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Large Deviations Approach to Bayesian Nonparametric
Consistency: the Case of Pólya Urn Sampling

M. Grend́ar∗, G. G. Judge†, and R. K. Niven‡

Sep 21, 2007

Abstract

The Bayesian Sanov Theorem (BST) identifies, under
both correct and incorrect specification of infinite di-
mensional model, the points of concentration of the
posterior measure. Utilizing this insight in the context
of Pólya urn sampling, Bayesian nonparametric consis-
tency is established. Pólya BST is also used to provide
an extension of Maximum Non-parametric Likelihood
and Empirical Likelihood methods to the Pólya case.

Keywords: PólyaL-divergence, Bayesian Maximum (A Pos-
teriori) Probability method, Maximum Non-parametric Like-
lihood method, Empirical Likelihood method

AMS: 60F10, 60F15

1 Introduction

In Bayesian nonparametric (or infinite dimensional)
statistics a strictly positive prior is put over a setΦ
of probability distributions. In this context letr be
the true data sampling distribution of a random sam-
ple Xn , X1,X2, . . . ,Xn. Provided thatr ∈ Φ, as the
sample size grows to infinity, the posterior distribu-
tion π(·|Xn = xn) over Φ is expected to concentrate
in a neighborhood of the true sampling distributionr.
Whether and under what conditions this indeed hap-
pens is a subject of Bayesian nonparametric consistency

∗Department of Mathematics, FPV UMB, Tajovského 40, 974 01
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investigations. Surveys of the subject include [7], [9],
[25], [23], [24], [26].

More formally, as in [7], consistency of a sequence
of posteriors with respect to a metricd can be defined
as follows: The sequence{π(·|Xn),n ≥ 1} is said to
be d-consistent atr, if there exists aΩ0 ⊂ R∞ with
r(Ω0) = 1 such that forω ∈ Ω0, for every neighbor-
hoodU of r, π(U |Xn) → 1 asn goes to infinity. If a
posterior isd-consistent for anyr ∈ Φ then it is said to
bed-consistent. There, two modes of convergence are
usually considered: convergence in probability and al-
most sure convergence andd is usually either Hellinger
distance or a metric which metricizes weak topology.

Freedman’s [5] classic theorem on Bayesian non-
parametric consistency forX taking on values from a
finite set was in [1], [2], and independently in [6] proved
by means of a Bayesian Sanov Theorem (BST). In [11]
the consistency was via BST established for a countable
set of densities. BST (a.k.a. Sanov Theorem for Sam-
pling Distributions) is Bayesian counterpart of Sanov
Theorem for Empirical Measures [21], [3]. The latter
is a basic result of Large Deviations (LD) theory [4].
LD theory is a sub-field of probability theory where,
informally, the typical concern is about the asymptotic
behavior, on a logarithmic scale, of the probability of a
given event. To promote and extend the Bayesian large
deviations approach, we study Bayesian nonparamet-
ric consistency for a basic non-iid setting, where data
are drawn according to multicolor Pólya urn scheme.
We demonstrate that data sampling distributions from
the setΦ asymptoticallya posterioriconcentrate on the
Pólya L-projection(s) of the true sampling distribution
r on Φ. The statement holds also under misspecifition
(i.e., whenr /∈Φ).

In [13] BST [11] was used to provide a probabilistic
interpretation and justification of the Empirical Like-
lihood (EL) method. Based on the Pólya BST pre-
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sented in this paper we extend EL and Maximum Non-
parametric Likelihood methods to the Pólya sampling
case.

The paper is organized as follows. First, Pólya urn
sampling is briefly described. Next, the urn is embed-
ded into a Bayesian setting. The Pólya L-divergence,
which governs the exponential decay of posterior prob-
ability, is introduced next and then a Bayesian Sanov
Theorem for Ṕolya Sampling is stated and proved. It
directly implies Bayesian nonparametric consistency.
Next, the consistency result is used to provide an exten-
sion of Maximum Non-parametric Likelihood and Em-
pirical Likelihood methods to the Ṕolya sampling case.
Finally, using the Bayesian large deviations approach,
we provide a couple of insights into Bayesian consis-
tency.

2 Multicolor P ólya Urn Sampling

Consider an urn containingαi > 0 balls of colorsi,
i = 1,2, . . . ,m; and letmbe finite. There is a total num-
berN , ∑M

i=1 αi of balls in the urn and when it is nec-
essary to stress it, the urn will be called anN-urn. We
identify the set of possible colors with supportX of a
random variableX. A single ball is drawn from the urn,
recorded and then returned together withc∈ Z balls of
the same color. Assuming−nc≤ min(α1,α2, . . . ,αm),
the drawing is repeatedn times. This sampling is known
as the multicolor Ṕolya Eggenberger (PE) urn scheme;
c.f. [8], [22], [15]. Prominent special cases of the PE
scheme are:iid sampling (c = 0), sampling without re-
placement (c =−1), and the case ofc = 1.

Given the PE scheme, the probabilityπ(Xn =
xn |qN;c) that a sequencexn of n balls will be drawn
from initial configurationqN of N balls is (c.f. [22],
[15]):

π(Xn = xn |qN;c),
∏m

i=1 αi(αi +c) · · ·(αi +(ni −1)c)
N(N+c) · · ·(N+(n−1)c)

,

(1)
where vectorqN consists ofqN

i , αi
N , andni is the num-

ber of occurrences of thei-th outcome fromX in the
samplexn, i = 1,2, . . . ,m.

3 Bayesian Embedding

Let P(X ) be set of all probability mass functions with
the supportX . Let Φ ⊆ P(X ) and letΦN denote

intersection ofΦ with the set of all possible configu-
rations of theN-urn. Let ΦN be the support of prior
distributionπ(qN) of initial configurationsqN of N-urn.

Let rN be the true initial configuration ofN-urn where
rN is not necessarily inΦN. From rN a sequencexn

is drawn according to the Pólya sampling scheme, that
we characterize by the parameterc. Consequently, un-
der this framework the bayesian arrives at the posterior
probability distributionπ(qN |Xn = xn;c) of initial con-
figurations of theN-urn.

4 Pólya L-divergence

The Ṕolya L-divergenceLc
β
(q|| p) of the probability

mass function (pmf)q ∈ P(X ) with respect to pmf
p∈P(X ) is

Lc
β
(q|| p) ,−

m

∑
i=1

pi log(qi +βcpi)+

+
1

βc

m

∑
i=1

qi log
qi

qi +βcpi
.

By the continuity argument L0
β
(q|| p) ,

−∑m
i=1 pi logqi − 1. More concisely, Lc

β
(q|| p) =

L(q + βcp|| p) + 1
βcI(q||q + βcp), where using

standard conventionsI(· || ·) is the I -divergence
I(a||b) , ∑ai log ai

bi
[3] andL(· || ·) is theL-divergence

L(b||a) , −∑ai logbi [10], [11]. Though base of the
logarithm is immaterial, the natural logarithm will be
used.

The Ṕolya Lc
β
-projectionq̂ of p on A ⊆ P(X ) is

q̂ , arg infq∈A Lc
β
(q|| p). The value ofLc

β
-divergence

at anLc
β
-projection ofp onA is denoted byLc

β
(A ||p).

Hereafter it is assumed finite.

5 Bayesian Sanov Theorem for
Pólya Sampling

Sanov Theorem for Empirical Measures [21] is well-
known; reader is directed to [4], [3]. Initiated by [18],
the Sanov Theorem for Pólya Sampling was recently
proven in [12]. The Bayesian counterpart of Sanov
Theorem was to the best of our knowledge first stud-
ied in [1] and [2] and independently in [6]. Our proof
of Bayesian Sanov Theorem (BST) for Pólya Sampling
is based on [11], and also utilizes tools from [12].
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Asymptotic investigations of posterior consistency
will be carried on under the following assumptions: 1)n
andN go to infinity in such a way thatβ (n) , n

N → β ∈
(0,1) asn→ ∞, 2), rN converges in the total variation
metrics tor ∈P(X ) asn→ ∞ .

Topological qualifiers are meant in topology induced
on them-dimensional simplex by the usual topology on
Rm.

Bayesian Sanov Theorem for Ṕolya Sampling. Let
A ⊂ Φ be an open set. Letβ (n)→ β ∈ (0,1), rN → r
as n→ ∞. Then, for n→ ∞,

1
n

logπ(qN ∈A |xn;c) =−
{

Lc
β
(A || r)−Lc

β
(Φ || r)

}
with probability one.

Proof. The proof will be constructed separately forc >
0, c < 0, c = 0.

For c 6= 0∧ Nq
c /∈ (Z−)m∧ N

c /∈ Z−, formula (1) can
equivalently be expressed as [15]:

π(xn |qN;c) =
Γ
(

N
c

)
Γ
(

N
c +n

) m

∏
i=1

Γ
(

Nqi
c +ni

)
Γ
(

Nqi
c

) , (2)

whereΓ(·) is the Gamma function.
The following bounds [16] on the Gamma function

Γ(·) are imposed:

(b−1) logb− (a−1) loga− (b−a) < log
Γ(b)
Γ(a)

<

<

(
b− 1

2

)
logb−

(
a− 1

2

)
loga− (b−a), (3)

which is valid for 0< a < b.
Let c > 0 and note that the other restrictions under

which (1) and (2) are equivalent are not active, since
−nc≤ min(α1,α2, . . . ,αm). We use the bounds in (3)
to get the upper boundUn of the probabilityπ(qN ∈
A |xn;c):

Un =
∑qN∈A π(qN)∏m

i=1enl(qN
i , 1

2n)

∑qN∈Φ π(qN)∏m
i=1enl(qN

i , 1
n )

and the lower boundLn similarly (to getLn just replace
1/2n with 1/n in Un). There,

l(qN
i ,α) ,−

(
qN

i

β (n)c
−α

)
log

(
qN

i

β (n)c

)
+

+
(

qN
i

β (n)c
+ν

n
i −α

)
log

(
qN

i

β (n)c
+ν

n
i

)
,

α ∈
{

1
n, 1

2n

}
andνn is the empirical measure induced

by the samplexn.
Next, we use the simple bounds of [11] to develop

the upper upper boundUn by Ūn and lower boundLn by
Ln, as follows:

Ūn = ∏m
i=1enl(q̂N

i (A , 1
2n), 1

2n)

π(q̃N)∏m
i=1enl(q̃N

i (Φ, 1
n), 1

n)
,

Ln = ∏m
i=1enl(q̂N

i (A , 1
n), 1

n)

π(q̃N)∏m
i=1enl(q̃N

i (Φ, 1
2n), 1

2n)
,

where

q̂N(S ,α) , arg sup
qN∈S

m

∑
i=1

l(qN
i ,α),

q̃N(S ,α) , arg sup
qN∈S

(
m

∑
i=1

l(qN
i ,α)− logπ(qN)

n

)
.

By the Strong Law of Large Numbers for Pólya Sam-
pling (which follows from [12], Thm. 2 and Borel Can-
telli Lemma), νn → r, almost surely, asn → ∞. The
PólyaL-divergence is continuous inqandA is open, by
assumption. Thus,1n logŪn converges, with probability

one, to−
{

Lc
β
(A || r)−Lc

β
(Φ || r)

}
, asn→ ∞. This is

the same as the ’point’ of almost sure convergence of
1
n logLn and the Theorem forc > 0 is thus proven.

For c 6= 0∧ (1− Nq
c ) /∈ (Z−)m∧ (1− N

c ) /∈ Z−, the
formula (1) can equivalently be expressed as (cf. [12]):

π(xn |qN;c) =
Γ
(
1− N

c −n
)

Γ
(
1− N

c

) m

∏
i=1

Γ
(

1− Nqi
c

)
Γ
(

1− Nqi
c −ni

) .

(4)
Let c < 0. Note that the other restrictions under

which (1) and (4) are equivalent are not active, since
−nc ≤ min(α1,α2, . . . ,αm). The proof then can be
constructed along the same lines as forc > 0. At the
final stage one arrives at an expression of the form

∑m
i=1

{(
−qi
βc − r i

)
log
(
−qi
βc − r i

)
−
(
−qi
βc

)
log
(
−qi
βc

)}
which, after little algebra, can be seen to be the Pólya
L-divergence.

The case ofc = 0 (i.e., iid urn) has already been
studied in [11]. The exponential decay rate function is
L(A || r)−L(Φ || r), which is the same asL0

β
(A || r)−

L0
β
(Φ || r), implied by the continuity of the Ṕolya L-

divergenceLc
β
(· || ·).
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6 Bayesian Nonparametric Con-
sistency for Ṕolya Sampling

Bayesian nonparametric consistency for Pólya sam-
pling is just a corollary of the above Pólya BST.

To see this let forε > 0, A C
ε (Φ) , {q : Lc

β
(q|| r)−

Lc
β
(Φ || r) > ε,q∈Φ}.

Corollary. Let there be a finite number of Pólya
L-projections of r on Φ. As n → ∞, π(q ∈
A C

ε (Φ) |xn;c)→ 0, with probability one.

Standard Bayesian consistency (i.e., under correct
specification;r ∈ Φ) follows as a special case of the
Corollary.

Informally, the posterior probability concentrates on
the Ṕolya L-projections ofr on Φ. Observe that the
Pólya L-projection ofr on Φ is an asymptotic instance
of the sampling distribution with the supremal (overΦ)
value of the posterior probability; hence it is asymptotic
form of the Maximum A-posteriori Probable sampling
distribution.

7 MNPL and EL in P ólya case

Consider the problem of selecting an initial Pólya urn
compositionqN from a setΦ of such compositions,
when there is a samplexn (or empirical pmfνn which
the sample induces) drawn from the ’true’ urnrN, ac-
cording to PE sampling scheme with parameterc. Pólya
BST dictates that we select in the asymptotic case (n→
∞, νn → r, β (n)→ β ) Lc

β
-projection orr on Φ.

Most commonly,Φ is formed by moment constraints
that define a linear family of distributionsL (u) , {q :
∑X qi(u j(xi)− a j) = 0, j = 0,1,2, . . . ,J}, whereu j is
a real-valued function onX , u0 = 1 ∈ Rm, a ∈ RJ+1,
a0 = 1. The Ṕolya L-projection which Ṕolya BST se-
lects in this case has the form

q̂i(β ,c,λ ) =
βcri

eβc∑J
j=0 λ j (u j (xi)−a j )−1

,

whereλ ∈ RJ+1 are Lagrange multipliers.
If the choice is to be made among all possibleqN

for a fixed, sufficiently largeN, then by Ṕolya BST, we
should select the Ṕolya L-projectionq̂(β ,c,λ ) of r on
P(X ), which in this case is justr, regardless ofc and
β .

For n, N not sufficiently large, there are two possi-
bilities. It is possible either to select the initial con-
figuration with highest value of the posterior probabil-
ity1 π(qN |νn;c) or the Ṕolya L-projection of νn on
ΦN. As n → ∞, the two methods select the same
configuration(s). Observe that whenc = 0, the lat-
ter method selects configuration(s) with the highest
value of non-parametric likelihood∑m

i=1 νn
i logqi . Pólya

BST thus extends Maximum Non-parametric Likeli-
hood (MNPL) method into the Ṕolya sampling: Ṕolya
MNPL selects the urn configuration(s) with the highest
value of negative ofLc

β
(q||νn).

In the case ofiid sampling it was observed (cf. [13])
that the Bayesian Sanov Theorem [11] provides a prob-
abilistic Bayesian interpretation and justification of Em-
pirical Likelihood method [19], [17] in the parame-
ter estimation context [20]. EL, viewed as estimation
method, double-maximizes the non-parametric likeli-
hood criterial function subject to parametrized con-
straints [20], [19], [17]. The above discussion thus di-
rectly shows how to extend EL into the Pólya sampling
framework: the negative of Ṕolya L-divergence has to
be double-maximized subject to parametric constraints.

8 Summary

The main advantage of Bayesian Sanov Theorem (BST)
approach to Bayesian nonparametric consistency over
the traditional one lays not that much on the technical
side as on the conceptual one. BST identifies the rate
function governing exponential decay of the posterior
measure, and this in turn identifies ’points’ of concen-
tration of the posterior as those distributions which min-
imize the rate function. In the case ofi.i.d. sampling the
posterior concentration ’points’ identified by BST are
those distributions ˆq which in the feasible setΦ maxi-
mize

∫
r logq. If Φ is the set of all distributions (with

the same support), then ˆq is unique and equalr. Tra-
ditional approaches to Bayesian nonparametric consis-
tency do not see the concentration point (i.e.,r, under
correct specification) as a solution of the optimization
problem.

BST also shows that the ’points’ of asymptotic con-
centration of posterior probability are asymptotic in-
stances ofa posteriorimost probable (MAP) sampling
distributions. This fact implies that the mean posterior
sampling distribution (i.e., the predictive distribution)

1Hence the name of the method associated with this selection
scheme: Bayesian Maximum Probability method; cf. [14]

4



is, in general, not the point of convergence under mis-
specification.

In this paper we have used under the Pólya sampling
scheme the Bayesian Sanov Theorem (BST) to identify
sampling distributions, on which the posterior proba-
bility asymptotically concentrates. This way, Bayesian
nonparametric consistency for Pólya sampling was es-
tablished both under correct specification of model as
well as under misspecification.

In [13] it was pointed out that the non-parametric
likelihood criterion, as well as methods that are based
on its maximization (i.e., Maximum Non-parametric
Likelihood (MNPL) and Empirical Likelihood (EL)
methods) are limited to independent sampling. The
point was made on the grounds of a Bayesian large
deviations interpretation of the methods. On the same
ground the Ṕolya extension of BST implies that under
Pólya sampling it is the Ṕolya non-parametric likeli-
hood function (i.e., negative of the PólyaL-divergence)
that has to be maximized.
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