queueing, as 

each location can only be served by a single vehicle. Strategy 2 is advantageous from the 

standpoint of minimizing response time, but it is inherently unstable: as soon as a vehicle 

is dispatched, the separations between adjacent vehicles cannot be identical until they 

have time to reposition themselves. Thus, Strategy 2 is presented as a lower-bound on 

response time. By contrast, Strategy 3 is stable, but possibly non-optimal. By randomly 

transitioning a vehicle from an “available” to a “busy” state, the remaining vehicle 

locations will continue to be a Poisson process, with lager mean separation. 

The analysis is based on the following data: 

P’ 

1’ 

d’ 

V’ 

- - time required to change directions at an interchange 

- separation between adjacent interchanges 

- mean distance between adjacent vehicles on each side of highway 

- velocity when traveling in uncongested traffic. 

- 

- 

- 
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E(R’) = expected response time is calculated is a function of p’,l ’,d’, and v’. To 

simplifj results, we utilize dimensionless equations and parameters, as follows: 

E(R) = expected adjusted response time = E[R’/(d’/v’)] 

P 

1 - I ’Id’ 

- - p’/(d’/v’) 

- 

E(R) is a function of just two parameters, p and I, as the mean distance between vehicles 

on each side of the highway is dimensionalized to equal one, as is the velocity. Counting 

both sides of the highway, the mean separation between vehicles is - . Hence, under 

Strategy 1, each beat has a length of -. Results are first presented for the three dispatch 

policies assuming incident congestion does not slow response. Later, a model is 

presented that accounts for congestion delayed response. 

1. Individual Beats 

As shown in Figure 2, there are four ways that a vehicle can respond to an 

incident: (a) incident is ahead and on same side of highway; (b) incident is ahead on 

opposite side, (c) incident is behind and on same side, or (d) incident is behind and on 

opposite side. The expectations are computed as the sum of the following: linear distance 

traveling directly to the incident, excess distance traveling to/from an adjacent 

interchange, and time penalty for changing directions at the interchange. The first 

expectation equals 1/6 in all four cases (expectation of distance between two U[O,.5] 

random variables). The second expectation equals 0 in case a (interchange not used), I in 
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Vehicle Path Q Incident Location 

* Highway Lanes 0 Interchange 

Figure 2. Vehicle can be dispatched i n  any of four  
directions depending on incident location. 



cases b and c (one interchange used, with excess distance going beyond incident to 

interchange, then returning by equal distance), and 21 in case d (two interchanges used). 

The third expectation equals 0 in case a, p in cases b and c (one direction change), and 2p 

in case d. Hence: 

E(R1case a) = 1 /6 

E(RJcase b) = E(R1case c) = 

E(R1case d) = 1/6 + ( I )  + ( I )  + 2p 

116 + ( I )  + p 

All cases are equally likely. Hence E(R) = 1/6 + 1 + p, making individual beats 

inefficient when interchanges are far apart or when the direction change penalty is high. 

As stated earlier, the delay associated with an incident is also a function of the 

coefficient of variation of the clearance time. The contribution of response time depends 

on the second moment of the response time distribution (calculated below), as well as 

covariance between response time and other clearance time components (which are not 

evaluated here). 

E(R2) = .25[E(R21case a) + E(R21case b) + E(R21case c) + E(R21case d)] (6a) 

E(R21case a) = E[( t~ )~ l  (6b) 

E(R21case b) = E(R21case c) = E[(tl + t2 + P ) ~ ]  = 

E(tI2) + E(t?) + p2 + 2[E(tlt2) + pE(t2) + pE(t1)l ( 6 4  

E(R21case d) = E[(tl + t2 + t3 + 2 ~ ) ~ ]  = 

E(t1~)+E(t2~)+E(t3~)+4~* + 2[E(tlt2)+2pE(t2)+2pE(tl) + E(tlt3) + E(t2t3) + 2pE(t3)] (6d) 
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Where 

tl 

t2 

t3 

- - direct distance 

- - excess distance at first interchange 

- - excess distance at second interchange 

The probability density function for tl is triangular, and the probability density functions 

for t2 and t3 are uniform, leading to the following expectations: 

Under the assumption of independence stated earlier, the expressions reduce to: 

E(R2) = 1/24 + (1 1/6)12 + (3/2)p2 + (2/6)Z + 3Zp + (2/6)p (Sa) 

V(R) = 1/72 + (5/6)12 + (1/2)p2 + Zp (8b) 

Figure 3 shows that the coefficient of variation (squared) generally increases as the 

entrance separation ( I )  increases. An exception is that when p=O, the coefficient of 

variation also increases when the separation declines in the range from about . 1 to the 

vicinity of 0. The coefficient of variation is somewhat insensitive to p, though tends to 

decline as p increases. 
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c) 
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+-0 
-+ 0.1 I 

- 0.25 
* 085 

Finllre 3 .  Coefficient of variation-squared for individual beats 



2. Closest Vehicle/Constant Spacing 

In this scenario response vehicles maintain constant spacing, though their relative 

position on opposite sides of the highway are constantly changing due to forward 

progression through traffic. Let y represent the linear distance from a vehicle to the next 

vehicle on the opposite side of the highway, as illustrated in Figure 4. Under rolling 

beats, we assume that y is a U[O,l] random variable at the time an incident is detected. 

Any of four vehicles could respond to an incident: those immediately in front of, 

or behind, the incident, on either side of the highway. Hence: 

R - - min{Rl,R2,R3,&} (9) 

Where Ri = response time for vehicle i, as numbered in Figure 4. These are calculated as 

follows: 

R1 

R2 

R3 

R4 

Where 

Xi 

21 

z2 

z3 

forwardhame side (1 0 4  

forward/opposite side ( 1 Ob) 

backwardhame side (10c) 

backward/opposite side (104 

is distance from incident to vehicle i 

is distance from vehicle 3 to nearest downstream interchange 

is distance from incident to nearest upstream interchange 

is distance from vehicle 4 to nearest upstream interchange 
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Figure 4. Incident can be served by vehicle coming from 
any o f  four di rect ions  



Expected response time is easily calculated in three extreme cases: 

lim E(R) 
14.. 

- - lim E(R) = 
- 

P+- 

The first case represents the expectation of the minimum of two U[O,.5] random 

variables, whereas the second and third cases represent the expectation of a U[O,l] 

random variable. Unlike individual beats, expected response time does not grow without 

bound as I and p increase. 

The coefficients of variation are easily derived for these cases. Their squared 

values are shown below 

The effect of increasing the spacing between interchanges, or increasing the penalty for 

changing direction, is to increase the mean response time significantly. Comparing the 

extreme cases, it appears that the effect of increasing p and I is to decrease coefficient of 

variation moderately. 

Simulation was used to estimate the behavior of E(R) and C(R) for more general 

cases of I and p, falling between the extremes (Figures 5 and 6) .  Each data point is based 

on 2000 trials, producing a standard error on the order of 1-2% of the estimated value. 

As either the entrance separation (I> or penalty (p) approaches .5, E(R) approaches the 

limiting value of .5 .  The pattern for coefficient of variation is less predictable. In 

general, it is insensitive to changes in parameters, but increases as either p or I increases. 
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An exception is that C2(R) jumps to .5 when p=I=O. In this range, E(R) drops 

substantially, but the variance does not, resulting in an increase in coefficient of variation. 

3. Poisson Process 

As for constant spacing, the response time for Poisson process vehicle locations is 

defined by the minimum of four random variables, representing the response times for the 

adjacent vehicles on each side of the highway. Two limiting cases are easily evaluated. 

First, if I = p = 0, E(R) equals the minimum of four independent exponential random 

variables, each representing the response time for one vehicle, and each having mean of 

one. The distribution for the minimum is also exponential, with E(R) = - and C2(R) = 1. 

Both values are larger than the corresponding case with constant spacing. 

In the other limiting case (p or I very large), vehicle 1 (same side, forward 

direction) always responds to the incident. Hence, the response time distribution is the 

distribution for a single exponential random variable, with E(R) = C2(R) = 1. Again, the 

Poisson process produces larger and more variable response times. Figure 7 provides 

simulation results for E(R) (again with 2000 trials) for more general cases of I and p. In a 

qualitative sense, trends are quite similar to constant separation. However, E(R) is 

roughly twice as large for Poisson for all values of I and p. C2(R) (not shown) is also 

roughly twice as large compared to constant separation. 

4. Effects of Incident Induced Response Delay 

In some cases upstream queueing at an incident can slow incident response. We 

capture this effect in the following way: 
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f - - length of upstream queue on incident side of highway 

b - - length of upstream queue on opposite side of highway 

V” - - velocity of response vehicle in queue as a ratio to v’ 

For example, response time for vehicle 1 (forward direction, same side), is calculated as 

follows: 

R1= 
x 1 /v” x1 < f  

(XI-f)  + f/v” x1 > f 

Similar calculations were made for other response vehicles, depending on their passage 

through incident queues, which can potentially occur on both sides of the highway. 

Simulations were completed as before. In the interest of brevity, only the second 

dispatch strategy was evaluated (Figures 8 and 9; rolling beatdconstant separation). In 

the experiments, parameters were set as follows: 

v” = .5 p = . l  o r p = . 5  b = 0 or b = f/2 I =  .2 

f varies from 0 to 1 

With v” = .5, an increase in f can at most double the expected response time, though the 

increase is usually significantly less. This is because vehicles traveling on the opposite 

side of the highway can circumvent some of the congestion. E(R) levels off once f = .5 

for the examples. When the forwardsame side vehicle is further back in the queue than 

the distance .5 then it is ordinarily better to dispatch another vehicle. Further increases in 

the queue size then have little effect on average response time. The coefficient of 
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variation in response time is smallest for mid-sized backups (f approximately .25), and 

increases as f becomes small or large. 

4. EQUILIBRATION EFFECTS 

The response time depends both on the number of response vehicles and the 

percentage of time each vehicle is busy serving incidents (time responding to the 

incident, i.e., travel time, plus time at the scene). In this section we estimate the expected 

response time accounting for the proportion of time that they are serving incidents. The 

method is sufficiently general to apply to all of the dispatch scenarios. 

We define the busy proportion as the proportion of time vehicles are serving 

incidents, which is calculated as follows: 

Where 

P - - incident arrival ratehnit distance on each side of highway 

E(S) = expected time serving incident at the scene, dimensionalized 
as a ratio to d’/v’ 

t is in turn approximated by: 

t - ,.., k/( 1 -P) + E(S) 

where k is the value of E(R) when P = 0 (derived from Section 3). This approximation is 

analogous to the one used by Ignall et a1 (1 978), who found that a square-root model 

approximated response distance when the number of busy vehicles randomly varies. The 

model is exact for locations defined by the Poisson process and approximate otherwise. 
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Imagine a Poisson process with rate 1 that defines vehicle locations along the side of a 

highway. Any individual location has a probability P of being busy. By treating this 

event as a Bernoulli random variable, the remaining (i.e., non-busy) vehicles are also a 

Poisson process, with rate (1 -P). 

Eqs. 14 and 15 can be solved as a quadratic equation to identify an equilibrium 

value oft,  which we denote t*: 

t* 

t* 

- - k/( 1 +t*) + E(S) 

- - Il+uE(S)l- [il-uE(S)]2 - 4uk)] 112 

2P 

To return a feasible solution, Eq. 16 is bounded by the following: 

{1-PE(s>>2 3 4Pk (174 

PE(S) 5 1  (1 7b) 

Because a square-root cannot be negative, the following upper bounds can be placed on 

equilibrated values o f t  and P: 

t* - < [1+PE(S)1/2P (1 8 4  

P* < [1+PE(S)I/2 ( 1 8b) 

For most values of p and E(S) it is impossible to attain a P value of 1, or possibly even 

close to one. When pE(S) is small, the maximum utilization is on the order of .5. When 

the server is busier for a greater portion of time, the system is inherently unstable: 

response time increases and approaches infinity as more servers become busy. These 

features are shown for t* and P* in Figures 10 and 11 for the case k=.4, with varying 

values of p and E(S). 
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From these results, Strategies 2 and 3 are only stable when the utilization is 

relatively low, on the order .7 or less. By contrast, if dispatch is limited to vehicles that 

are within a set distance of the incident, or within a vehicle’s beat, response time will not 

grow unbounded, allowing the system to be stabilized at larger utilization levels. The 

drawback is that an additional delay is created, representing the waiting time from 

detection until dispatch (because all feasible vehicles may be busy). Nevertheless, 

bounding the response distance, and allowing some calls to queue, is virtually essential to 

keep dispatch systems stable. 

5. SUMMARY 

Returning to our initial example, the fundamental question in dispatching incident 

crews is whether to send the closest vehicle that is currently available or to wait for 

another vehicle to become available that is even closer. The advantage of waiting for a 

closer vehicle is that service time is effectively reduced, adding to capacity and providing 

stability at higher levels of utilization. On the other hand, waiting for a vehicle to 

become available adds uncertainty, which contributes to expected traffic delay (because 

traffic delay depends on the second moment of the clearance time distribution). As a 

consequence, any reasonably robust dispatch strategy must provide for a hybridization of 

the two objectives, trading-off greater certainty in response time against stability at 

higher levels of utilization. Individual beats provide stability at higher utilization levels, 

but longer waits at lower utilization levels because the assigned vehicle may be busy. 

In the case of individual beats, expected response time is a linear function of both 

the interchange spacing and the direction-change penalty. On the other hand, with rolling 
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beats (either with fixed spacing or Poisson process locations), increases in interchange 

spacing and the direction-change penalty do not cause expected response time to increase 

without bound. Instead, it approaches a limit, for which the responding vehicle always 

reaches the incident from an upstream location on the same side of the highway. 

However, rolling beats, in which the closest available vehicle is dispatched to the 

incident, have the drawback that they become unstable more easily. 

Fundamentally, any reasonably good dispatch strategy must balance the 

advantage of immediately dispatching a vehicle against the advantage of waiting for a 

closer vehicle to become available, as well as compare the travel times for vehicles on the 

same side of the highway to vehicles on the opposite side. This paper has taken a step in 

the direction of answering these questions through analysis of idealized highways. 
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