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Implementation of High-Order
Spherical Harmonics Methods
for Radiative Heat Transfer
on OPENFOAM

A general formulation of the spherical harmonics (PN) methods was developed recently
to expand the method to high orders of PN. The set of N(Nþ 1)/2 three-dimensional
second-order elliptic PDEs formulation and their Marshak boundary conditions for arbi-
trary geometries are implemented in the OPENFOAM finite volume based CFD software. The
results are verified for four cases, including a 1D slab, a 2D square enclosure, a 3D
cylindrical enclosure, and an axisymmetric flame. All cases have strongly varying radia-
tive properties, and the results are compared with exact solutions and solutions from the
photon Monte Carlo method (PMC). [DOI: 10.1115/1.4029546]

Keywords: radiative heat transfer, RTE solvers, spherical harmonics, computer
implementation

1 Introduction

The study of radiative heat transfer in a multidimensional ge-
ometry with a strongly varying participating medium has become
increasingly important in various practical applications like com-
bustion, manufacturing, and environmental systems. The radiative
transfer equation (RTE) is an integro-differential equation in five
independent variables (three in space and two in direction), which
is exceedingly difficult to solve. Many approximate methods have
been developed over time. The most widely used approximate
methods today are the discrete ordinates method (DOM) [1,2] or
its finite volume version (FVM) [3], the PMC [4], and the spheri-
cal harmonics method (SHM) [5]. The DOM/FVM method discre-
tizes the entire solid angle by finite ordinate directions and is
relatively simple to implement within modern CFD software. But
an iterative solution is required for scattering media or reflecting
surfaces, and computational cost is high for optically thick media.
The method may also suffer from ray effects and false scattering
due to the angular discretization [6]. The PMC method statisti-
cally provides the exact solution with sufficient photon bundles,
but accurate solutions are computationally expensive. The spheri-
cal harmonics PN approximation is potentially more accurate than
DOM/FVM at comparable computational cost, but higher order
PN are mathematically very complex and difficult to implement.
The PN method decouples spatial and directional dependencies by
expanding the radiative intensity into a series of spherical har-
monics. The lowest order of the PN family, the P1 approximation,
has been extensively applied to radiative transfer problems.

However, it loses accuracy when intensity is directionally very ani-
sotropic [7], as is often the case in optically thin media. Applications
of higher order SHM methods were limited to one-dimensional
cases for a long time, because of the cumbersome mathematics.
Recently, Modest and Yang [8,9] and Modest [10] have derived a
general three-dimensional PN formulation consisting of N(Nþ 1)/
2 second-order elliptic partial differential equations (PDEs) and their
Marshak boundary conditions for arbitrary geometries.

The main purpose of this paper is to present the procedure of
implementing high-order PN formulations within the OPENFOAM

[11] open source libraries, and a preliminary version was pre-
sented in Ref. [12]. The numerical methods used are summarized
along with four example cases. The results of high-order PN meth-
ods are found to be very close to the exact solution of the RTE
and accurately predict the incident radiation and radiative heat
source. Also, the time cost of the PN methods is summarized for
different examples and orders.

2 Formulation

2.1 Governing Equations. In the spherical harmonics
approximation, the radiative intensity is expanded into a sum of
spherical harmonics

Iðs; ŝÞ ¼
XN

n¼0

Xn

m¼�n

Im
n ðsÞYm

n ðŝÞ (1)

where s ¼
Ð

brdr is an optical coordinate, and br is the extinction
coefficient. Ym

n ðŝÞ are the spherical harmonics and the upper limit
N is the order of the approximation. The set of N(Nþ 1)/2 elliptic
PDEs [10] of the PN method for isotropic scattering in 3D Carte-
sian coordinates are as follows:
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For each Ym
n : n ¼ 0; 2;…;N � 1; 0 � m � n

X3

k¼1

�
ðLxx�LyyÞ

�
ð1þ dm2Þanm

k Im�2
nþ4�2k þ

dm1

2
cnm

k Im
nþ4�2k

þ enm
k Imþ2

nþ4�2k

�
þ ðLxz þLzxÞ ð1þ dm1Þbnm

k Im�1
nþ4�2k þ dnm

k Imþ1
nþ4�2k

� �

þ ðLxy þLyxÞ
�
� ð1� dm2Þanm

k I
�ðm�2Þ
nþ4�2k þ

dm1

2
cnm

k I�m
nþ4�2k

þ enm
k I
�ðmþ2Þ
nþ4�2k

�
þ ðLyz þLzyÞ

� �ð1� dm1Þbnm
k I
�ðm�1Þ
nþ4�2k þ dnm

k I
�ðmþ1Þ
nþ4�2k

h i

þ ðLxx þLyy � 2LzzÞcnm
k Im

nþ4�2k

�

þ Lzz � ð1�xd0nÞ½ �Im
n ¼�ð1�xÞIbd0n (2a)

and for each Y�m
n : n ¼ 2;…;N � 1; 1 � m � n
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dm1
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cnm
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k I
�ðmþ2Þ
nþ4�2k

�
þ ðLxz þ LzxÞ

� ð1� dm1Þbnm
k I
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k I
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h i
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k I�m

nþ4�2k

�
þ Lzz � 1ð ÞI�m

n ¼ 0 (2b)

where x is the scattering albedo, anm
k ; bnm

k ; cnm
k ; dnm

k ; and enm
k are

constant coefficients listed in Refs. [7] and [10], and dij is the Kro-
necker delta function. The L operators are denoting the deriva-
tives. For example,

Lxy ¼
1

br

@

@x

1

br

@

@y

� 	
(3a)

Lzz ¼
1

br

@

@z

1

br

@

@z

� 	
(3b)

2.2 Boundary Conditions. N(Nþ 1)/2 boundary conditions
are required and determined from general Marshak’s boundary
conditions [13]. However, the general Marshak’s boundary condi-
tions provide Nþ 1 more equations than needed. Modest [10]
recently showed that for the largest value of order N, only the
even values of m should be employed for a consistent set of
N(Nþ 1)/2 boundary conditions

m ¼
�n;�nþ 1;…; n n ¼ 1; 3;…;N � 2

�nþ 1;�nþ 3;…; n� 1 n ¼ N

(
(4)

The equations for the Marshak boundary conditions for iso-
tropic scattering are shown below, where the �Y6m

n are expressed in
terms of a local coordinate system �x; �y (tangential to the surface),
and �z (outward normal of surface).

For each �Y0
2i�1; i ¼ 1; 2;…; ðN þ 1Þ=2

Iwp0
0;2i�1 ¼

XN�1
2
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(5a)

and for each �Y6m
2i�1; i ¼ 1; 2;…; ðN þ 1Þ=2
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where l1 and l2 are defined as

l1 ¼
0 for �Ym

2i�1

1 for �Y�m
2i�1

(
and l2 ¼

1 for �Ym
2i�1

0 for �Y�m
2i�1

(
(6)

Iw is the radiative intensity at wall, and the constant coefficients
um

l;i; v
m
l;i;w

m
l;i, and pm

2l;n can be found in Ref. [10]. The partial deriva-
tives in Eq. (5) are expressed in local optical coordinates as

@

@s�x
¼ 1

br

@

@�x
(7a)

@

@s�y
¼ 1

br

@

@�y
(7b)

@

@s�z
¼ 1

br

@

@�z
(7c)

The calculation of boundary conditions involves rotating local
coordinates back to global coordinates through a rotation function
�Dð�c;�b;�aÞ, which depends only on the geometry of the
boundary faces. The Euler angles (a, b, c) from the boundary
faces follow the definition of Varshalovich et al. [14], see Fig. 1,
and can be obtained from the surface normal n̂ of the boundary
faces as

a ¼ tan�1ðny=nxÞ
b ¼ cos�1ðnzÞ

c ¼ p
2

(8)

where nx, ny, and nz are the x, y, and z components of the surface
normal vector n̂, respectively. With given Euler angles, a coordi-
nate rotation matrix R can be determined as

R ¼
� sin a � cos a cos b cos a sin b
cos a � sin a cos b sin a sin b

0 sin b cos b

2
4

3
5 (9)

allowing the evaluation of tangential directional vectors as

t̂�x ¼ R � ı̂ t̂�y ¼ R � Ĵ (10)
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3 Implementation

Generally, the system of the governing PDEs can be solved in
two ways. One approach is to solve the system of equations
directly by Gaussian elimination. Such direct solution does not
require any iteration which will theoretically reduce the computa-
tional cost. However, Ravishankar et al. [15] point out that the
size of the coefficient matrix, and the large numbers of the
unknowns demand huge amounts of memory and therefore make
Gaussian elimination inefficient. Another way is to adopt an itera-
tive method, which solves one unknown at a time while holding
other unknowns constant. In this paper, the coupled N(Nþ 1)/2
simultaneous PDEs and their boundary conditions are solved
iteratively by the finite volume based software OPENFOAM. In
each PDE with n and m corresponding to Y6m

n , the I6m
n and their

derivatives are arranged in the finite volume Laplacian operator of
OPENFOAM, i.e.,

ðLxx þ Lyy � 2LzzÞcnm
2 I6m

n þ LzzI
6m
n � ð1� xd0nÞI6m

n

¼ cnm
2 r2

sI6m
n þ ð1� 3cnm

2 ÞLzzI
6m
n � ð1� xd0nÞI6m

n (11)

All terms other than I6m
n are updated before each Y6m

n iteration.
The preconditioned conjugate gradient (PCG) [16] algorithm is
used to solve each PDE sequentially until I0

0 is converged to pre-
scribed criteria.

Since the governing equations are solved iteratively, the bound-
ary conditions expressed in Eq. (5) cannot be directly imple-
mented. In this paper, a matrix formulation is implemented so that
individual Robin boundary conditions can be explicitly associated
with each governing equation as

Im
n þ k

@Im
n

@s�z
¼ f

@Im
n

@s�x
;
@Im

n

@s�y
;
@Im0

n0

@s�x
;
@Im0

n0

@s�y
;
@Im0

n0

@s�z

� 	
(12)

where k is a scalar constant and f is a function of partial deriva-
tives of other intensity coefficients, including the tangential deriv-
atives of Im

n . Such formulations can be efficiently obtained by first
expressing the system of N(Nþ 1)/2 boundary conditions in
matrix form, and then transforming the matrices to generate one
Robin-type boundary condition for each corresponding governing
equation.

We will here take the boundary conditions of the P3 approxima-
tion as a demonstration to show the construction of coefficient
matrices. The associated local spherical harmonics for P3 are
�Y0

1 ;
�Y0

3 ;
�Y�1

1 ; �Y1
1 ;

�Y�2
3 , and �Y2

3 . The coefficients in front of Im
n and

their derivatives for each boundary conditions are determined
from m and n pairs of the local spherical harmonics.

The first term on the right-hand side of boundary conditions
(5a) for equation of �Y0

1 (n¼ 1, m¼ 0) is

XN�1
2

l¼0

X2l

m0¼�2l

p0
2l;1

�D2l
0;m0 I

m0

2l

¼ p0
0;1

�D0
0;0; p

0
2;1

�D2
0;�2; p

0
2;1

�D2
0;�1; p

0
2;1

�D2
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0
2;1

�D2
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0
2;1

�D2
0;2

h i
� I

¼ qð1;0Þ � I (13)

the subscripts of qðn;mÞ show the n and m associated with �Ym
n , and

the vector I is defined as

I ¼

I0
0

I�2
2

I�1
2

I0
2

I1
2

I2
2

2
666666664

3
777777775
¼

I1

I2

I3

I4

I5

I6

2
666666664

3
777777775

(14)

Applying the same formulation to the rest of the equations asso-
ciated with the remaining �Ym

n , the coefficients in front of Im
n for the

entire system of equations may be expressed as

Q¼
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¼
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(15)

Let Q�x;Q�y; and Q�z be the coefficient matrices for @I=@s�x;
@I=@s�y, and @I=@s�z, respectively. The resulting form for the Q�x
matrix is shown here:

Fig. 1 Definition of Euler angles for an arbitrary rotation
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Q�x ¼
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Finally, let p be the coefficient vector for Iw on the left-hand
side of Eq. (5a), which only has a nonzero value when m¼ 0

p ¼

pð1;0Þ
pð3;0Þ

pð1;�1Þ
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pð3;2Þ
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Two observations regarding the above matrices may be made.
First, all coefficient matrices are functions of geometry only, and
thus they only need to be calculated once. The second is that the
first column of matrix Q and vector p is identical, which leads to

Q�1 � p ¼ 1; 0; 0; 0; 0; 0½ �T (18)

which will be employed later in this section.
For general orders of PN, the row vectors of the boundary con-

dition are given by
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i
� ð1þ dm;0Þ

�
h
um

0;i
�D0

m�1;0; u
m
1;i

�D2
m�1;�2; u

m
1;i

�D2
m�1;�1;…;

um
1;i

�D2
m�1;2…; um

N�1ð Þ=2ð Þ;i
�DN�1

m�1;N�1

i
(19f )

q�yðn;þmÞ ¼
h
0; vm

1;i
�D2
�ðmþ1Þ;�2; v

m
1;i

�D2
�ðmþ1Þ;�1;…; vm

1;i
�D2
�ðmþ1Þ;2;…;

vm
N�1ð Þ=2ð Þ;i

�DN�1
�ðmþ1Þ;N�1

i
þ ð1� dm;1Þ

�
h
0; um

1;i
�D2
�ðm�1Þ;�2; u

m
1;i

�D2
�ðm�1Þ;�1;…; um

1;i
�D2
�ðm�1Þ;2;…;

um
N�1ð Þ=2ð Þ;i

�DN�1
�ðm�1Þ;N�1

i
(19g)

q�zðn;6mÞ ¼ �
h
dm;0wm

0;n;w
m
2;n

�D2
6m;�2;w

m
2;n

�D2
6m;�1;…;wm

2;n
�D2

6m;2;

wm
4;n

�D4
6m;�4; ;…;wm

N�1;n
�DN�1

6m;N�1

i
(19h)

where the case of m¼ 0 is included in the 6m notation for
Eq. (19a), while for the rest, the m¼ 0 case is shown separately
for clarity.

The entire set of boundary equations (5) for general PN bound-
ary conditions may now be written in matrix form as

Q � IþQ�x �
@I

@s�x
þQ�y �

@I

@s�y
þQ�z �

@I

@s�z
¼ Iwp (20)

After all elements of the coefficient matrices are calculated, the
next step is to convert Eq. (20) into individual Robin-type bound-
ary conditions, Eq. (12), which can then be directly applied to
each corresponding governing equation. Let j be the row index of
the matrices, as given by Eq. (14), the (Nþ 1)N/2 Robin boundary
conditions are

Ij þ Zj;j
@Ij

@s�z
¼ dj;1Iw �

XN2

k¼1

Xj;k
@Ik

@s�x
þ Yj;k

@Ik

@s�y
þ ð1� dj;kÞZj;k

@Ik

@s�z

� �

(21)

where

X ¼ Q�1 �Q�x

Y ¼ Q�1 �Q�y

Z ¼ Q�1 �Q�z

(22)

The coefficient matrix for the normal derivative @I=@s�z is split
into two parts. The diagonal elements of Z are kept on the left-
hand side, and the rest are placed on the right-hand side. In order
to calculate X, Y, and Z, LU decomposition [17] of Q is
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employed. Usually, the governing equation of I0
0 is the first one to

be solved, so it is convenient to let I1 be I0
0. Equation (18) is read-

ily shown to be valid for arbitrary orders of PN, and thus the coef-
ficient in front of Iw in Eq. (21) is 1 when j¼ 1 and equals 0 for all
other cases.

For Robin-type boundary conditions, OPENFOAM calculates the
value of the dependent variable at the patch faces as

Ij;face ¼ f � RHSþ ð1� f ÞIj;center (23)

where RHS is the right-hand side of Eq. (21), The fraction f is

f ¼ 1� Zj;j

brd

� 	�1

(24)

where d is the distance between face center and neighboring
cell center. The sign before Zj,j in Eq. (24) differs from that in
OPENFOAM, because the definition of normal direction in OPENFOAM

is outward, which is the opposite to the normal direction in the PN

formulation (inward). Also, OPENFOAM discretizes the gradient
term on the left-hand side of Eq. (21) as

@I

@�z
¼ Iface � Icenter

d
(25)

When the extinction coefficient br near the boundary is small, a
stabilizer for the Robin-type boundary conditions is applied, by
adding a factor of kIi to both sides followed by division of the
whole equation by (1þ k), where k¼ c/b, and c is a constant and
has dimensions of 1/length, so that k is dimensionless. This can
help to deal with sharp gradients at the boundaries and avoid
unphysical negative I0

0 during the iterations. Therefore,

Ij þ
1

1þ k

� 	
Zj;j

@Ij

@s�z
¼ 1

1þ k

� 	
Iwpjdj;1

� 1

1þ k

� 	XN

k¼1

�
Xj;k

@Ik

@s�x
þ Yj;k

@Ik

@s�y

þ ð1� dj;kÞZj;k
@Ik

@s�z

�
þ k

1þ k

� 	
Ij (26)

and f becomes

f ¼ 1� Zj;j

ð1þ kÞbrd

� 	�1

(27)

4 Results and Discussion

Four example problems are tested to explore the accuracy and
computation efficiency of high-order PN methods for fields with
strongly varying temperatures and absorption coefficients.

Although isotropic scattering adds no additional complexity or
effort to PN (as opposite to DOM), all the examples are limited to
nonscattering media in this study simply to reduce parameters
needed for presentation. For the first three examples, all quantities
(Planck function, lengths, and absorption coefficient) are given in
nondimensional form; in the last example, actual dimensions
pertaining to the chosen flame are used.

4.1 1D Slab With Variable Medium Properties. In the first
verification example, the PN-approximations are applied to a 1D
slab that encloses a medium with variable properties. In the
OPENFOAM finite volume implementation, a 1D slab case may be
solved by treating walls at two suppressed dimensions (single cell
in these directions) of a 3D cube as perfectly reflective (symmetry
boundary). The symmetry boundary in OPENFOAM sets the normal
gradient at the wall to zero for scalars. While this is not true for
all Im

n terms in general, it is the case for all nonzero Im
n terms in a

one-dimensional problem and, thus, is employed here. Here, a
100� 1� 1 cube is employed.

The properties of the medium vary according to

Ib ¼ 10ð1þ 0:5r2Þ (28a)

j ¼ r (28b)

where r is the perpendicular distance from the lower wall. For this
problem, the walls of the enclosure are assumed cold and black,
and the thickness of the slab is L¼ 1, and the optical thickness is
sL¼ 1/2. In optical coordinates, the temperature field (Ib) is linear,
which is convenient for finding an analytical solution. For the nu-
merical computations, a lower limit of jmin ¼ 10�4 was set for j
in order to avoid division by 0 at the lower wall. Although this
example is only 1D, having the analytical solutions is useful for
purposes of verifying certain aspects of the PN approximation and
the program implementation itself. For instance, by orienting the
1D slab at different angles within each of the three coordinate
planes (see Fig. 2), the 1D slab can be used to verify that all par-
tial derivatives are accounted for correctly in the implementation.
For example, setting the configuration angle to / ¼ 0 with the
slab positioned in the x-y plane, one can test the Lxx derivatives,
neglecting all mixed derivative, Lyy, and Lzz terms from the
PDEs. Similarly, setting / ¼ 90 deg, the combination of Lyy

derivatives can be singled out, and for / ¼ 45 deg, the combina-
tion of Lxx;Lyy;Lxy, and Lyx terms can be verified, etc. In terms of
solution profiles within the slab, the solutions for I0

0 should be
identical (and matching the analytical profiles) for arbitrary orien-
tations of the 1D slab.

The numerical and analytical solution for incident radiation G
and divergence of flux �r � q, for the case of the slab oriented in
the y-direction is shown in Fig. 3. The numerical results are found
to perfectly overlap the analytical results for various orientations,
which demonstrate that the PN implementation correctly employs

Fig. 2 Rotations of 1D slab at angles / ¼ 0;45 deg;�45 deg in the x-y plane. The medium
properties increase with low values at the lower wall to higher values at the upper wall.
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all the terms in the PDEs. Comparing with the exact solution for
this 1D problem [7], higher order PN generally produce more
accurate results over the entire slab, except near the lower wall
where it seems that the PN-approximations incur larger errors.
This is probably due to very low values of j at the lower wall.

Nevertheless, the overall error is reduced by approximately 50%
every time the order is increased for this example.

4.2 Square Enclosure With Variable Radiative Properties.
A verification case of a square enclosure is tested with strongly

Fig. 3 Comparing incident radiation and radiative heat source with analytical solutions of
PN and exact solution of 1D slab. (a) Incident radiation G and (b) radiative heat source $ � q.

Fig. 4 Incident radiation and radiative source for a square enclosure with various PN approxi-
mations. (a) Ck 5 1, (b) Ck 5 0.1, and (c) Ck 5 0.01.
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varying temperatures and absorption coefficients. Like the 1D
slab case, the 2D square case is solved by treating the walls of a
3D cubic at one suppressed dimension as perfectly reflective
(symmetry boundary). The square uses a 51� 51� 1 mesh, and
the boundaries are assumed black and cold.

The following nondimensional radiative properties were chosen
identical to the example given in Ref. [10], and some results are
shown in Fig. 4:

Ib ¼ 1þ 5r2ð2� r2Þ (29a)

j ¼ Ck 1þ 3:75ð2� r2Þ2
h i

(29b)

r2 ¼ x2 þ y2; �1 � x � 1; �1 � y � 1 (29c)

sD ¼ 18
ffiffiffi
2
p

Ck (29d)

Comparing results from the PN methods with a Monte Carlo
simulation for the optically thick case, Figs. 4(a) shows that all
orders of SHMs do very well. For the optically intermediate case,
Fig. 4(b), P1 and P3 have difficulty catching the trend of peaks
and valleys for the incident radiation G, while P5 is very close to
the PMC results and P7 is almost exact. For the optically thin
case, Fig. 4(c), higher orders of PN will have better accuracy, but
none can follow the true variation of incident radiation G. How-
ever, the more important radiative heat source �r � q is captured
well even for optically thin situations. The placement of the 2D
square enclosure to different coordinate planes (x-y, x-z, y-z) gives
identical results for I0

0 and G, while the other Im
n terms change

with different coordinate orientations.

4.3 Cylindrical Enclosure With Variable Radiative
Properties. A cylindrical enclosure with variable radiative prop-
erties is tested with the PN methods. The absorption coefficient j
varies both in the r-direction and z-directions. The cylinder has
45 cells along the radius and 40 cells along the axis with a square
cuboid (15� 15� 40) at the center, and the cylinder walls
are again set to be black and cold. The radiative properties and
geometry information are

Ib ¼ 1þ 20

R4
r2ðR2 � r2Þ (30a)

j ¼ Ck 1þ 15

R4
ðR2 � r2Þ2

� �
(30b)

Ck ¼ 0:3þ z 0 � r � R ¼ 0:5; 0 � z � 2:5 (30c)

sD ¼ 2

ðR

0

jdr ¼ 7:5Ck (30d)

The results are shown in Fig. 5. Incident radiation G at two
heights z is plotted, and the results are compared with the exact
solution [7]. The results from P3 to P7 are very close to the exact
solution, while P1 has certain levels of discrepancies with the
exact solution and the discrepancy decreases with increasing opti-
cal thickness. The incident radiation G from P5 and P7 correctly
catch the sharp gradient near the cylinder wall, which is critical
for the heat transfer analysis for some industrial applications.

While this problem is 2D axisymmetric in r and z, the PN for-
mulation is in Cartesian coordinates and must be solved in 3D (as
is also the case for the discrete ordinates finite volume method
[7]). An axisymmetric version of the PN formulation will be
presented in a follow-up paper.

4.4 Scaled Flame With Nongray Radiative Proper-
ties. Finally, the PN implementation is applied to an axisymmetric
methane jet flame. The flame is a four-time scaled 3D cylindrical
version of Sandia Flame D [18]. The flame is mapped to a 3D
cylinder from the original wedge mesh used by OPENFOAM for axi-
symmetric problems. The cylinder has 27 cells along the radius

Fig. 5 Incident radiation for a cylinder enclosure at two axial locations with various PN

approximations. (a) z 5 0.71 and (b) z 5 1.20.

Fig. 6 Cylinder mesh of scaled Flame D in the analysis
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(R¼ 0.36 m) and 95 cells along the axis (z¼ 2.88 m) with a square
cuboid (Fig. 6) (60� 60� 95) at the center, and the cylinder
walls are set to be black and cold. Figure 7 shows the temperature
and concentration fields for the quasi-steady flame. The absorption
coefficients of participating gases are nongray and are calculated
using the full spectrum correlated-k (FSCK) model [19,20] requir-
ing a set number of evaluations of the spectral RTE (correspond-
ing to quadrature points in the FSCK scheme). In the present
implementation, eight quadrature points are used.

The radiative heat source �r � q is shown in Fig. 8 for two
axial locations. Location z¼ 1.0 m is where water vapor has the
highest mass fraction, while the maximum mass fraction of carbon
dioxide is at z¼ 1.43 m. The results calculated by P1 to P7 to-
gether with the FSCK spectral model on the cylindrical mesh are
compared to line-by-line (LBL) P1 calculations and LBL–PMC
calculations. The error incurred by FSCK can be shown by
comparing the FSCK–P1 results with the LBL–P1 results. And the
LBL–PMC results presented here are calculated on a wedge mesh
[21], which is another source of error. Still, major differences
between the FSCK–PN solutions and LBL–PMC results are errors
attributable to the PN methods. As shown in Fig. 8, with the
increase of the order of PN, the results get closer to the PMC
results. And P5 and P7 successfully match the PMC results in
most regions. The results prove that even under extremely alter-
nating temperature fields and gas concentrations as in real com-
bustion applications, the precision of the FSCK–P5 and FSCK–P7

are on the same level as LBL–PMC.

4.5 Computation Time Comparison. A CPU time compari-
son for different orders of PN for the above cases is given in
Table 1. All calculations were carried out on a single Intel (R)
Xeon (R) CPU X7460 running at 2.66 GHz. The P1 approximation
solves a single PDE; P3, P5, and P7 consist of 6, 15, and 28
strongly coupled PDEs with numerous cross-derivatives, respec-
tively. The computing time for optically thick and intermediate
cases does not show big differences. The optically thin case con-
sumes more time because of the use of the boundary condition sta-
bilizer. Comparing the computing time for the 3D cylindrical
enclosures with the square enclosure, the time increase is not pro-
portional to cell numbers. The cell number of the 3D cylindrical
mesh is about 50 times of that of the square, but computing time
is only around 12 times for P1 and 40 times for P5 to P7, which
implies that the computation time is strongly related to the distri-

Fig. 8 Radiative source for Sandia Flame D 3 4 at two axial locations as calculated with vari-
ous PN approximations. (a) z 5 1.00 m and (b) z 5 1.43 m.

Table 1 Comparison of PN computation cost for different test cases

Computation cost of PN method Number of cells P1 (s) P3 (s) P5 (s) P7 (s)

Square enclosure (Ck¼ 1) 2601 0.02 0.75 4.71 7.00
Square enclosure (Ck¼ 0.1) 2601 0.02 0.87 5.05 9.33
Square enclosure (Ck¼ 0.01) 2601 0.02 1.78 7.09 19.19
3D cylinder 131,400 1.01 90.49 269.29 727.08
Flame (one quadrature) 957,600 7.36 1323.53 2566.52 6817.02

Fig. 7 Mean temperature and mass fraction fields for scaled
Sandia Flame D

052701-8 / Vol. 137, MAY 2015 Transactions of the ASME

Downloaded From: http://heattransfer.asmedigitalcollection.asme.org/ on 02/25/2015 Terms of Use: http://asme.org/terms



bution of radiative properties (through the number of iterations
required). For radiative transfer evaluations in coupled CFD
computations, the Im

n results from the last iteration can be taken as
initial values for the new iteration, which will significantly reduce
the computation time of the PN method; this is in contrast to
DOM, which in the absence of scattering has to be evaluated from
scratch at each time step.

5 Summary and Conclusion

A general spherical harmonics PN model (up to P7) for arbitrary
3D geometries is implemented in OPENFOAM. The coupled
N(Nþ 1)/2 simultaneous PDEs and their boundary conditions are
solved iteratively by the PCG method. The implementation is
tested for four example problems. Three problems are designed
with smoothly varying radiative properties, and the fourth one is a
real flame. Results from different orders of PN for these cases are
compared with exact solutions and PMC results. The comparison
shows that high-order SHM can accurately predict the incident
radiation and radiative heat source for a wide range of geometries
and optical thicknesses. The answers get closer to the exact
solution and PMC results with higher order PN but with more
PDEs to solve. The system of simultaneous PDEs is solved itera-
tively in the current implementation. Further development could
employ a block-coupled approach [22] to improve the stability
and computation efficiency.
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Nomenclature

G ¼ incident radiation (W m�2)
I ¼ radiative intensity (W m�2 sr�1)
I ¼ vector containing Im

n
Ib ¼ blackbody radiative intensity (W m�2 sr�1)
Iw ¼ radiative intensity at wall (W m�2 sr�1)
Im
n ¼ position dependent radiative intensity coefficients
L ¼ differential operator
N ¼ order of the spherical harmonics method
n̂ ¼ unit surface normal vector
p ¼ coefficient vector for Iw

qðn;mÞ ¼ row vectors of the coefficient matrices
Q ¼ coefficient matrices
r ¼ radius (m)

R ¼ rotation matrix
ŝ ¼ unit direction vector
t̂ ¼ unit surface tangential vector

Ym
n ¼ spherical harmonics

r � q ¼ radiative heat source (W m�3)

Greek Symbols

a, b, c ¼ Euler rotation angles
br ¼ extinction coefficient (m�1)
dij ¼ Kronecker delta function

Dn
mm0 ¼ rotation function

�h ¼ local polar angle
j ¼ absorption coefficient (m�1)
s ¼ optical coordinate, optical thickness
�w ¼ local azimuthal angle
x ¼ scattering albedo

Subscripts

j, k ¼ indices for coefficient matrices and vectors
x, y, z ¼ global coordinates
�x; �y; �z ¼ local coordinates
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