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A Resource Allocation Algorithm for Multi-Vehicle
Systems with Non holonomic constraints

Sivakumar Rathinam1, Raja Sengupta2, Swaroop Darbha3

Abstract— Multi-vehicle systems are naturally encoun-
tered in civil and military applications. Cooperation
amongst individual “miniaturized” vehicles allows for flexi-
bility to accomplish missions that a single large vehicle may
not readily be able to accomplish. While accomplishing a
mission, motion planning algorithms are required to effi-
ciently utilize a common resource (such as the total fuel in
the collection of vehicles) or to penalize a collective cost
function (such as to minimize the maximum time taken by
the vehicles to reach their intended target). The objective of
this paper is to present a constant factor approximation al-
gorithm for planning the path of each vehicle in a collection
of vehicles, where the motion of each vehicle must satisfy
non-holonomic constraints.

Keywords—Cooperative control, Travelling salesman, Mo-
tion Planning, Non holonomic, Dubins

I. Introduction

THIS paper is about the assignment of m targets to n
vehicles. The motion of the vehicles is assumed to

be non-holonomic, i.e., the yaw rate of the vehicle is con-
strained. Each target is to be visited by one and only one
vehicle. Given a set of targets and the path constraints on
the vehicles, the problem P addressed in this paper is
• to assign each vehicle, a sequence of targets to visit, and
• to find the paths of the vehicles to their respective targets
that satisfy yaw rate constraints, so that the total distance
travelled by the collection of vehicles to reach their assigned
targets is minimized.

This resource allocation problem that is addressed in this
paper belongs to a class of cooperative control problems
of unmanned aerial vehicles that has received significant
attention in the recent years [2], [3], [4], [5], [7]. With-
out the non-holonomic (yaw rate) constraints, our problem
is essentially a Multi Vehicle Travelling Salesman Problem
with symmetric costs(distances) between the targets. How-
ever the non-holonomy makes the costs non-Euclidean and
asymmetric. The minimum distance that can be travelled
by a non-holonomic vehicle going from target A to target
B depends on its heading at target A and at target B. This
distance can be determined using the well-known result of
L.E. Dubins [1]. In general, it will not be the length of the
straight line joining the two targets.

The distance between the two targets is also not sym-
metric. The minimum distance that can be travelled by
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a vehicle starting at target A with heading ψA and arriv-
ing at target B with heading ψB is not equal to the min-
imum distance that can be travelled by a vehicle starting
at target B with heading ψB and arriving at target A with
heading ψA. Thus we can think of our problem as a type
of Multi Vehicle-Asymmetric Travelling Salesman Problem
with the costs satisfying the triangular inequality and the
motion being non-holonomic.

The Asymmetric Travelling Salesman Problem (ATSP)
is well known in combinatorial optimization to be NP-hard.
Currently, there are no algorithms with a constant approx-
imation factor available for solving ATSP problems even
when the costs satisfy triangular inequality. A approxima-
tion factor β(P, A) of using an algorithm A to solve the
problem P (objective is minimize some cost function) is
defined as

β(P,A) = sup
S

(
C(S, A)
Co(S)

), (1)

where S is a problem instance, C(S, A) is the cost of
the solution by applying algorithm A to the instance S
and Co(S) is the cost of the optimal solution of S. The
algorithm by Markus Blaser given in [16] for a single ve-
hicle Asymmetric Travelling Salesman Problem problem
(visiting n targets) has a approximation factor 0.999 log n.
Hence, the bound → ∞ as n → ∞. There are also other
kind of algorithms where the bound → ∞ due to the
data but are independent of n. For example, the algo-
rithm by Kumar and Li given in [17] has a approxima-
tion ratio which is a increasing function of dmax

dmin
. Here,

dmax = maxi,j C(i, j) and dmin = mini,j C(i, j), where
C(i, j) denotes the costs between two targets i and j.

The problem P dealt in this paper also assumes that
the angles of approach at the targets are not given and
hence, the distances (or costs) required to travel between
any two targets vary depending on the path chosen by the
vehicle. We assume the distance between targets is greater
than twice the minimum turning radius of the vehicles (as-
sumption on dmin. When there is one vehicle and several
targets we derive a constant factor of 4.64. When there
are many vehicles we derive a constant factor of 6.08. Our
algorithms are essentially derived by combining constant
factor approximation algorithms for Euclidean TSP’s with
the Dubins results.

A. Related work

A more general version of problem P with multiple tasks
required for each target was formulated in [15]. Task al-
location and multi-assignment problems are solved using



2

network flow and auction algorithms in [6], [7]. In [7],
the number of vehicles are assumed to be greater than the
number of tasks to be performed for solving the bilinear
assignment problem. In this paper, we make no assump-
tions about the relative number of vehicles or the number
of targets.

Theju et. al. in [8] present methods for solving the
multi-vehicle, target assignment problem in the presence
of threats with the goal of minimizing the maximum path
length. In the absence of the threats, this problem is ac-
tually related to the dual of the multiple vehicle problem
addressed in this paper where the sum of the distances trav-
elled by the vehicles is minimized. Problem P can also be
formulated as a mixed integer linear programming problem
and related versions of this problem with timing constraints
are tacked in [10] [11]. This approach yields an optimal so-
lution but is computationally expensive. The paper that is
most related to our multiple vehicle problem is the work by
Zhijun et.al [18] where they provide heuristics for multiple
vehicles tracking moving targets using clustering and gradi-
ent techniques. Even though [18] consider moving targets,
their main results are for static targets which is essentially
the problem that is addressed in this paper. Also heuristics
for more general versions of the problem P are presented
in [9] [13], but there are no bounds. Here, we present a
polynomial time approximation algorithm with a constant
factor bound. We conjecture that the output solution of
the multiple vehicle algorithm presented in this paper can
also be used as an initial solution and say, coupled with the
heuristics presented in [18] to getter better results.

Also related to this work is the paper by yang et. al.
[14] where they consider path planning for a UAV with
kinematic constraints given fixed initial and final positions
in the presence of obstacles. The UAV in their work is
required to visit a target and then reach a final position
avoiding threats and other obstacles. This is related to
the single vehicle problem addressed in this paper in the
absence of obstacles when there is one target on the tour.
The single vehicle problem addressed in this paper has been
previously addressed by [19]. In their work, they bound the
distance of the dubins path between any points (x1, y1, θ1)
and (x2, y1, θ2) in terms of the Euclidean distance between
the corresponding points. Also, using this result, they pro-
pose an algorithm which bounds the total distance travelled
by the vehicle in terms of the Euclidean distance tour. In
this paper, we provide an algorithm for multiple vehicles.
Also, by making assumptions about the target positions,
the bound that we propose in for the approximation factor
of the algorithm.

We present an approximation algorithm for multiple ve-
hicles that is independent of the number of targets or ve-
hicles by making an assumption about the minimum dis-
tances between the targets. The assumption is that the
targets are at least 2r apart, where r is the minimum turn-
ing radius of the vehicle. This is reasonable assumption in
the context of unmanned aerial vehicles which carry sensors
that have footprints that are greater than 2r. For example,
figure 1 shows a unmanned aerial vehicle that we use for

Fig. 1. Unmanned aerial vehicle.

tracking and other mapping applications. The vehicle has
a minimum turning radius of around 100 meters. If the
vehicle is flying at a height of at least 150 meters using a
80 degree wide angle camera, then the width of the area
covered in the images is at least 200 meters. Therefore, the
targets within 200 meters can be seen from the same ve-
hicle position. Hence, we assume that dmin, the minimum
distance between the targets, is ≥ 2r. The algorithm given
in this paper for multiple vehicles require O((n+m)2) steps
where n is the number of vehicles and m is the number of
targets.

II. Resource Allocation Problem

Let −→r (vi, t) = (x(vi, t), y(vi, t), θ(vi, t)) denote the po-
sition of vehicle vi at time t. Let each vehicle start at
an initial heading θ(vi, 0) = αi. Similarly, let r(dj , t) =
(x(dj , t), y(dj , t)) denote the position of target dj at time
t. Since the targets are assumed to be static, let
r̄(dj) = r(dj , t) = r(dj , t

′) ∀ t, t′. Given a set of vehi-
cles {v1, v2, ...vn} and targets {d1, d2, ...dm}, the problem
is to
• assign a sequence of targets Pi for each vehicle to visit
such that {d1, d2...dm} = {⋃i Pi} and Pi

⋂
Pj = ∅ if i 6= j.

• assign for each vehicle vi, a path through the sequence Pi

such that the path of each vehicle vi satisfies the following
equations of motion:

dx(vi, t)
dt

= vo cos (θ(vi, t)),

dy(vi, t)
dt

= vo sin (θ(vi, t)),

dθ(vi, t)
dt

= Ω where Ω ε [−ω, +ω],

(2)

where, vo denotes the speed, ω represents the bound on the
yaw rate and r = vo

ω is the minimum turning radius of the
vehicle.

Let the sequence Pi for vehicle vi be di1 , ...dik
. As-

signing a path for a vehicle vi through its sequence Pi

of targets also implies assigning the angles of approach
βdi at each target and assigning the angle of return βvi
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at which the vehicle comes back to its initial position
(x(vi, 0), y(vi, 0)). For example, the ith vehicle moves
from (x(vi, 0), y(vi, 0), αi) to (r̄(di1), β(di1)), and then from
(r̄(di1), β(di1)) to (r̄(di2), β(di2)) and so on. After reaching
dik

, it comes back to its initial position (x(vi, 0), y(vi, 0))
at an angle βvi

.
The objective is to minimize

∑n
i=1 Cost(Pi), where

Cost(Pi) is the total distance travelled by the ith vehicle.
Let the above problem be called as RAS(n), i.e, Re-

source Allocation Problem for n vehicles. If the constraints
given by equations 2 are not present, then the resource allo-
cation problem becomes a Multi-vehicle Euclidean Travel-
ling Salesman problem. Additionally, if n = 1, the resource
allocation problem is a single vehicle Euclidean Travelling
Salesman problem.

III. Algorithms

In this section, we present approximation algorithms for
the single vehicle resource allocation problem (i.e., when
n = 1) and the multiple vehicle resource allocation problem
(n > 1). Before we present the algorithms, we present the
result by L.E. Dubins which forms the motivation for the
paths chosen in the algorithms.

L.E. Dubins [1] gives the optimal path the vehicle must
travel subject to the path constraints given by equations 2.
Dubins result states that the curve joining the two points
(x1, y1, θ1) and (x2, y2, θ2) that has minimal length sub-
ject to equations 2, consists of atmost three pieces, each
of which is either a straight line or an arc of of a circle of
radius r. This curve must necessarily be

1. an arc of a circle of radius r, followed by a line seg-
ment, followed by an arc of a circle of radius r, or

2. a sequence of three arcs of circles of radius r, or
3. a subpath of a path of type 1 or 2.
An example of such a path is given in figure 2. The vehi-

cle in this path first turns clockwise at the minimum turn-
ing radius, then travels straight, and finally turns in the
counter clockwise direction to reach the final target. Hence-
forth, the turning clockwise motion at minimum turning
radius is denoted by R, the turning counter clockwise mo-
tion at minimum turning radius is denoted by L and the
travelling straight motion is denoted by S. Thus the path
in figure 2 is an RSL path. In the special case where the
points (x1, y1),(x2, y2) are at least 2r apart and when the
angle θ2 is not specified, the following lemma follows from
the results in [1]:

Lemma III.1: Given (x1, y1, θ1), (x2, y2), if√
(x1 − x2)2 + (y1 − y2)2 ≥ 2r, there exists a unique RS

path and a unique LS path from (x1, y1, θ1) and (x2, y2)
satisfying equations 2.

A. Single Vehicle Algorithm (SVA).

First, we give a simple algorithm S for the vehicle v1

to find a path to travel from positions (x(v1), y(v1), α1) to
r̄(dj). Note that the final approach angle at the position
r̄(dj) is not specified. Algorithm S is as follows:

x1,y1, θ 1

x2,y2, θ 2

Fig. 2. Shortest path - {clockwise, straight, counter clockwise}.

1. Find the distances of two possible paths the vehicle
could take: RS and LS.
2. Choose the path that has the minimum distance.

Once, this path is followed, the vehicle reaches the posi-
tion r̄(dj) at some final angle θ. Hence, the final approach
angle is automatically selected here.

The algorithm SV A to solve the single vehicle problem
is as follows:
1. Use Christofides algorithm [20] to solve the Euclidean
TSP problem assuming the kinematic constraints are ab-
sent. The output is a sequence of targets {d1, d2, ...dm} for
the vehicle to visit.
2. Use the above sequence and construct paths using algo-
rithm S between any two consecutive targets. For example,
use algorithm S to construct a path from (x(v1), y(v1), α1)
to r̄(d1). Say, the vehicle reaches the target d1 at an an-
gle θ. Again, use algorithm S to construct a path from
(r̄(d1), θ) to r̄(d2) and so on.

Lemma III.2: The path by the algorithm SV A satisfies
equations 2.

Proof: Follows from the construction of the path in
step 2 of the algorithm SVA.

A.1 Analysis

The following results show the approximation factor for
this algorithm. First, the distance travelled by the vehicle
using algorithm S is bounded with respect to the Euclidean
distance between the vehicle and the target positions. Let
the vehicle be located at the origin O at any angle of orien-
tation. Let the coordinates of the target be (x, y). Assume
that the vehicle and the target location T are separated by
a Euclidean distance greater than equal to 2r. Let D(x, y)
be the distance travelled by the vehicle using algorithm S
to the target from O.

Lemma III.3: Without loss of generality, let the vehicle
be position at (0, 0, π

2 ) and the target be positioned at (x, y)
with

√
x2 + y2 ≥ 2r. The path RS is optimum if x > 0 and

the path LS is optimum if x < 0. Both RS and LS are
optimal if x = 0.
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x

y

PP’

a

b

First quadrant

Fourth quadrantThird quadrant

Second quadrant

LS RS

Fig. 3. The LS and RS paths.

Proof: Consider any two points P ′ and P that are
symmetric about the axis x = 0 as shown in the figure 3.
Points P and P ′ are at the same euclidean distance from
the origin. As shown in the figure, the distance using the
path LS to P ′ is less than using RS. Likewise, the distance
using the path RS is optimal to reach the location P . Both
the distances of the paths RS and LS are equal if the points
lie on x = 0.

Lemma III.4: Consider the set S = {(x, y) :
√

(x2+y2) =
R}. Let R ≥ 2r. Then D(x, y) for (x, y) ∈ S is maximized
when x = 0, y = −R.

Proof: Basically since the distances are symmetric
about x = 0 axis, without loss of generality, only RS paths
need be considered to targets in the first and the fourth
quadrant. Let S′ = {(x, y) : x ≥ 0,

√
(x2 + y2) = R}.

Consider the point Q with coordinates (0,−R) as shown in
the figure 4. Also, consider any other point P = (x, y) ∈
S′. The distances of the path RS to the point Q is greator
than or equal to the distance to the point P. Therefore,
D(x, y) for (x, y) ∈ S is maximized when x = 0, y = −R.

Lemma III.5: Let R =
√

(x2 + y2) ≥ 2r. The ratio
D(x,y)√
(x2+y2)

is maximized when x = 0 and y = −2r. The

maximum ratio is π + 1− tan−1(0.5).
Proof: From the previous lemma, the D(x, y) must

be maximum for x = 0 and y = −R. Hence, it is enough
to consider the maximization of the ratio on the set of
points given by {(0,−R) : R ≥ 2r}. Then from figure
4, D(0,−R) = 2πr − 2γr + R = (2π − 2 tan−1 R

r )r + R.
Hence, if R ≥ 2r, the ratio D(x,y)√

(x2+y2)
for x = 0 and y = −R

is D(0,−R)
R = (2π− 2 tan−1 R

r ) r
R + 1 which is maximized at

R = 2r.
Once the distances between the individual points are

bounded, it can be combined with the Christofides result
to get a approximation for the single vehicle problem.

Theorem III.1: Algorithm(SV A) solves the single vehi-
cle problem with a approximation factor β(RAS(1), SV A)
= 3

2 (π + 1− tan−1(0.5)) ≈ 4.64.

x

y

P

First quadrant

Fourth quadrantThird quadrant

Second quadrant

O

R 

Q

γ γ r 

Fig. 4. Proof of lemma VI.2

Proof: The Christofides algorithm applied to the
Euclidean TSP has an approximation factor of 3

2 . By
Lemma 2.1, the maximum ratio of the distance of the
path constructed using algorithm S to the euclidian dis-
tance is π + 1 − tan−1(0.5). Combining these two re-
sults, β(RAS(1), SV A) = 3

2 (π + 1 − tan−1(0.5)) ≈ 4.64,
i.e. the algorithm SVA has an approximation factor
3
2 (π + 1− tan−1(0.5)).

B. Multiple Vehicle Algorithm (MVA)

The algorithm MV A for the multi vehicle path planning
problem is as follows:
1. Construct a complete graph with nodes being all the
vehicle and target positions. Assign the Euclidean distance
as the cost to each edge that joins a vehicle to a target and
a target to a target. Assign zero cost to an edge that joins
any two vehicles.
2. Find the minimum spanning tree of the graph using
Prims algorithm [20]. This minimum spanning tree will
contain exactly n− 1 zero cost edges where n is the num-
ber of vehicles (figure 5).
3. Remove the zero cost edges to get a tree for each vehicle.
4. For each tree corresponding to a vehicle, double its edges
to construct a Eulerian graph(figure 6). Then construct a
tour for each vehicle based on the Eulerian graph. A tour
for each vehicle is a sequence of targets for it to visit (figure
7). (This step is similar to Tarjan’s algorithm for a single
vehicle Euclidean TSP [20]).
5. Use the sequence derived from the previous step for the
each vehicle and construct paths using algorithm S between
any two consecutive targets as in the single vehicle case
(figure 8).

B.1 Analysis

First we show algorithm MV A, without step 5, has an
approximation factor of 2. Then as in the single vehicle
case, each edge is replaced with a path that satisfies the
minimum curvature constraints yielding a bound similar
to the single vehicle problem.

Let G(V,E) be a graph with vertices V =
{v1, v2...vn, d1, d2...dm}. The graph is complete, that is,
there is a edge eab between every pair of vertices a and
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0 0
v e h i c l et a r g e t s

Fig. 5. Calculate the minimum spanning tree (MST). In this exam-
ple, there are 3 vehicles, hence MST will have 2 zero cost edges.

Fig. 6. After removing the zero cost edges, double the edges of the
MST to get a Eulerian graph for each vehicle

b. Each edge is assigned a cost C : E −→ R+ such that
C(eab) = ‖a − b‖2 if a, b /∈ {v1, v2...vn} and C(eab) = 0
if {a, b} 6⊆ {v1, v2...vn}. Note if {a, b} 6⊆ {v1, v2...vn},
‖a− b‖2 > 0.

Lemma III.6: The minimum spanning tree MST of the
graph G computed using the Prims algorithm has n − 1
zero cost edges.

Proof: Prims algorithm can be started at any arbi-
trary vertex in the graph G. Since, the Prims algorithm is
greedy, once a vehicle vertex is reached, it will add further
n − 1 zero costs edges before reaching any target vertex.
The algorithm cannot add more than n−1 zero cost edges,
because it would form a cycle otherwise. Hence there will
be exactly n− 1 zero cost edges.

Now the following theorem gives a bound for visiting all
the targets based on the Euclidean distances. Let MST
be the minimum spanning tree from step 2 of algorithm
MV A.

Lemma III.7: Step 4 of algorithm MV A produces a se-
quence of targets for each vehicle to visit and has a approx-
imation ratio of 2.

Proof: Consider the optimal tours for all the vehicles
for the graph G(V, E) based on the cost function C. From
each tour, remove one of the two edges that connect to the
vehicle vertex to yield a tree for each vehicle as shown in
the figure 9. Now, add an appropriate set of n − 1 zero

Fig. 7. Compute the TSP tour based on the Eulerian graph for each
vehicle

Fig. 8. Use the sequence got from the TSP tour and construct dubins
paths between the corresponding targets.

cost edges to join all the trees connected to the vehicles to
make a joined tree, say T ′ (figure 10). Clearly the cost of
T ′ must be ≥ to the cost of MST . Hence the cost of the
tour constructed using Step 4 of the algorithm MV A must
be lower bounded by Cost(MST ). Cost(MST ) is the sum
of the distances of all the edges in MST .

Let MSDi represent the tree for the ith vehicle after re-
moving the zero cost edges from the minimum spanning
tree. Each tree MSDi must be a minimum spanning tree
for the subset of targets connected to the corresponding
vehicle. Hence doubling the edges results in a Eulerian
graph for the corresponding subset of vertices with a cost
= 2Cost(MSDi). As given in [20], a TSP tour can be con-
structed for each vehicle with a total cost upper bounded
by 2

∑
i Cost(MSDi) or ≤ 2Cost(MST ). Hence the tour

constructed has a bound of 2.
Now, the following is the result for the approximation

factor of the algorithm MV A.
Theorem III.2: Algorithm(MV A) solves the multiple

vehicle problem with a approximation factor β(RAS(n),MV A)
= 2(π + 1− tan−1(0.5)) ≈ 6.08 in O((n + m)2) steps.

Proof: Follows from lemma III.5 and III.7. The
time complexity is basically determined by three steps:
finding the minimum spanning tree which takes O((n +
m)2); finding the Eulerian tour which also takes O((n +
m)2) steps; finding the RS,LS approximations also take
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Fig. 9. Remove one of the edges incident on each vehicle in the
optimal tour

0

0

A d d  z e r o  c o s t  e d g e s  b e t w e e n  t h e  v e h i c l e s  t o  f o r m  a  t r e ef o r  t h e  e n t i r e  g r a p h

Fig. 10. Adding the zero cost edges to form a tree.

O((n + m)2) steps.

IV. Directions for Future Work

This paper presented a constant factor approximation al-
gorithm for multi-vehicle systems with non-holonomic con-
straints. The basic assumption was that the target points
are at least a distance of 2r apart. The vehicle was mod-
elled as a simple unicycle model with yaw rate constraints.
Even if the dynamics of the vehicle is included, as long
as the distances travelled satisfy the triangular inequality
constraints, the results given in this paper can be general-
ized. There are many future directions for this work. The
issues that can addressed are targets with ordering con-
straints; targets requiring multiple visits; and stochastic
uncertainty.
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